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Abstract

We show how clustering standard errors in one or more dimensions can be
justified in M-estimation when there is sampling or assignment uncertainty.
Since existing procedures for variance estimation are either conservative or in-
valid, we propose a variance estimator that refines a conservative procedure and
remains valid. We then interpret environments where clustering is frequently
employed in empirical work from our design-based perspective and provide in-
sights on their estimands and inference procedures.
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1 Introduction

In our survey of articles published in American Economic Review in the years 2021
and 2022, 70% of 133 articles containing empirical specifications reported some cluster-

robust standard errors. Among these papers, 12 reported two-way clustered standard
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errors. Despite the common use of cluster-robust inference in empirical work, lit-
tle guidance has been provided on the motivation for clustered standard errors and
the level of clustering for linear regressions and nonlinear estimators. Even less is
known about the formal reasoning underlying two-way clustered standard errors. In
this paper, we establish asymptotic properties of M-estimators under finite popu-
lations with potentially multiway cluster dependence, allowing for unbalanced and
unbounded cluster sizes in the limit.

We use the finite population framework for the choice of appropriate inference
because we can combine sampling-based uncertainty that arises from possibly not
observing the entire population with design-based uncertainty caused by the stochas-
tic assignment of treatment or policy variables. Following Abadie, Athey, Imbens,
and Wooldridge (2023), we distinguish between two situations that justify computing
clustered standard errors: i) cluster sampling induced by random sampling of groups
of units, and ii) cluster assignment caused by correlated assignment of “treatment”
within the same group. While |Abadie et al.| (2023) justify cluster-robust standard
errors for the difference-in-means estimator with one-way clustering, we generalize
their setup both in considering general M-estimators and in allowing for multiway
clustering.

We show that for conducting inference with general M-estimators, one-way clus-
tering is only necessary when there is either cluster sampling or cluster assignment,
or both on nested or same dimensions. Multiway clustering can be justified when
clustered assignment and clustered sampling occur on different dimensions, or when
either sampling or assignment is multiway clustered. The same results are also shown
for functions of M-estimators with the estimator of the average partial effect (APE)
as a leading example. In the special case of linear regression on a binary treatment
variable, one-way clustered standard errors on the assignment dimension is sufficient
under homogeneous treatment effects even if the sampling and assignment dimensions
are non-nested.

We view our main contribution as developing a framework and procedure for
design-based inference of M-estimators with multiway clustering. Within the growing
literature on design-based inference (e.g., |Abadie, Athey, Imbens, and Wooldridge
(2020); | Xul (2020); |Athey and Imbens (2022); Abadie et al. (2023); de Chaisemartin
and Ramirez-Cuellar| (2024))), there are at least four nuances that are unique to our

environment that we find from our theory and from analyzing applications of cluster-



robust inference. First, there are special cases where two-way clustering reduces to
one-way clustering even under two-way dependence. Second, the two-way clustered
variance estimator as proposed in |(Cameron, Gelbach, and Miller| (2011)), henceforth
CGM, can be anti-conservative while standard one-way robust variance estimator
is conservative. Third, with multiple assignment variables on different clustering
dimensions, we find that in certain cases it suffices to use one-way cluster variances
on the respective dimensions. In contrast, this setting is not allowed or cannot be
discussed in one-way clustering. Fourth, beyond the special case of |Abadie et al.
(2023)), estimands from a fixed effects regression cannot be interpreted as the average
treatment effect in general. A broader lesson here is that cluster dependence not
only affects variance estimation in inference; it can also affect the interpretation of
estimands.

Until recently, accounting for the large sample behavior of design-based settings
with multiway clustering has been a difficult problem. Asymptotic theory for variables
that have multi-dimensional dependence has thus far relied on separate exchangeabil-
ity (e.g., Davezies, D’Haultfoeuille, and Guyonvarch| (2018)). Separate exchangeabil-
ity implies that the marginal distributions of clusters are exchangeable (MacKinnon,
Nielsen, and Webb|, 2021). However, by construction, separate exchangeability is vi-
olated within a design-based framework. Consider a binary assignment variable X;.
Since the error term u; = X;u;(1) 4 (1 — X;)u;(0) depends on the nonstochastic poten-
tial error u;(z), even if treatments X; are identically distributed across clusters, the
marginal distribution of u; differs because X; is weighted differently. Hence, a limit
theory that accommodates heterogeneity of clusters and observations is required. By
building on the central limit theorem in |[Yap| (2025)), we derive results on large-sample
behavior of standard estimators in this environment.

When estimating the variance-covariance matrix, the usual variance estimators
are typically too conservative for the finite population variance-covariance matrix in
one-way clustering. However, we find that CGM can be anti-conservative and hence
the resulting test is invalid. In response to the anti-conservativeness of the CGM es-
timator in design-based settings, there are two approaches that empirical researchers
may take. The first approach is to make an assumption on how the individual treat-
ment effects are correlated within the same cluster: CGM is conservative when the
correlation is positive, which is reasonable in most applications. The second approach

is to remain agnostic and to use CGM2, a more conservative version of the CGM vari-



ance estimator proposed by [Davezies et al. (2018). Since simulations show CGM2 is
often unnecessarily conservative, we propose a simple shrinkage variance estimator re-
lying on adjustments using covariates. The probability limit of our adjusted variance
estimator is guaranteed to be no smaller than the finite population variance matrix
and provides a smaller upper bound than CGM2.

We discuss several practical settings involving clustering and justify the validity
of cluster-robust inference within a design-based framework. These examples include
a standard difference-in-means estimator, fixed effects regressions, a linear regression
on two assignment variables clustered on different dimensions, and a triple differences
estimator. (Some of these results are contained in the supplementary appendix to save
space.) We also show the performance of our proposed shrinkage variance estimators
in simulations and two empirical illustrations. Our adjusted standard errors can be
substantially smaller than CGM2 while still maintaining correct coverage.

Our paper contributes to at least three strands of literature that have gained recent
attention. First, we contribute to the literature on design-based inference (cited and
summarized above). Second, we contribute to the literature on multiway clustering
(e.g., Davezies et al| (2018)); [Menzel (2021); Chiang and Sasaki (2023); Yap, (2025);
Chiang, Hansen, and Sasaki| (2024])). To the best of our knowledge, we are the first to
consider any design-based environment with multiway clustering, which is a difficult
problem as separate exchangeability used in most multiway clustering limit theorems
does not hold in the general design-based setting. Consequently, our consistency and
normality results are new relative to the existing literature on multiway clustering.
Third, we contribute to the literature on causal panel data (e.g., De Chaisemartin and
d’Haultfoeuille (2020); Callaway and Sant’Anna (2021); [Sun and Abraham, (2021);
Athey and Imbens| (2022); Borusyak, Jaravel, and Spiess (2024)); |Gardner, Thakral,
T6, and Yap (2024)); Arkhangelsky and Imbens (2024))). By using a design-based
setup, we make an assumption on assignment instead of the potential outcome as most
of these papers do with parallel trends. Considering multiway clustered assignment is
new relative to the design-based setting of Athey and Imbens| (2022)), and our setting
provides new insights into the interpretation of the fixed effect estimands in these

designs.



2 Asymptotic Properties of M-estimators

2.1 Setup

Consider a sequence of finite populations indexed by population size M, where
M diverges to infinity in deriving the asymptotic properties. Suppose there are G
mutually exclusive clusters in population M defined as either the primary sampling
units in the sampling scheme or the partition in the assignment design, where each
cluster has Mf units, g = 1,2,...,G. Further, suppose the population can also
be partitioned into H mutually exclusive clusters according to either the sampling
scheme or assignment design on dimensions possibly different from that of G clusters.
Each cluster H contains M units, h = 1,2,..., H. We use N to denote the set
of observations in the cth cluster on the C' € {G, H,G N H} dimension, and ¢(7) to
denote the cluster that ¢ belongs to on the relevant dimension. If there is only one
way of partitioning, H and G clusters coincide with each other.

Unit ¢ within cluster g and cluster h is characterized by (X, zias, Yiar). The vec-
tor X, is the vector of stochastic assignment variables, z;)s is a set of non-stochastic
attributes, and Y;j, is the realized outcome. The categorization of assignments and
attributes depends on the empirical question. Typically, the key variables of interest
in an empirical study could be viewed as assignment variables, and the remaining
covariates as attribute variables. With the potential outcome framework, there exists
a mapping, denoted by the potential outcome function y;y/(z), from the assignment
variables to the potential outcomes. For example, yn(x) = 2601 + 2ziar002 + eipr for
continuous outcomes, and y;y () = 1[x0o1 + 2zip002 + ;s > 0] for binary outcomes,
where z;3; and e;; are observed and unobserved attributes respectivelyE] The poten-
tial outcome function y;p/(+) is non—stochastic.E] Nevertheless, the realized outcome,
Yiv = yine (Xinr), is random. Hence, the finite population setting can be understood
as a setting that conditions on the potential outcomes and attributes of the M units in
the population. We use W;ys := (X, Yin) to denote the random vector for brevity.

We study solutions to a population minimization problem, where the estimand of

'We emphasize = as the argument of the potential outcome function because it is the only
stochastic variables in the function.
2This implies that the unobserved attributes are non-stochastic.



interest is a £ x 1 vector denoted by 673,;:

G H
}k\/[ = arg mé?l Z Z QlM(Win 9):|

= =1 NG
(g9,h

o1
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The expectation E in is taken over the distribution of X since X is the source
of randomness here. The function ¢;p(+,-) is the objective function for a single unit.
Examples include (nonlinear) least squares, weighted least squares, and maximum
likelihood estimation. The subscripts of the objective function imply its dependence
on the non-stochastic attribute variables z;,,, so covariates are allowed in the model.
Interpreting this estimand is context-dependent, so we abstract from this discussion
in our general framework.

Let R;p; denote the binary sampling indicator, which is equal to one if unit 7 is sam-
pled and zero otherwise. Hence, the sample size is N = Zle Z,Ijzl D ic NG Riy =
Zi]\il R;pr. The sample size is random unless the sample is population. The estimator

of 0}, is denoted by éN, which solves the minimization problem in the sample:

G H
GN—argml %Z; Z Rineqint(Wing, 0)

NG
| M
= arg mein N Zl Rine@int(Wing, 0). (2)

Our random variables are two-way clustered in that random variables for indices
i and j are independent if g(i) # ¢(j) and h(i) # h(j), formalized in the following

assumptions.

Assumption 1. The assignments are independent if units do not share any cluster,
i.e., c(i) # c(j),Y c € {g,h}, but are allowed to be correlated within clusters.

Assumption [I] allows assignments to be correlated within clusters on the dimen-
sions of GG, H, or both. The assignment variables X;;; are not necessarily identically
distributed, which allows the assignments to depend on the fixed attributes z;;.

Although the assignment mechanism is not perfectly known in observational stud-



ies, researchers typically impose implicit assumptions or leverage institutional knowl-
edge to infer the correlation pattern of assignment variables. This understanding is
then used to identify and estimate causal effects. Within a design-based framework,
these underlying assumptions can also support inference. Notably, only one out of
the 12 papers that reported two-way clustered standard errors in our empirical survey
is an experimental study. A design-based framework is useful for both experimental
and observational studies. For instance, Abadie et al| (2020) analyze design-based
inference for regressions without experimental data and Rambachan and Roth| (2025)
develop a design-based framework suitable for analyzing quasi-experimental settings

in social sciences.

Assumption 2. With Be(p) denoting the Bernoulli distribution with success probabil-
ity p, the sampling indicator is Ry = RgG(i)MRhH(i)MR%, where the random variables
RS\ ~ Be(pau), Rifhy ~ Be(pau), and RY; ~ Be(pyn) are independently drawn,
across g,h,i. The sequence of sampling probabilities pcar, pryv, and puy satisfies
por — p € (0,1] forl € {G,H,U}, as M — oo and does not vary by cluster or

um’tsﬁ

Various sampling schemes are allowed under Assumption [2l When all sampling
probabilities are equal to one, we observe the entire population; when pgy = pgyr = 1
but pya < 1, we have independent sampling; if the dimensions of H and G coincide
or H is nested within G without loss of generality (e.g., zip code areas nested within
counties), pen < 1 or pgy < 1 implies one-way cluster sampling; lastly, if the di-
mensions of H and G differ, pyy < 1 and pgy < 1 implies two-way cluster sampling.
For instance, one can first sample according to occupations and industries and then

sample individuals from the chosen intersections of occupations and industries [

Remark 1. This sampling scheme is different from one-way cluster sampling at the

intersection level. To see this, one-way clustering at the intersection level implies that

3Equivalently, we can think of the sampling scheme as consisting of two steps. In the first step,
a subset of clusters is drawn according to Bernoulli sampling at the G clustering dimension with
probability pgas > 0; simultaneously, another subset of clusters is drawn according to Bernoulli
sampling at the H clustering dimension with probability pgas > 0. Sampling probabilities paps and
paym do not differ across clusters. In the second step, units are independently sampled, according
to a Bernoulli trial with probability pyas > 0, from the subpopulation consisting of all the sampled
intersections of clusters.

4Notice that zero sampling probabilities are ruled out in the limit to maintain bounded moment
conditions. A similar approach has been used by |Abadie et al. (2023) in their study of one-way
clustering.



Rivi LR for g(i) # g(j) or h(i) # h(j), which implies Ry ALR;p; for some i, j with
g(i) = g(j) and h(7) # h(j). However, under our sampling scheme Cov(Rn, Rjn) =
E[Rin Rjn] — E[Rim|E[Rju] = pani (1 — pann) Phiae P # 0-

Assumption 3. The vector of assignments is independent of the vector of sampling

ndicators.

Independent sampling and assignment processes imply Assumption [3| which rules
out sample selection due to assignment status. Cluster sizes in our theorems are
allowed to be unbalanced and unbounded in the limit. Nevertheless, in order to
apply asymptotic theory, we have assumptions that restrict cluster heterogeneity and
the growth rate of the cluster sizes relative to the population size and variances.

5 (5)° > (arf)

Assumption 4. PT — 0 and "= 5z— — 0 as M — oo.

This assumption implies G, H — oo, and rules out the case where a particular
subset of clusters dominates the population. In the results that follow, for matrices
A and B, when we say A > B, we mean that A — B is positive semi-definite (PSD).

2.2 Asymptotic Distribution
2.2.1 One-way Clustering

To fix ideas, we start with the simpler case of one-way clustering. Namely, there
is only one way of partitioning so that G and H clusters coincide. Without loss of
generality, let pyy = 1 in this case. Let myp (Wi, ) denote the score function of

qine (Wing, 0). The variance matrix of M-estimators is defined as

VM ZILM(Q}kw)ilvAMLM(e}k\/I)il, (3)
where
Va =V | — i =L/ (Wi, 0%p) (4)
AM - \/M £ \/m M iM>Yng
and
1 M

i=1



It can be shown that:

Vam = Denw i (03r) + pust Dciuster v (03r) — puspemiDem — pumper Dec,  (6)

where
M

Z E [mins(Wing, 0)ming(Wing, 0)'] (7)

=1

1
Aehw,M(‘g) - M

and
Acluster,M Z Z Z sz zMa H)m]M(VVjMv 0)/} (8)
9=1ieN§ jeNG\{i}

account for heteroskedasticity (Eicker-Huber-White (EHW)) and within-cluster cor-

relation respectively. The terms

AE,M— Z sz Win, ?\/[)]E[miM(WiMpejwﬂl (9)

and

AE(JM = %75 Z Z Z sz 2M76M)}E[ij(WjM79X/[)}/ (10)
g LieN§ jeNG\{i}
are the finite population counterparts of Ay ar(03) and Agyserar(03)-

The conventional superpopulation variance matrix is denoted by

Visnr =Lar(03) ™ (Aenwar (03y) + poai Dcusterr (037)) Laa (03,) "

(11)
=Vir + puspen L (05) 7" (AE,M + AEC,M>LM(07\4)_1

Notice that the middle part of the sandwich form of V), is different from that of Vgy,
due to two “extra” (E) terms Apgy and Agcas scaled by the composite sampling
probability.

The usual cluster-robust variance estimator (CRVE) that uses the estimator from

Liang and Zeger| (1986) for Vg, is given by

~ A

VSN = ZA—JN (éN)_1 (Aehw,N<éN) + Acluster,N(eN))LN(éN)_la (12)



where

M
S 1
Ly(0) = N Z RineVoming(Wing, 0), (13)
i=1
Aehw N(9 N ; Rin - sz(VVzMa 0>sz(VVzM7 9) ) (14)

and

G

o 1

Acluster,N - N E § E RZMR]M mZM(VViMa e)ij(VV]Mv 0)/ (15)
9=1ieN§ jeNG\{i}

For one-way clustering, we use a stronger version of Assumption [4] to enhance in-

1/2 and follows Hansen

terpretability. This assumption ensures convergence at rate N~
and Lee| (2019). The results are extended to an arbitrary convergence rate and two-
way clustering in the next subsection.

2

Ma

glMg (MQG)Z
T§C<ooandmaXT—>0, as M — oco.

Assumption 4'.
9<G

Theorem 2.1. Under one-way clustering, Assumptions[1H3, Assumption 4, and As-
sumption|A.1in Appendiz A, (1) Vj\zl/Q\/N(HAN—(‘)}‘M) A N(0,1); (2) VS_J\}[ QVSNV_U2
1.

Theorem shows asymptotic normality with the finite population cluster-robust
asymptotic variance (CRAV). In the variance-covariance matrices, the term Ay sier ar(603)
is scaled by the sampling probability pyas because of the two-stage sampling scheme.
Nevertheless, the usual CRVE, VSN, converges to Vgys, in which the estimation of

pum has been accounted for.

Remark 2. Clustering is necessary if and only if there is cluster sampling (pay < 1)

or cluster assignment (Acusternr(03;) # Dgcar), or both.

The term related to clustering in the variance formula, A jysterar (657) —perr Apc
is zero if we have both independent sampling (pgar = 1) and independent assignment.
Otherwise, these components in the variance must be accounted for. Hence, Remark
suggests that we should adjust standard errors of M-estimators for clustering at the
level of cluster sampling or cluster assignment. It generalizes the results in |Abadie

et al.| (2023): they prove the case for the difference-in-means estimator, while the

10



remark above holds for all M-estimators with either continuous or discrete assignment

variables.

Remark 3. The superpopulation CRAV of M-estimators is no less than the finite
population CRAV, in the matrix sense.

Since the sum of the two additional terms, Ag yr + Agcar, is PSD, we reach the
conclusion in Remark [3] Remark [3| together with Theorem [2.1(2) imply that the
usual CRVE is often too conservative. There are exceptions where using the usual
CRVE for inference is approximately correct, with the leading scenario summarized

in the remark below.

Remark 4. If a relatively small number of clusters is sampled from a large population
of clusters, i.e., panr 1S close to zero, or there is at most one unit sampled from each

cluster, i.e., pya 15 close to zero, then it is approximately correct to use the usual
CRVE of M-estimators for inference.

Another special case for the usual CRVE to be correct for inference is when Ag p/+
Agcn = 0, which is true if either E[miM(VViM,@}"W)} =0,Vi=1,.. .,MgG, g =
1,...,Gor ZieNgG E[miM(WiM, 93/[)] =0,Vg=1,...,G. The former is true for the
variance of the coefficient estimator on the assignment variables under the sufficient
conditions provided by |Abadie et al.| (2020)), including constant treatment effects and
other linearity conditions. The latter holds if the finite population is composed of
repetitions of the smallest cluster. With this kind of data structure, 03, that solves
E [ Zle ZieNgG minve (Wi, 9&)} = 0 is also the solution to E [ Eie/\/—gg mint(Wing, 03)
0 for each cluster g. However, these kinds of special cases rarely hold in practice.

Sometimes, we are interested in the functions of M-estimators rather than M-
estimators themselves. Let fir (Wi, 03,) be a ¢ x 1 function of Wy, and 03,. Suppose
we wish to estimate v}, = = M B[ finr(Wing, 03)]. As an example, v}, could be
the APE from nonlinear models, where f(-,-) is some partial derivative for continuous
variables or some difference function for discrete variables.

Let Ay = % Zf\il RZ-MfiM(VVZ-M,HAN) be the estimator of v},. Denote the finite

population variance matrix by

Vf,M = Aghw,M + PUMAfzuster,M - pUMpGMAé,M — PUMPGM AQC,M (16)
The superpopulation variance matrix is then Vi gy = Aghw, s pUMAfluster, - And

11



the usual CRVE is denoted by Vf}SN = A({hw’ NT Aflustm ~- The detailed definition of
each term can be found in Appendix A.

Theorem 2.2. Under one-way clustering, Assumptions Assumption 4', and

Assumptions [A.1HA.4 in Appendiz A, (1) ijﬂl/l/zx/ﬁ(%/ - ) KN N(0,1,); (2)

12 15 P
Vism - Visn - Visu = g

Theorem shows that the conservative property of the usual CRVE of M-

estimators also applies to the usual CRVE of any functions of M-estimators.

2.2.2 Two-way Clustering

Now, suppose the H and G clusters are partitioned on different dimensions. The

variance matrix of M-estimators is defined as

Vewar =L (05) " Varwar Lar(05,) 7, (17)

where

Varwm = mine(Wine, 03r) | - (18)

vV M Z 1 VPGMPHMPUM

By grouping the cross products of score functions into different cases: individual
units (Aepw,ar(037)), units belonging to the intersection of G and H (AGnmy,m(03r))
units belonging to G but in different H’s (Ag a(6},)), and units belonging to H but
in different G’s (Apar(03,)), it can be shown that:

Varwy =Dehwm(03;) + puse Dcnmy v (03)
+ pumpam Dam(0y) + purpar D (0y) (19)
— puMmPeMPHMAEM — pUMPaMPHMAEGAH),M

— pumMpPeMPEMAEGM — PUMPGMPHMAEH M

where

Ay, L ZZ Z E[miM(Wz’M,Q)ij(W/jMae)/]7 (20)

=L IS NG N\

12



G H
1 /
Apermar =572 >, D ElmarWir, 03] E[mn(Wiar, 03]

=1 =L ENGRT JENG Y\

Q

Do =333 S S Elmar(Waar, Ohmyns(Wiae, 6], (22)

=1 h=1 h'+£h ;e NGNH ;- \fGNH
g # zEN(g‘h) ]E./\/—(gﬁ,)

¢ H H
Apau = i Z Z Z Z E [mine(Wint, O30) JE[mjnr (Wi, 9&)}/7 (23)

NH GNH
Ty JEN GG

Agyv(0) = % Z Z Z Z Z E [minvt(Wing, )mng(Wiar, 0)'], (24)

h=1 g=1 g'4q ic \'GNH ;= \fGNH
9=1 g'#g zGN(gyh) ]GN(g,’h)

i
o
>
Il
_
<
LS
=
g
s
eQ

and

h=1 g=1 g'#gieNCOI jeNCIH

As in one-way clustering, Apenm),m, Aram, and Agg o are the finite population
counterparts of Acnmy . (03r), Daa(03r), and Ay ar(03,), respectively.

The two-way superpopulation cluster-robust asymptotic variance is:

Vrwsm ILM(G?\/[)f1 (Aehw,M(e}k\/[) + pum Aoy, (0hr)
+ pumpramDc () + puripa Dmn (G3r)) L (03,) "
=Vrwnm + pomparpun L (05) " (Apm + Aprmm + Apem + Apmar) La(03) 7
(26)
Our normality result for M-estimators with two-way clustering uses the following

assumption.

Assumption 5. Let A\pin(-) denote the smallest eigenvalue. With Ay := M Xppin(Varwr),
and for some C' < oo, we have /\LM max,(MS)* — 0, ﬁmaxh(M,’fI)2 — 0, )\—}W 2:9(]\490)2 <

C, and 5= 37, (MJ")? < C as M — oo.

Assumption [5]ensures that the overall variance is not driven by a few large clusters.

a
A stronger way of stating Assumptions 4| and |5/ is that % > (M gG )2 < (C < oo and
g=1

(Mmg)*
max +

183 — 0, as M — oo with an analogous condition in the H dimension where
9=

13



Ay > cM for some ¢ > 0. This assumption is more similar to the setting of Hansen
and Lee| (2019), but rules out two-way balanced clusters where there is one unit in

every intersection: if there are G clusters on both the G and H dimensions, then

G
M = G? so - Z:l (MgG)2 = G?/G? = G — oo. Assumption 4| as stated makes no
g:

G
such restriction as 1 . (]\4961)2 = G3/G* = 1/G — 0. With more flexible cluster
g=1

sizes, the convergence rate depends on the variance of the sum, which motivates
Assumption The stronger version of the assumption only allows a convergence
rate of M~'/2, which is not necessarily true in the weaker version. For instance, the
weaker version can allow a slower convergence rate of (Zg}:l(l\{qG)z/Mz)_l/2 = G2
instead of M~/2 = G~'. Since we can allow for different convergence rates, we use

the scale A\j; to restrict cluster heterogeneity in Assumption [5 to obtain normality.

Theorem 2.3. Under Assumptions @ and Assumptz’on in Appendiz A, VT};,/]@\/N(GAN—
05) > N (0, I).

The proof of this theorem is largely analogous to Theorem [2.1], just that we apply
the central limit theorem (CLT) from |Yap| (2025) instead of Hansen and Lee (2019).
Chiang and Sasaki (2023]) (Table 1) pointed out that the two-way cluster-robust stan-
dard errors are usually valid. A notable exception is when the additive components
are degenerate, such that the random variable can be written as D;; = «a;7;, where
«;, v are cluster-specific random variables on the respective dimensions. As noted in
Remark 1 of [Yap| (2025), this data generating process (earlier pointed out by Menzel
(2021)) is ruled out by our summability condition in Assumption [

Remark 5. Vi, reduces to Vi (i.e., the one-way CRAV) if (i) puy = 1 and

AH,M(QX/[> = AEH,M or (ZZ) PGM = 1 and AG,M(QL) = AEG,M-

Remark 5| coupled with Remark [2 imply that two-way clustering is only justified
if there is (i) two-way clustered sampling (i.e., pey < 1 and pgpr < 1); (ii) two-way
clustered assignments (i.e., Aga(03) # Apcn and Aga(63,) # Appar); or (iii)
clustered sampling and clustered assignments on different dimensions. For the third
case, there could be many combinations of sampling schemes and assignment designs,
possibly combining two-way sampling and two-way assignments at the same time.

One important implication of Remark [5| is that researchers may report two-way

clustered standard errors more frequently than necessary in their empirical studies. It

14



is essential for researchers to understand the sampling scheme and carefully consider
the assignment pattern when deciding which robust inference method to apply. Our
analysis is not only relevant for identifying the appropriate level of clustering when
two-way clustering is required but is also crucial for determining whether the use of

any two-way clustered standard errors is justified.

Remark 6. In a special case, G and H clusters could be partitioned at different but
nested levels. Without loss of generality, suppose H clusters are nested in G clusters.

The variance-covariance matrix can be simplified to be

Vrwm ZLM(Q&)_l (Aehw,M(QL) + PUMA(GmH),M(H}k\/[) + PlMAG,M(H}kw)

-1

(27)
- ,OQMAE,M - ,02MAE(GmH),M - p2MAEG,M)LM(QXJ) )

where (1) piyv = pusmprm and payr = pumpempPam for nested sampling; (i) piy =
pam = pum for nested assignment; (iii) piy = pum and pay = pumpem for sam-
pling at the G level and assignment at the H level; (iv) piy = penmr = pumpum for
assignment at the G level and sampling at the H level. As a consequence, one-way

clustering at the higher level G is sufficient.

Remark 7. In the special case of the difference-in-means estimator, which is equiva-
lent to linear regression on a constant and a binary treatment variable, the score has
mean zero for all observations when there are constant treatment effects. If there is
clustered sampling on dimension G and clustered assignment on dimension H, where
G and H are non-nested, then it suffices to cluster on the assignment dimension H. To
see this, since E[m;n (Wi, 0)] = 0 for all i, the difference between Varwy and one-
way cluster-robust variance on His 17 > ZJGNfi)\N{Ii E[mine Wing, @)mjne (Wi, 0)].
Since E[mins(Wine, O)mins(Wing, 0)] = Elmint(Wine, 0)|E[mjne(Wiar, 0)] when 4,5 do

not share a H cluster, the difference is zero.

While the usual variance estimators are conservative for the finite population
variance-covariance matrix in one-way clustering, the usual variance estimator is
not necessarily conservative with multiway clustering. We denote the usual two-way

cluster-robust variance estimator proposed in Cameron et al.| (2011) (CGM) by

~ ~ A~ ~ ~ ~ N A A

Vear = Lv (00) 7 (Aenwn (On) + Ban(0n) + A n(On) — Acrun () Ly (On) 7",
(28)
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where

~

1
Acn(0) = N Z Z Z Rint Rina - ming(Wing, 0)mjng (Wi, 0, (29)
¢ 1eNE JENE\{i}
for C € {G,H,GNH}.
For variance estimators to converge to the variance-covariance matrices in the

general environment, we impose an additional assumption.

Assumption 6. For C,C" € {G, H},
let XS, = Ain (Z?i + Sjene, ELRaas Rinsmins(Wias, 05 )msns (Wi, 9;;,)']). Then,
(Af) ™ maxe (MS")? = o(1) and (A§y) ™' 22, (MS")* = O(1).

The condition in Assumption [f] is required in the following propositions so that
the asymptotic error incurred by using the matrix estimator V relative to the true
matrix V' converges to zero. The difference between Assumption [6] and the existing
assumptions is that the previous assumptions defined \,; as the variance of the sum,
which includes all two-way clustered terms, but here, A, only includes terms from one
of the two dimensions. Since the strategy for showing such convergence is similar to
Yap (2025), an analogous summability condition and a condition on the largest cluster
having a negligible contribution to the variance are required. Since Assumption [6only

accounts for one-way clustering in the denominator, Assumption [f] is stronger than

Assumption [5|f]

Proposition 2.1. Under Assumptions Assumption [6, and Assumption [A.3 in
Appendiz A, VT_V%//S%MVCGMVT_V%//S?M 5 I, However, Vywsy could be smaller than

Vrw s in the matriz sense.

The difference in the meat of the variance sandwich between Vyw sy and View s

is purparpav(Ae v + Apenm,m + Apem + Agmr). Notice that the sum of the

5 Assumption |§| in its present form requires that the cluster correlation on each clustering dimen-
sion be of comparable scale. However, Propositions[2.1]and hold even when the cluster correlation
on one dimension is negligible compared to the other, as the proof only requires the condition to
hold for the denominator )\% where C' is the cluster dimension with correlation that is not negligible.
Nonetheless, Assumption [6]is required in Theorem [3.3] as we are shrinking the dimensions separately
for CGM2, so in order for the proof strategy in |Yap| (2025) to apply, we require the variances to be
of the same order. To ensure consistency across sections, we impose the stronger assumption.
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first three terms within the parentheses

1
Apv+Apcrm,v+Asam = i Z Z E [mivs(Wiar, 03] Z E [mivs(Wiae, 03)]

g=1 \ieNg iENE

is PSD. Agg v, on the other hand, cannot be written in quadratic form and is
therefore not guaranteed to be PSD by its definition. As a result, the difference
between the superpopulation and finite population two-way cluster robust variance
matrices can be positive or negative in general (in the matrix sense).

Above, we show that the probability limit of the CGM variance estimator can
be smaller than the finite population two-way cluster robust variance, which is a
population property. The anti-conservativeness results from the subtraction of the
correlation terms within intersection clusters Agn i, N(éN). Correspondingly, in finite
samples the CGM variance estimator may not be PSD and can numerically be nega-
tive, a result acknowledged in (Cameron et al. (2011).E| In Example B.1 in Appendix
B, we give an example where Vi gpr is anti-conservative, and report a related sim-
ulation where VCGM has a coverage rate that is less than the nominal rate in Table
B8

If all within-cluster correlations of E[m;n (Win, 0%,)] are positive, then Veau is
still a conservative variance estimator. Davezies et al.|(2018)) propose an alternative
variance estimator that does not adjust for double counting the intersection clusters.
Let

Vearrs = Ly (QAN)f1 (erhw,N<éN) +Agn(On) + AH,N<9AN))£N<9AN)71 (30)

and
Vrwsarz =L (03,) 7 (ZAehw,M<0}k\4) + 2pumAcnmy v (O3y)

(31)

+ pumprm e, () + pusipen Dm i (05,)) Lar(03)
Proposition 2.2. Under Assumptions Assumption [6, and Assumption [A.3 in
Appendiz A, VYTI/%//;MQVCGMQVTTV%//;M2 B 1. Viwswa is guaranteed to be no smaller

than Vrw o in the matriz sense.

Hence, in contrast to CGM, CGM2 is asymptotically conservative.

6Let N; = Ngczi) UN}%)' When considering E[miM(WiM, 9}1)] as the analog of an observation, if

> EjeM WiMWj{M need not be PSD, then ", Eje/\ﬂi E[miM(WiM,Hj/[)}E[ij(WjM,HJ*W)]/ also
need not be PSD.
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3 Proposed Variance Estimation

Even though we restore conservativeness of the usual variance estimator by us-
ing VCGMQ, it can be too conservative. The terms in the usual CRAV can be
estimated in the standard way. Taking one-way clustering as an example, it is
more challenging to estimate the two extra terms, Ag ) and Age )y appearing in
@, because E[miM(WiM, QL)] is generally non-identifiable due to the missing data
problem of the potential outcome framework. For instance, with a binary assign-
ment variable, E[m (Wi, 03,)] = P(Xiv = 1) - mane (1, yine (1)), 03) + P( X =
0) - mine ((0, yi04(0)), 63,), and we do not observe both y;,,(0) and y;/(1) at the same
time. This observation motivates a simple method to estimate a bound on these ex-
tra terms such that the corrected variance estimators are still conservative, but are
smaller than the one-way CRVE or CGM2.

The variance estimator depends on the sampling and assignment schemes. If the
cluster variance matrix is purely induced by sampling, then Agc ar = Aguster,ar, Which
can be consistently estimated, as Aclustm ~ consistently estimates pyas Agyster,nr. Then,
it remains to identify a lower bound of Ag ;. On the other hand, if there is cluster
assignment, we have to identify a lower bound of Ag y + Agc ar jointly. Similarly,
if there is cluster sampling on the GG dimension but cluster assignment on the H di-
mension, we only need to adjust for the H dimension. If there are multiway cluster
assignments, we need to adjust for both dimensions.

We first discuss estimating the Ag j, component defined in @ We can elimi-
nate part of Ag s by employing the regression-based approach outlined below, which
involves partially predicting the expected value of the score functions using the co-
variates z;);. Notice that this set of covariates may be identical to the z;; used in
Section 2 to identify the estimand, or it may be a subset of that set. Consider the
estimator,

M
~ 1 ~ ~
AZ = ~ > Ry Kz z Ky, (32)

i=1

A M -1 M R
where Ky = ( Risz;MziM> [ RineZlpymint (Wing, On)'| . With clustered data,
1 1

1= 1=

we can include cluster dummies as regressors in the linear projection of m;y (Wi, 0 ~N)
onto the fixed attributes.

Theorem 3.1. In addition to Assumptions |14 and Assumption[A.5 in Appendiz A,
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assume that (i) limp;_e0 7 SV 2yziae is nonsingular; (i) sup ||z < oo. Then

1y

0 < A%, < A, where HAJZ\, — A7\ 5 0 (all inequalities are in the matriz sense).

This theorem holds for both one-way and two-way clustering. Under one-way
clustered sampling but independent assignment, the estimator for an upper bound
of the finite population CRAV is given in Case 1 of Table 1 below, where G is the
number of clusters in the sample. The composite sampling probability pyapaar can
be estimated by N/M, where the population size M is assumed to be known. If the
entire population is observed, pyarpaa is simply one. We ignore the Hessian matrix
as it does not affect the discussion here. This estimator is asymptotically conservative
because A% < Ap .

Next, we turn to Ag pr+Agey. We could sum myp (Wi, éN) within each cluster,
and linearly project ), NG Ripemins (Wi, éN) onto the fixed attributes. The number
of observations in the linear projection is the number of clusters in the sample. To
reduce the dimensionality of the regressors, the fixed attributes can also be summed
within clusters as one way of aggregation. As a result, ) . NE E [min(Winr, 03)] can

be partially estimated by its predicted value from the linear projectionm Let

ZgM = Z ZiM s (33)

NG
Zou = Y Rimzin, (34)
iENE
g (0) = Z mivg(Winr, 0), (35)
ieN§
Mgn (0) = Z Rineming(Wiar, 0), (36)
ieNE

and

G —1 G
Py — (Z ;;,M;gM) (Z E;M@M(QN)’) (37)

g=1 9=1

7As the sample size in the linear projection is the number of clusters, there could be more
covariates than the sample size. The linear projection is credible when the dimension of the covariates
is not too high. Therefore, practitioners should carefully select a subset of covariates to achieve a
tighter upper bound on the finite population variance. Potentially, high-dimensional regression
techniques could be applied. Since we do not propose a sharp upper bound for the finite population
variance, the optimal choice of covariates for prediction is left as future research.
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Case | Cluster Sampling Cluster Assignment Variance Estimator
1 v X Achwn + (1= GN/G) - Agustery — N/M - A%
2 X v Aehw,N + Acluster,N — N/M - AgE,N
3 v v Aehw,N + Acluster,N — N/M - Ag*EN
4 X X Aehw,N — N/M - A%

Table 1: Variance Estimators for One-Way Clustering

Estimate AE,M + AEC,M with
1 G
A7 A A A
Acpn = N Z N Zgn Zgm Py (38)
g=1

Theorem 3.2. In addition to Assumptions Assumption 4, and Assumption

A1 in Appendiz A, suppose that (i) limps o )\% Zle ZonrZgm 08 monsingular, where
M

N, is a scaling factor defined in the appendiz; (i) sup ||zin]| < oo; (iii) puy =

2y

1; (iv) we have one-way clustering. Then 0 < AgEVM < (AE,M + AEC,M), where
|325.5 — A%z

Theorem proposes an easy way to partially remove Aga + Apcar all at

) 20 (all inequalities are in the matriz sense).

once with one-way clustering, and AZ g 18 PSD. In this case, we require no within-
cluster sampling but allow for sampling at the cluster levelﬁ With large samples,
even though the limit of the adjusted finite population CRVE is still conservative (as
AgR u < (A e.m+Agc, M)), it is less conservative than the limit of the usual CRVE.

We list all possible cases of sampling and assignment and their corresponding ad-
justed variance estimators in Table 1 for one-way clustering. Case 4 reduces exactly to
the approach in |Abadie et al.| (2020) for linear regression. While they take the square
of the difference between the score and the predicted score as their estimator, their

approach is numerically equivalent to taking the difference of the second moments as

we proposeﬂ

8This requirement is reflected as pyas = 1 in the theorem, so Theorem is not an immediate
analog of Theorem In Theorem 3.1} sampling is allowed because we have a sum over units, so
scaling by N is sufficient for the sum. In contrast, when we sum over squares of cluster sums, the
sampling scale for ¢ = j is different from the sampling scale for i # j, so scaling by N in is
insufficient to obtain its population analog — an issue that does not arise when pyy; = 1.

90ur approach is fundamentally different from the proposal in |Abadie et al.| (2023). They split
the data into subsamples and directly estimate the finite population variance, while our approach
here shrinks the variance using information from covariates. All cluster sizes need to diverge in their
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A similar shrinkage procedure can be applied to two-way clustering with CGM2
since the additively separable one-way cluster objects can be shown to converge to
their limit even with multiway dependence. The variance estimator after adjustment
is still conservative for the finite population two-way CRAV in . To be precise,
let:

Pon = < EG: 2;M29M) h ( EG: z;MmgM(éN)’) , (39)

g=1 g=1
H -1, H
Pyy = ( > ngth) ( > 2;MmhM(9N)’) , (40)
h=1 h=1
1 & .
Ag’E,N = M Z /G,N%MggMPG,N, (41)
g=1
and .
< 1 L
AHE,N = iV Z PH,NZhMZhMPH,N' (42)
h=1

Theorem 3.3. In addition to Assumptions[1{4, Assumption[t, and Assumption[A.3
in Appendiz A, suppose that (i) limp; oo ALG ZQG:1 ZynZem 08 monsingular, where N
M

is a scaling factor defined in the appendiz; (i) sup ||zim|| < 00; (#4) pum = pam =
i,M

pum = 1; (i) the variance order condition m Appendiz A holds. Then, for C €

{G,H},0< AgE,M < (AE,M+AEC,M+AE(GDH),M)7 where H(Ag‘E,M)_I (AgEN - AgE,M)‘

0 (all inequalities are in the matriz sense). Further, either

P
N

H(PUMPHMAG,M(QTW) + purm Dcnm (03) + Denwar(037)) (AGHH,N(éN) + Aehw,i\f(éJ\f)) H 50 or

H (prarAcnmar () + Aenwar (0%)) "

(AGOH,N(éN) + Achw N (ON) — purrDcomm (On) — Aehw,M(éN)> H 0.
When adjusting the variance matrix estimator with two-way clustering, we use

the entire populationm Theorem also provides formal guarantees that the cluster

estimators for the intersection of G and H either converge to their estimand or are

approach, which is not required here. We also allow for constant assignment within clusters, which
is ruled out by |Abadie et al.| (2023]).

10T his requirement is reflected as pem = pam = pusm = 1 in the theorem. The consideration here
is similar to Theorem With the given adjustment, three different sampling scales are required:
one for ¢ = j, one for ¢ and j sharing both g and h, and another when ¢ and j share a cluster on one
dimension but not another.
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Case Environment Variance Estimator

Acpwn + (1 — GN/G)A' (AC{NA_ Acnu.N)

1 Both Sampling Only +(1—Hy/H) - (Agn — Agruy)

+(1 - Gn/G-Hy/H) - Agnun — N/M - A%

2 Both Assignment  2A., 8 + Agy + Ayy — N/M - (AgEN + AfIEN>

Table 2: Variance Estimators for Two-Way Clustering

negligible based on the scale of the cluster correlation on different clustering dimen-
sions.

Table 2 summarizes our proposed variance estimators for multiway sampling or
multiway assignment (Hessian matrix is ignored here). Hy and G are the number
of clusters in the sample on the dimensions of H and G respectively. We expect cases

2 and 3 in Table 1 and case 2 in Table 2 to be the leading cases in empirical practice.

Remark 8. If all cluster sizes are unbounded, we can allow for sampling. The proof
would be constructed first showing that the within-cluster sample average of z;pr con-
verges to its within-cluster population average. The adjusted cluster variance estima-
tor A(Z;EN m (@) must then be further divided by certain sampling probability. Since
our assumptions do not imply that all cluster sizes are unbounded in general, we omit
this case from our theorem. Nonetheless, its adjustment is presented in Table 2, where

two-way clustered assignment can be combined with sampling.

In the context of doing inference for functions of M-estimators, we can also apply
the same techniques to estimate the two extra terms, Ag y and AQC, W 1N . The
only difference is that the dependent variables in the regression-based approach would

be the cluster sum of
FintWing, O5) — An — Ex(On) L (08) " miins (Wing, On) (43)

rather than m (Wi, éN) alone. (See the details of the notation in Appendix A.)
The results for multiway clustering can be derived in a similar fashion and hence are

omitted here.
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4 Simulation

In this section, we compare the Monte Carlo standard deviation of the coefficient
estimator and the APE estimator of the assignment variable in a binary response
model with a set of different standard errors. We are mainly interested in the finite
sample performance of the proposed shrinkage variance estimators. As a leading case
in empirical practice, we focus on (multiway) clustered assignment with the entire
population observed.

In the population generating process, there is a single assignment variable X;;, €
{0,1} and a single attribute variable zin = 2g(:)a + 2 v, Where 2, = £1 with equal
probability and 2,y = £1 with equal probability in the design of two-way clustered
assignment, and 24y = £2 with equal probability in the design of one-way clustered

assignment. The potential outcome of a binary response is generated as

The idiosyncratic unobservable e;y; is the residual from regressing random realization
of a standard normal distribution on z;,;,. The data of z;; and e;;; are generated
once and kept fixed in the population M.

We partition the population units into 50 clusters each on the two dimensions G
and H with one unit for every (g, h) cluster pair. As a result, the population size is
2,500. The results for 100 clusters on both dimensions are similar and hence omitted
to save space.

The assignment variable Xy = Ay;)Bp), where Ay and B, are binary cluster
assignment variables drawn independently with P(A, = 1) = P(B, = 1) = 1/2,
Vg=12,...,Gand h = 1,2,..., H. Therefore, the assignments are clustered at
both the G and H dimensions. For the case of one-way cluster assignment, we fix
By, = 1. There are 10,000 replications for both designs. For each replication, X, is
re-assigned according to the assignment rules above.

Estimates from the pooled probit regression of Y;y; on 1, X;5;, and z;), are dis-
played in Table |3| below. Columns (1) and (2) collect results for one-way cluster
assignment and columns (3) and (4) show results for two-way cluster assignment.

The first two rows of Table [3| report the Monte Carlo standard deviation of the
point estimates and the coverage rate of the 95% confidence interval based on the

oracle standard error, i.e., Monte Carlo standard deviation. The oracle coverage rates
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are very close to the nominal level of 95%. Thus, normal approximation seems to work
well in finite samples. The next two rows report the average superpopulation EHW
standard errors and the corresponding coverage rate of the 95% confidence intervalE-]
The EHW standard errors are too small and the confidence interval undercovers as
expected.

For one-way clustered assignment, we focus on one-way cluster-robust standard
errors at the level G. Here, we demonstrate how our shrinkage variance estima-
tors work in finite samples. For two-way clustered assignment, we report results on
both one-way cluster-robust and two-way cluster-robust standard errors. All reported
standard errors are averages across replications.

The adjusted one-way clustered standard errors at the level G are more than
half smaller than the superpopulation one-way clustered standard errors, though
still above the Monte Carlo standard deviation under one-way clustered assignment.
Switching to two-way clustered assignment, the adjusted one-way clustered standard
errors are both too small. The two-way clustered standard errors for both CGM and
CGM2 estimators work well in this population generating process. There is slight
downward bias of the adjusted CGM standard errors. The adjusted CGM2 standard
errors are larger but are guaranteed to be conservative.

We conclude from the simulation results that the usual superpopulation one-way
cluster-robust standard errors and the two-way CGM2 cluster-robust standard errors
are overly conservative. When there are fixed attributes available, they can be used
to estimate an upper bound of the finite population CRAV. Although the adjusted
finite population cluster-robust standard error is still conservative, it often improves
over the usual cluster-robust standard error. In particular, our adjusted standard

errors are 40% smaller than CGM while still maintaining correct coverage.

5 Clustering in Practice

In this section, we discuss some empirical settings where two-way clustered standard
errors have been considered. The first example on two assignment variables clustered
on different dimensions is an example where two-way clustering is unnecessary while

the second example on triple differences is an example where two-way clustering

UThe 97.5!" percentile of (G — 1) is used as the critical value in constructing the confidence
intervals.
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Table 3: Standard Errors and Coverage Rates for Pooled Probit

One-way Assignment

Two-way Assignment

APE  Coefficient  APE Coeflicient
(1) (2) (3) (4)
SD 0.0225 0.0643 0.0397 0.1065
Cov (Oracle) (0.953) (0.953) (0.952) (0.952)
EHW 0.0185 0.0531 0.0220 0.0581
Cov (EHW) (0.918) (0.918) (0.755) (0.748)
One-way (G) 0.0591 0.1716 0.0446 0.1187
Cov (G) (1.000) (1.000) (0.972) (0.973)
One-way adj (G)  0.0260 0.0752 0.0294 0.0792
Cov (G, adj) (0.993) (0.994) (0.876) (0.879)
One-way (H) - - 0.0481 0.1284
Cov (H) - - (0.982) (0.983)
One-way adj (H) - - 0.0321 0.0867
Cov (H, adj) - - (0.909) (0.912)
Two-way CGM - - 0.0620 0.1655
Cov (CGM) - - (0.997) (0.998)
CGM adj - - 0.0377 0.1022
Cov (CGM, adj) - - (0.955) (0.957)
Two-way CGM2 - - 0.0658 0.1756
Cov (CGM2) - - (0.999) (0.999)
CGM2 adj - - 0.0437 0.1180
Cov (CGM2, adj) - - (0.980) (0.981)

L Columns (1) and (2) collect superpopulation and adjusted finite population
standard errors and the coverage rates of the 95% confidence interval based
on these standard errors for the APE and coefficient estimators on X under
one-way clustered assignment; Columns (3) and (4) report the same set of
statistics under two-way clustered assignment.

“SD” stands for the standard deviation of the point estimates across 10,000
replications; “Oracle” stands for the coverage rate of the 95% confidence
interval based on the Monte Carlo standard deviation; “EHW” stands for
the superpopulation heteroskedasticity-robust standard errors; “One-way
(C), C € {G,H}” stands for the superpopulation one-way cluster-robust
standard errors clustered at the level C; “Two-way” stands for the two-way
cluster-robust standard errors at both levels of G and H, using either CGM
or CGM2 estimator; “adj” stands for the adjusted finite population standard
errors; the columns below each standard error report the corresponding
coverage rates.
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could be necessary. Additionally, in our supplementary appendix, we consider the
simple example of a difference-in-means estimator under multiway clustering and
homogeneous treatment effect. We also examine its associated extension to fixed
effects. We find that clustered assignment changes the interpretation of the fixed
effects estimand in that the estimand cannot be interpreted as the average treatment

effect in general.

5.1 Two Assignment Variables Clustered on Different Di-

mensions

There are instances where assignment on multiple variables could be clustered at dif-
fering dimensions. Suppose there are two assignment variables X1;); and Xs;,. The
assignment of X7y;5, is clustered on the dimension of GG, whereas the assignment of
Xoin is clustered on the dimension of H. As an empirical example, Hersch| (1998)
studies wage and injury risk trade-off for men and women. The two assignment vari-
ables are injury rates for individual ¢’s industry and for ¢’s occupation respectively.
Hence, one assignment variable is clustered at the industry level and the other as-
signment variable clustered at the occupation level.

When two assignment variables are independent of each other, the Frisch-Waugh
theorem implies that we only need to cluster the standard errors on one dimension for
each of the assignment variables in a linear regression. We conduct a simple simulation
to compare two-way clustered standard errors with one-way clustered standard errors
on each dimension for the coefficient estimator on both assignment variables.

The potential outcome function is given below.

yiM(ﬂﬁg(i), ZEh(i)) = T1iTg(;) T T2iTh(i) + €iM,

where e;), is the nonstochastic individual unobservable. The cluster assignment vari-
ables X, and X, are binary with probabilities P(X, = 1) = P(X;, = 1) = 1/2. In the
first design, we impose heterogeneous treatment effect on cross dimensions. Namely,
Tii = Th) = £1 with equal probability; 9, = 74y = £1 with equal probability. In
the second design, we set 7; = 74;) and To; = T(;). We regress Yip on 1, Xy(;), and

X and report different superpopulation standard errors as upper bounds for the
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finite population onesE

Table 4: Standard Errors for Two Assignment Variables

Design 1 Design 2
Xg Xh Xg Xh
SD 0.103  0.103  0.103  0.103

Coverage (oracle) (0.950) (0.953) (0.950) (0.954)
One-way s.e. (G) 0.102  0.103  0.143  0.020

Coverage (G) (0.947) (0.957) (0.992) (0.297)
One-way s.e.(H) 0.103  0.102  0.020  0.143
Coverage (H) (0.953) (0.950) (0.305) (0.993)
Two-way s.e. 0.142 0.142 0.142 0.141

Coverage (two-way) (0.993) (0.995) (0.992) (0.993)

I The second and fourth columns collect superpopulation standard
errors and the coverage rates of the 95% confidence interval for the
coefficient estimator on Xg; the third and fifth columns report the
same set of statistics for the coefficient estimator on Xj,.

“SD” stands for the standard deviation of the coefficient estimates
across 10,000 replications; “Oracle” stands for the coverage rate
of the 95% confidence interval based on the Monte Carlo standard
deviation; “One-way s.e. (C), C € {G, H}” stands for the one-way
cluster-robust standard errors clustered at the level C; “Two-way
s.e.” stands for the two-way cluster-robust standard errors at both
levels of G and H; the columns below each standard error report
the corresponding coverage rates.

We partition the population units into 100 clusters each on the
two dimensions G and H with one unit for every (g,h) cluster
pair. As a result, the population size is 10,000. We observe the
entire population.

As we can see from Table[d] indeed one-way clustered standard errors are sufficient
for the coefficient estimators on the corresponding assignment variables.
we can report one-way clustered standard errors at the level G for 71 and one-way
clustered standard errors at the level H for 75. In the second design, using the two-way
clustered standard errors is harmless, although both one-way and two-way clustered
standard errors are conservative. However, when the heterogeneous treatment effects
are more asymmetric in the first design, the two-way clustered standard errors can

be a lot larger than the one-way clustered standard errors, making the inference

unnecessarily overly conservative.

12In the first design, the usual one-way CRVE is no longer conservative in this specific data
generating process. Hence, we do not report the adjusted finite population standard errors.
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5.2 Triple Differences

Recently, triple differences method has got more attention among empirical researchers.
There has been ample discussion on the correct inference on difference-in-differences;
see, e.g., Bertrand, Duflo, and Mullainathan| (2004). Nevertheless, the dicussion on
the inference method for triple differences has been limited. In the simulation of
Olden and Mgen| (2022)), they report one-way cluster-robust standard errors on the
treatment level to directly compare with the simulation results in Bertrand et al.
(2004). Recently, Strezhnev| (2023) advocates for two-way cluster-robust standard
errors for triple difference estimators. Both one-way and two-way clustered standard
errors have been reported in empirical research according to our survey.
Borrowing the notation from |Strezhnev| (2023)), is a common specification for
triple differences.
Yight = TiDight + Qgn + Yt + Ot + €ight (45)

Unit ¢ in stratum h and group g is treated at time ¢ if D,z = 1. The terms agp, Ve,
and 04 are the group-stratum, stratum-time, and group-time fixed effects respectively.
€ight 1S the individual idiosyncratic term. Suppose there are multiple strata h €
{1,2,..., H} and multiple groups g € {1,2,...,G}. Otherwise, there is not much we
can do in clustering the standard errors.

We can rewrite the treatment variable D, as an interaction of three variables,
Dight = Dpi) X Dgygiy x Post, where Post is a time dummy variable that takes the
value of one for periods post the initial treatment period. Consequently, it is tempting
to compare one-way clustering with two-way clustering. In our view, other than the
time variable, the key boils down to the nature of the other two variables within the
triple interaction term. Let us focus on the assignment mechanism, as the sampling
process is less ambiguous if we know how the data are collected.

If both grouping indicators are stochastic assignment variables on non-nested di-
mensions, one would like to report the two-way clustered standard errors. An example
is Marchingiglio and Poyker| (2019), where h and g represent state and industry, re-
spectively. Their assignment variable is the state-level adoption of gender-specific
minimum wage laws applying to specific industries that employed a larger share of
women. By 1920, twelve states had enacted laws related to minimum wages. Six
of these states eventually established minimum wage laws that applied to women

across all industries, while the other six gradually implemented such laws in selected
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industries over time. In a thought experiment, we can examine the application of
minimum wage policies across different states and industries, reflecting the decision-
making process of state governments. There is a clear correlation within states re-
garding the assignment of minimum wage laws. If a state does not choose to adopt
such policies, no one in the states will be treated. Across states, industries that are
predominantly female, such as hotels, restaurants, the laundry and dry cleaning sec-
tor, and mercantile, are the primary focus of these gender-specific minimum wage
laws. In states with partial coverage, male-dominated industries are never treated,
whereas female-dominated industries are more likely to receive this treatment. This
introduces a second dimension of cluster assignment at the industry level.

Alternatively, if treatment is assigned based on one grouping indicator, and the
other grouping indicator is some nonstochastic attribute, one-way clustered standard
errors are the most appropriate. For example, in Bau (2021) A indicates province
and ¢ represents ethnicity. The policy they study is the roll-out of pension plans at
the provincial level, measured by the intensity of pension offices in a province. Al-
though the pension program was national, its coverage expanded over time, and initial
compliance was imperfect, leading to geographic variation in exposure. Importantly,
the pension plan offices were not specifically targeted to areas with particular ethnic
groups. The researchers are interested in the differential effect of the pension plan on
ethnic groups. From this perspective, ethnic belonging is treated as non-stochastic
within our design-based framework, capturing the heterogeneity of the pension treat-
ment effect. The pension plan may inherently influence ethnic groups differently
because of cultural traditions. For example, it could affect matrilocal females—those
who live with their parents after marriage and provide care for them in old age, serv-
ing as a form of informal insurance—more than non-matrilocal females, even though
they are exposed to the same pension office intensity in their birth province. In a
thought experiment, exposure to pension offices would be reassigned for provinces
without differential exposure based on ethnicity, inducing cluster assignment at the
provincial level.E|

To showcase the differences between one-way and two-way clustered standard

errors, we conduct a simple simulation of a triple differences regression based on (45)).

131t is worth noting that although there are 45 ethnic groups, the ethnicity indicator is a binary
variable that reflects whether an ethnic group practices matrilocality, resulting in effectively two
clusters. This makes it challenging to adjust for cluster correlation at the ethnicity level in practice.
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There are two time periods. The treatment is essentially randomly assigned in the
second time period. Both Dy and D), are cluster binary variables with probabilities
P(Dy=1) = P(D, = 1) = 1/2. In the first design, D, and D}, are stochastic, whereas
in the second design, D, is the nonstochastic attribute variable but D), remains as
the stochastic assignment variable. We construct 7; in a way that the parallel trends
assumption for triple differences holdsE We report the adjusted finite population
standard errors for 7 and the coverage rate of the 95% confidence interval based on

these standard errors[®]

Table 5: Standard Errors for Triple Differences Estimators
D, & Dy, stochastic D), stochastic

SD 0.184 0.105
Coverage (oracle) (0.952) (0.954)
EHW s.e. 0.040 0.038
Coverage (EHW) (0.337) (0.536)
One-way s.e. (G) 0.153 0.142
Coverage (G) (0.902) (0.992)
One-way s.e.(H) 0.103 0.105
Coverage (H) (0.730) (0.955)
Two-way 2 s.e. 0.185 0.177
Coverage (two-way 2) (0.953) (0.999)

I The second column collects adjusted finite population standard errors
and the coverage rates of the 95% confidence interval for the triple
differences estimator when both grouping indicators are stochastic;
the third column reports the same set of statistics when only one of
the grouping indicators is stochastic.

“SD” stands for the standard deviation of the triple differences es-
timates across 10,000 replications; “Oracle” stands for the coverage
rate of the 95% confidence interval based on the Monte Carlo stan-
dard deviation; “EHW s.e.” stands for the heteroskedasticity-robust
standard errors;“One-way s.e. (C), C € {G,H}” stands for the one-
way cluster-robust standard errors clustered at the level C'; “T'wo-way
2 s.e.” stands for the CGM2 two-way cluster-robust standard errors
at both levels of G and H; the columns below each standard error
report the corresponding coverage rates.

We partition the population units into 100 clusters each on the two
dimensions G and H with one unit for every (g, h) cluster pair. As a
result, the population size is 10,000. We observe the entire population.

148pecifically, we construct 7; = Tg(i) + Th(s), Where 74 = +3/2 with equal probability and 7, = +1
with equal probability. In design 1, 7; is the demeaned 7;. In design 2, we average 7; across units
with Dy(;) = 1 and denote this average by 7. 7, = 7; — 7.

15We use 7; as the attributes in the estimation of the adjusted finite population standard errors.
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As shown in Table 5] the EHW standard errors underestimate as expected. When
both grouping indicators are stochastic assignment variables, one-way clustered stan-
dard errors are generally not sufficient. By fluke the one-way clustered standard errors
could be larger than the standard deviation, but that is because they are conservative
within the design-based framework. The adjusted CGM2 standard error works pretty
well with coverage rate of the confidence interval close to its nominal level. Switching
to the case when only the grouping indicator D;, is stochastically assigned, cluster-
ing the standard errors at the level of H suffices. Two-way clustered standard error
is overly conservative and can be more than 50% larger than the one-way clustered

standard errors clustered on H.

6 Empirical Illustration

6.1 Tenure-Clock Stopping Policy

The adjusted finite population CRVE proposed in Theorem is applied to |Antecol,
Bedard, and Stearns (2018), who study the effects of tenure clock stopping policies
on tenure rates among assistant professors. The unique dataset collected by them
contains all assistant professor hires at the top-50 Economics departments from 1980-
2005 as pooled cross sections, resulting in 1,392 observations in total. Furthermore,
the tenure clock stopping policies are assigned at the university level while the data
are collected at the individual level, implying that we have a setting of observing the
entire population with cluster assignmentE] The standard errors in Antecol et al.
(2018)) are clustered at the policy university level, which is the correct level to cluster
the standard errors as implied by Remark [2 As a result, there are 49 clusters in total
with cluster sizes ranging from 11 to 57.

Since the dependent variable is a binary response, we analyze the linear probability
model (LPM) given in |Antecol et al. (2018)) along with an additional probit model

16This group of assistant professors is treated as the population.
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given in below, which adopts the same notation from their paper.

P(Yugit = 1 GNut, Fugit, Euty FOut, Xugits Zuts Pgts Yug) =

D(Bo + B1G Nyt + B2G Ny X Fougir + B3G Nyt X By + BaG Ny X Evyy X Foygig
+ B5F Oyt + B FOur X Fugit + BrF Oy X Eyy + BsF Oyt X By X Fgi
+ Xugité + Zun) + pgt + Vug)

(46)

The dependent variable Y is an indicator of obtaining tenure at the university of
initial placement. Binary variables GN and F'O are indicators of gender-neutral and
female-only tenure clock stopping policies respectively. The dummy variable F' is the
indicator for females. The variable E is an indicator of starting jobs in years zero
through three after policy adoption. The vector X contains individual characteristics
and the vector Z includes university level controlsﬂ The parameter p captures
gender-specific time trend and 1 represents gender-specific university heterogeneity.
The subscripts, u, g, i, t, are indicators for university, gender, individual, and the
year the job started, respectively.

Antecol et al. (2018) include gender-specific university dummies to capture dif-
ferent unobserved university heterogeneity for males and females. Adding group
dummies in the linear model is equivalent to performing fixed effects with clustered
data. However, adding group dummies in a nonlinear model may cause the inciden-
tal parameter problem. Since the cluster sizes are unbalanced, we use pooled probit
with correlated random effects as suggested by [Wooldridge| (2010) to allow correla-
tion between the gender-specific university heterogeneity and the covariates. Using
Chamberlain-Mundlak device, the cluster size, the gender-specific university averages
of individual and university characteristics and policies, and their interactions with
cluster sizes are included as additional controls.

Given the probit model above is a nonlinear “difference-in-differences” model, the
common trend assumption is imposed on the latent outcome variable following Puhani
(2012) and |Wooldridge| (2023)). The treatment effects are defined as the differences in
the probit probabilities when the treatment variables equal one or zero. We report the
average of the treatment effect for those actually treated by the specific policy. Since
our emphasis in this study is on inference, we adhere to the specification presented

in |Antecol et al.| (2018) to facilitate a direct comparison with their reported standard

1"We refer to |Antecol et al.|(2018)) for the details of the variables included as controls.
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Table 6: Effects of Clock Stopping Policies on the Probability of Tenure at the Uni-
versity of Initial Placement

LPM Probit
APE Standard Error APE Standard Error
inf pop finite pop inf pop finite pop
(1) (2) (3) (4) (5) (6)

Panel A. Policy Effects Years 0-3
Men FOCS -0.0085 0.0670 0.0616  -0.0068 0.0623 0.0558
Women FOCS 0.1723  0.1405 0.1191 0.1454  0.1750 0.1484
Men GNCS 0.0511  0.0787 0.0757 0.0446  0.0726 0.0700
Women GNCS -0.0166  0.1071 0.0959 0.0220  0.1031 0.0957
Panel B. Policy Effects Years 4+
Men FOCS 0.0023  0.0747 0.0701  -0.0055 0.0649 0.0606
Women FOCS 0.0493  0.1015 0.0797 0.0415  0.0902 0.0681
Men GNCS 0.1757  0.0826 0.0794 0.1537  0.0767 0.0734
Women GNCS -0.1945  0.1057 0.0899  -0.1856 0.1041 0.0892

I Standard errors are clustered at the university level.

2 Columns (1) and (4) report the APEs under the linear probability model and the correlated random effects
probit model, respectively; columns (2) and (5) report the usual infinite population cluster-robust standard
errors of the APE estimators (linear functions of the coefficient estimators in the case of the LPM); columns
(3) and (6) report the adjusted finite population cluster-robust standard errors of the APE estimators.

3 We refer to |Antecol et al.| (2018) for detailed control variables.

errors. Assume that ¢ conditional on the sufficient statistics (the additional controls
included) follows a normal distribution, APEs can be obtained via pooled probit.

In Table[6], panel A presents the total effects for men and women hired in years zero
through three after policy adoption, and panel B shows the effects for those employed
in years four or later. The left panel (columns (1)-(3)) summarizes the results under
the LPM. Columns (1) and (2) report the total effects and the standard errors, as
shown in column (1) of Table 2 in |Antecol et al.| (2018), while column (3) reports
the adjusted finite population clustered standard errors. The coefficients (APEs) are
interpreted as the policy effect on the tenure attainment of the assistant professors
compared with those of the same genders at the same university but without any
clock stopping policies.

To estimate the adjusted finite population CRAV, we sum all the estimated score

functions and control variables within clusters and apply the variance estimator in
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Case 2 of Table 1 together with the usual estimator of the Hessian matrix. Since the
number of control variables exceeds the number of clusters in the data, we only include
university characteristics as the fixed attributes in the linear projection, resulting in
a linear regression with 49 observations and eight independent variables. Compared
with the usual cluster-robust standard errors, the finite population cluster-robust
standard errors shrink by about 4% to 21% across the eight treatment groups. In
terms of the statistical significance, the effect of gender-neutral policy for women hired
three or more years after the policy adoption is significant at the 5% rather than the
10% level based on the adjusted finite population cluster-robust standard error. The
same result holds when the critical values from ¢(48) distribution are used.

In the right panel (columns (4)-(6)), we can see that the APEs from the probit
regression are close in magnitudes to those from the linear model. The adjusted finite
population CRAV is estimated applying Theorem and the delta method. Using
the same set of university characteristics as the attribute variables, the reduction from
the usual clustered standard errors to the finite population clustered standard errors
ranges from 4% to 25%. Based on the critical values from ¢(48), the effect of gender-
neutral policy for women hired in later years is significant at the 5% level rather than
the 10% level when the finite population clustered standard error is adopted.

To sum up, control variables can help shrink the standard errors when the popu-
lation is treated as finite in both linear and nonlinear models. The empirical evidence
suggests that gender-neutral tenure clock stopping policy is beneficial to men in ob-

taining tenured positions but detrimental to women.

6.2 Return to Protectionism

We apply our adjusted finite population CRVE for two-way clustering to Fajgelbaum,
Goldberg, Kennedy, and Khandelwal (2020)), who were interested in the short-run
impact of tariffs. In 2018, the U.S. enacted several waves of tariffs on various products
and countries. With the population data of U.S. trading partners and product exports
and imports, this application is a good candidate for finite population inference. The
unit of observation is a tuple of country, product, and time. Since we focus on
inference rather than estimation, we retain the original specification from the authors

to ensure the estimand remains the same. Namely, we run an event study regression
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to examine the impacts of the tariff war on trade:

6 6
InYigr = Qvig+ag+o+ Z Bojl(event;y = )+ Z Bl (event; = j) xtarget;g+e€ig,
j=—6 j=—6

(47)
where i indexes country, g indexes product, and ¢ indexes time (month), so the spec-
ification includes country-product (o), country-time (o), and product-time (o)
fixed effects. The assignment variable is target;,, a binary variable indicating whether
the import tariffs for specific varieties—defined as country-product pairs—have been
increased. The United States raised tariffs on certain products, such as solar panels
and washing machines, and these tariffs have been applied in a discriminatory manner
across different countries. China was the most heavily targeted, with an expanded
range and value of affected products. As a result, if two varieties share either a coun-
try or a product code, their assignments could be correlated. This creates a two-way
clustered assignment based on both product and country levels. H

Our outcome variable is the log duty-inclusive unit value of imports. In the
regression of interest, we have 1,664,601 observations across 8320 product types and
209 country codes.ﬂ We report the CGM, CGM2, and our adjusted CGM2 standard
errors, which are all two-way clustered by country and product (encoded at the HS-8
level, as tariffs are set at this level). This is done for the coefficient estimators of
{Blj}?:_5 with j = —6 treated as the baseline. To adjust for the conservativeness of
the CGM2 variance estimator, we project the cluster sum of our score functions onto
three covariates: an indicator for whether the unit of product involves aluminum, an
indicator for steel, and the level of duty.

The results are summarized in Figure[l] Our finite population adjusted standard
errors can be substantially smaller than the CGM standard errors reported in the
original paper, with some estimates being as low as 11% of the original estimates.
It is important to note that, ex ante, our standard errors are not guaranteed to be
smaller than those of CGM, as CGM may be anticonservative. However, we do know

that our standard errors are guaranteed to be smaller than those of CGM2. Similar

180One-way clustering based solely on country-product pairs is inadequate because this approach
suggests that two observations from the same country, but involving different products, have inde-
pendent assignments.

90ur assumptions allow the number of clusters on one dimension to be much larger than the
number of clusters on another, so this application falls within our framework.
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Points: et_i coefficients. Bars: 95% CI under two SE formulas.
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results are observed for other outcome variables in this event study.

7 Conclusion

This paper develops finite population inference methods for M-estimators with data
that is potentially clustered multiway. The takeaway for empirical practice is sum-
marized as follows. One should only adjust standard errors for clustering if there is
cluster sampling or cluster assignment. Two-way clustered standard errors are justi-
fied if there are two-way cluster sampling or two-way cluster assignments, or cluster
sampling and cluster assignment on different dimensions. While the standard one-way
CRVE from |Liang and Zeger (1986) is conservative for the true variance under one-
way clustering, the standard two-way variance estimator from Cameron et al. (2011)
is no longer conservative. Although a subsequent proposal from Davezies et al.| (2018))
is guaranteed to be conservative for two-way clustering, their variance estimator is
often too large, so we provide a refinement. Our proposed refinement uses control
variables, such as baseline characteristics, and ensures that the estimators remain
valid for inference. Evidence from our simulation and empirical illustration suggests
that gains from our variance correction can be substantial.

Through a survey of when clustered standard errors are used in empirical work, we
offer insights on the appropriateness of clustering in various contexts from our theory
on M-estimation with clustering. With spatiotemporal correlation, the magnitude
of two-way clustering and spatiotemporal variance estimators cannot be ordered in
general. With two assignment variables clustered on different dimensions, we find
that it suffices to apply one-way clustering on the respective dimensions rather than
to use two-way clustering in certain cases. In the estimation of triple differences, we
find that the choice between one-way and two-way clustering depends on the nature
of the variables in the triple interaction term. In the supplement, we investigate the
difference-in-means estimator and find that two-way clustering can reduce to one-way
clustering under homogeneous treatment effects. In the context with one-way fixed
effects, we find that the estimand is interpretable as an ATE only in special cases, but
the estimand is still a weighted average of treatment effects in general. With two-way
fixed effects, the requirements for the estimand to be interpretable as an ATE is even
more restrictive.

The current paper focuses on the asymptotics as the number of clusters tends to
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infinity in the limit. For a small number of clusters or wildly unbalanced clusters, the
wild cluster bootstrapm has been proposed as a better-performing inference method
for linear models in the setting of superpopulations. The finite population inference

method for few heterogeneous clusters remains an interesting future research topic.

A Notation and Regularity Conditions

The following notation provides details of the asymptotic variances and the variance

estimator for functions of M-estimators:

M:

Alhr = M {sz it 03r) = Vs = Far(030) Las (93) ™ mias (W, 63)]

[sz< 1, 030) = Vir = Far(0) Las (O30) " maas(Wanr, 630)] b, (A1)

M
Afar _M Z {Efiat (Waar, 83) = i = Far(030) Lag(83) " mias (Waar, 03] .

B[ fise (Wanr, O3r) = Vi = P (030) Las (030) " mans(Waaa, 031)] '}

cluste'rM M Z Z Z { sz zM: ) ’YM FM(Q?\/[)LM(H?\/[)ilmlM(MM’e}k\/[)]
9=1ieN§ jeNE\{i}
[Fint(Wints O30) = Ve = Far(Oa) Lar(030)~ mins (Wi, 03]}
(A.3)

Al = MZZ S B[ farWarr,030) = 13 = Far(3) Lar(O3)~ e (Wan, 63)]-

g=LieN§ jeNG\{i}

!/

E| fias(Wins, 030) = Ve = Far(030) Lae(030) " mins(Wins, 03]}
(A.4)
with

Fuu(0) = 55 S E[Vafurr Wiar, )] (A5)

The terms A w M and A/

correlation, Whereas Ag’ v and AL po.v are their finite population counterparts. The

clusterr account for heteroskedasticity and within-cluster

20Gee, for example, Cameron, Gelbach, and Miller| (2008 and MacKinnon and Webb| (2017).
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estimators are

Alhoy = NZRzM FaaWias, ) = i = F(B) Ly O e (W]

[sz( zM,QN) 'YN_FN(éN)IA/N(éN)ilmiM(VViMaéN)}/

and

G
. 1 . A L .
Acluster,N :N E E E Rz’MRjM [fiM(WiM> 9N) — YN — FN(QN)LN(QN) 1miM(VViMa QN)}‘
9=1ieN§ jeNE\{i}

[ng( ]M?eN) fS/N_FN(éN)j—JNQéN)ilij(VVjMaéN)]la
(A.7)

where

A

M
Fy(0) = 0 3 Ria Vo s (Woar, 6). (A8)
i=1

Definition 1. The random function g;p;(Win, 6) is said to be Lipschitz in the parame-
ter@ on © if there ish(u) } 0 asuw | 0 and b(-) : W — R such thatsupzM]EszM( Win)|] <
00, and for all 6,6 € O, |glM 1M,9) giM(WQM,Q)} < biy(Wing)h (H9 o), Vi, M.

We impose the following regularity conditions for the theorems in the paper.

M ~
Assumption A.1. Suppose that ~ Z Ring - ming Wing, On) = 0,(N~Y2) and

(i) Let Qu(0) == 7 M E [gins(Wine, 0)]. {Qu(0)} has identifiably unique minimiz-
ers {04} on © as in Definition 3.2 in|Gallant and White (1988);

(i1) © is compact;

(ii1) 0%, € int(©), ¥ M;

(1) qine(w, 0) is twice continuously differentiable on int(©) for all w in the support
of Wing, V1, M;

(v) supE[sup |qint Wing, 9)|T] < 00 for some r > 1;
1, M

(vi) qing(Winr, 0) is Lipschitz in 6 on ©;
(vii) supE[sup lmine(Wing, 0)]]" } < oo for some r > 2;
iM  Loco

(viit) inf pr Apin(Vanr) > 0, where Apin () stands for the smallest eigenvalue;

(ix) supE[sup IV omins (Wing, 0) " } < oo for somer > 1;
iM  Loco
(x) Vomins(Wing, 0) is Lipschitz in 6 on ©;
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(xi) ]Vljim Ly (03)) is nonsingular;
—00

(zii) there is h(u) L 0 asu L 0 and by(-) : W — R such that sup E[by 0/ (Win)?] < oo,
i\M

(Wias, 0) = mias (Waar, 0) | < bras(Waar (10 = 1.

Assumption A.2. Suppose that

(1) firr(w,0) is continuously differentiable on int(©) for all w in the support of Wins,
Vi, M;

(i1) supE[sup | fint Winr, )Hr} < 00 for somer > 2;

(111) 1nfM Amin (Vi) > 0;

(iv) supE[sup Vo fint (Win, )Hr] < oo for some r > 1;

(v) Vesz( v, 0) is Lipschitz in 0 on ©;

(vi) there is h(u) 1 0 as u ] 0 and by(-) : W — R such that sup E[bs ;0 (Winr)?] < oo,

i, M

and for all 0,6 € O, fina ( 1M,) firt Wing, 0 H<621M(VV1M) (HH o).

Assumption A.3. Suppose that we maintain conditions (i)-(iv), (vi), (x)-(zii) in
Assumption[Ad. In addition,
(v) supE[sup |gin ,M,Q)ﬂ < 005
(vii) SupE[supHmiM( i, 0) || ]
oM  Loco
(’UZZ’L) 1I1fM )\mzn(VATWM) > 0

(iz) supE[SUPHVemz‘M( iM s )H ]
WM Loco

Finally, for Theorem , we require the following condition. For C' € {G, H} and

arbitrary constants a > 0, A < oo,

AG mzn Z Z ZZMij ]Mae}kw)l] SA
=1 ]EN
(A.9)
)\G mzn Z Z EZ’LMZ]M SA

1
=1ENG

A§; is the scaling factor such that & Zle ZomZem = O(1) but not o(1).
M
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B Example for CGM anti-conservativeness

Example B.1: This section theoretically constructs a counterexample such that the

CGM estimator is anti-conservative in the difference in means setting. For treatment

variable X € {0, 1}, we denote the nonstochastic potential outcome as y;p(x). We
are interested in the population average treatment effect (ATE):

M

™ = M Z(%M(l) — yimr(0)) (B.1)

=1

Multiway assignment is treated in the following way. Data is generated by indepen-
dently drawing A, € [0, 1], By, € [0,1] and e; ~ U[0, 1], with X;3, =1 {ei < Ag(i)Bh(i)}.
The random variables A, and Bj, have means pa, up > 0 and variances 0%, 0% re-
spectively. The CGM estimand is Vyw sy, so using our framework, Viwsy — vy =
(N/M?) 3703 e n; Blniar E[njar], and we have shown that E[n;ar] = 7iar — 7ar. Hence,
for a counterexample where Vrwsy — vy < 0, it suffices that ), Zje (i —
) (Tjm — ™) < 0.

Let k1 denote an odd number, and (g, h) describe a cluster intersection that is in
cluster g on the G dimension and in cluster h on the H dimension. Suppose there
are GG clusters on both G and H dimensions, where G is even. Let Gy be a fixed
number. In the population, individuals can only belong to cluster intersections of
the form (ki, k1), (k1,k1 £ 1) and (ky £ 1, %;). This assumption implies that there
cannot be individuals in cluster intersections where both cluster indexes are even, or
if their difference is more than one. There are 4G, observations in (ki, k;) clusters
and G observations in other cluster intersections that are nonempty. Hence, the

total number of observations is M = 8GyG.

Table 7: Distribution of population with bounded cluster sizes
Type ‘ Proportion (g,h) i — TM

1 1/2 (K1, k1) 1
2 1/4 (ki ki £ 1) -1
3 1/4 (ky £ 1, k) -1

The 7,0 — 7 values for observations belonging to the various cluster intersections
are given by Table Then, we show how this particular construction results in

> i 2 jen: (Tine —Tar)(Tinr —Tar) < 0. First, consider an observation 7 in (K1, k1) — they
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Table 8: Coverage Under Null
EHW G Cluster H Cluster CGM CGM2

0.161 0.925 0924 0916 0.976

account for half the observations. Then, |N;| = 8Gy, where 4G, of those observations
are in (k1, k1) and the remaining 4G, are either in (ky £ 1, k) or (ky, k1 = 1). Hence,
> jen (Tive = ) (i — i) = (1)(4 =1 —1—-1-1)Go = 0. Next, consider an
observation ¢ in (ki,k; £ 1). The treatment of (k; £ 1, k) is identical. The units
in either (ky,k; £ 1) or (k; £ 1,k;) account for the other half of the units. Here,
|N;| = 7Gy. For instance, for some unit ¢ in (k1,ky + 1), 4Gy of |N;| are in (kq, k1)
intersections, Gy are in (ki, k1 +1), Go are in (ky, k1 —1) and Gg are in (k; +2, k1 +1).
Then, > cn: (i — 7o) (i — 7)) = (1)(4 =1 —1—1)Gp = —1. Combining these

results,

37 20 2 (= 7w (ar = 7a) = 5(1) + 5(-1) = ~1/2 <0

i jJeEN;

To illustrate this numerically, we run a simulation using the difference-in-means
example. Using the population parameters stated in Table [7] we have X;), that is
independent over individuals, with X;,; = 1 with probability 1/2. We generate data
with clustered sampling with pgy = ppy = 0.1 and pypr = 0.5. When generating
data under the null, the coverage rates are reported in Table [8] for 5000 simulations.
With a coverage rate of 91.6%, CGM can be anti-conservative and hence the test is

invalid.

C Proofs of Main Results in Section 2

We use the following three lemmas for the two-way clustering normality proof. To
save space, proofs of the lemmas are collected in an online appendix posted on the

authors’” website.

Lemma C.1. Suppose Assumption[ holds. For any scalar two-way clustered random
variable Vipr with E[Viy] = 0 and E[V3,] < C, & M Vin B 0.

Lemma C.2. Under Assumptions@ and Mpy+ 51

PGMPHM
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Lemma C.3. Under Assumptions[q to[{ suppose (i) aine(Winr,0) is Lipschitz in
0 on ©; (i) sup; y E[supgee [laine(Winr,0)||”] < oo for some r > 1. Then (1)
Let Ay(0) = £ 5™ Riyrains (Wi, 0). HAN(e) —AN(e)H < Byh(||f — 6]), where
By = % Zf\il Ring - bine(Wing) = O,(1) for bin(+) in Definition 1; and (2) Ap(0) =
% Zf\ilE[aiM(W}-M, 9)} is uniformly equicontinuous.

To show the consistency of variance estimators in two-way clustering, we use an

intermediate lemma, which is the analog of Hansen and Lee| (2019) (62) under two-way

clustering.

Lemma C.4. Suppose Assumptions hold. Additionally, assume that for all 0,
E[|| f(X;,0)||*] is bounded, and that for C,C" € {G, H},

and Ay = Ao (X X jene, ELf (Xi,0) £ (X;,0)]), we have (A§)) ™ maxe (MS')? =
o(1) and (A7)~ L (MG')* = O(1). Let fy(6) = Y jene f(X;,0) and Qu(0) =
Yot Fo(0)Fy(0)'. Then,

p

H[EQM(G)]A[QM(G) - EQM(H)]‘ 20,

We show the sketch of the proof of Theorem [2.3]below. More proofs are collected in

the supplemental appendix included and an online appendix on the authors’ website.

Proof of Theorem Let Qn(0) := % Zf‘il RiriGint(Wing, 0). Then, with Lemma

€3

Mpumpemp < R;
Qn(9) = —HLEHEY —Z$q@M(mM,e>

N M PUMPGMPHM
" (C.1)
1+o % I/Vz 70 :
ol ; PUMPGMPHMq m(Wa, 6)
Hence, it is sufficient to show that for each 6§ € ©
1l e R 1 —
iM P
V3 — i (Win, 0) — — > Elqins(Winr, 0) ||| = 0. C.2
lepUMpGMpHMqM( 1, 0) MZZ1 [QM( M )} ‘ (C.2)
Condition (v) in Assumption implies V 0 € ©
RiM 2 1 2
SUpE | || ———————aqin(Winr, 0) || | < 3SUPE[SUPH%M( i, 0)] ] < 00
M PUMPGMPHM (pusmpeyprn)® i
(C.3)
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(C.2) thus follows by Lemma . By the element-by-element mean value expansion

around 63,,
_1ip 1
OP(N 1/2) VTV%//]QW N Z RzM sz(VszMa HN)

1 .
_VTV%//]\%[N Z RZM sz(WzM7 9* ) + VTI/II//]\Z/[N Z RzMV9m1M<W1M7 9) (GN - 9;4)7

=1 =1

(C4)
where 6 lies on the line segment connecting 6%, and fy.
We first show
Ln(0) = La(03) (I + 0p(1)). (C.5)
Since we can write
L (8) = Lr(O30) [ 1+ Lar(83) ™ (En(0) = Lur(030)] (C.6)
it suffices to show
| Ear(830) 7 (En(0) = Lus(030)) | 5 0. (©.7)
We can write
Mpunipenip 1 & R
i () = MPumperuprm L iM Vominr (Wins. 0
n(0) N M Zz_; puspaMpIN w(Wanr,6)
Y - - (C.8)
=(140,(1))—=> —  Vomins(Wir, 0).
( p( ))M Z pup——— m(Wing, 0)
Since V 6 € ©
R 2
supE ’ M Vomin (Wing, 0)
i, M PUMPGMPHM (C.9)

1
: (pumpeyprm)? S‘U}\I;E 21618 IVomaas (W, 8>H2 J =

M

Z PUMPGMPHM vemiM(WiM’ 9) ; LM(Q)
=1

by Lemma under Assumption [4] and condition (ix) in Assumption[A.3] By Corol-

50 (C.10)
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lary 2.2 in (1991) and Lemma above,

| Ear@3)7 (0 = Las(3) |

R 3 (C.11)
sc(zu@p | Ex(®) = @) + 1120 (0) = L @3] ) %0
S
under conditions (x) and (xi) in Assumption [A.3]
(C.5) implies
Ln(9)™" = Las(83) ™" (I + 0p(1)). (C.12)
Using (C.12)), (C.4)) can be written as
Vi 2/ N(Oy — 0%)) = — Vol 2 L (03) \/_ Z Rins - mint(Wiag, 0%)
M
— VewlarLas (03)” W7 Z - it (Wiag, 03) + 0,(1).
B (C.13)
We can write
M M
1 MPUMPGMPHM 1
VN ; " (W, Oiv) Z \/pUMpGMpHM s (War, 0ir)
M
= 1 —|— O mi WZ 5 0* .
(-4 1) 7 30 e (Vo )
(C.14)

Plug (C.14)) into (C.13]), we have

Vo ZV/N (b — 65))

M
1
= — Vo2 La(0] mint(Wint, 03
rwar Lar (03) mz\/m s (Wiar, Oir)
M
1
S VS A () mint(Wing, 0%1) - 0,(1) + 0,(1). (C.15
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Define:

M
Varwam =V (;ME; \/mmm(m%%)) . (C.16)
Since
Viewar = L (05) " Varwar Lar(05,) 7", (C.17)
we have

M
1
(TWM m;m u MM)) g (C-18)

Given that, V 6 € O,

4
1
Sllp]E H sz( lMae) <—SUPE[SUPHsz( iM )” :|
\/ PUMPGMPHM PUMPGMPHM i,M 6€O
(C.19)
M
Vol/2 Ly (07 mint(Wing, 0%,) <5 N(0, I C.20
rwar L (03)~ MZZI\/WM(MM) (0, I,) (C.20)
by Theorem 1 in [Yap, (2025) under Assumption

Due to ((C.20)),

Vi e V/N (O — 03) =

M
1

— Vi Lar (03)”

rwar b \/ M ; VPUMPGMPHM

(2

+0,(1)0,(1) + 0,(1) % N(0, I;,).
(C.21)
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D Supplement to “Clustering with Potential Mul-

tidimensionality: Inference and Practice”

D.1 Further Examples of Clustering
D.1.1 Application to Difference-in-Means

To make a direct comparison with |Abadie et al.| (2023)), we consider a difference-in-
means estimator for a binary assignment variable without covariates with multiway
clustering. For treatment variable X € {0, 1}, we denote the nonstochastic potential

outcome as y;p(x). We are interested in the population average treatment effect
(ATE):

P = 1 2 ar(1) = s (0)) (D.1)

Multiway assignment is treated in the following way. Data is generated by inde-
pendently drawing A, € [0, 1], B, € [0,1] and e; ~ U[0, 1], with X, = 1 {ei < Ag(i)Bh(i)}.
The random variables A, and By, have means pi4, up > 0 and variances 0%, 0% respec-
tively. This process nests several cases. If assignment is one-way clustered, then we
can simply set A, = 1. Another case is where assignment occurs at the intersection
level, and we need both dimensions G and H to be assigned treatment for the unit
to be treated. Then, Ay, B, € {0,1}. If py and pup are both non-zero, then even
though Xy = Ag;)Bpy is an interaction model, we do not need to be concerned
about non-normality*]

With ayy := (1/M) Zf\il yin (0) and error Uy := Yipr—ans—7ar Xinr, the potential

errors are denoted:

Yine(1) — (ans + )
win(0) = ying

(0) — an

For R;y = 1, we observe {Yin, Xinr}, with Yinr = Xinying (1) 4+ (1 — Xiar) i (0).
Let by = E[Ripy Xim], bo = E [Ripr(1 — Xiar)]. by is the probability that an individual

is observed and treated; by is the probability that an individual is observed and

et Ay = pa + e_jf and By, = up + €2 where E[e,] = E[e;] = 0. Then, Zf\il Xim = Z?;(HA +

M
65‘(1%‘“ B+ i) = P A5
are €, /i3 and HA€R () instead of €0(i)ER (i)

(baps + 6;4(1')/13 + MAGE(Z’) + 5;4(1')6}?(1')) so the dominant stochastic terms
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untreated. N; := Zi\il Ry Xin and Ny := Zf\il Rin (1 — Xipr). The least squares

estimator 1is:

1

M
L=

To state the main result, we first define a few terms. Let N; denote the neighbor-

hood of 7, which is the set of observations that are plausibly correlated with i. The

score is % L x
nivt = Rim ( biM - —b iM) Ui - (D.3)

1 0
In this context, E[ns] = wins(1) — uing(0) =: 7;ar — Tar is not zero in general, but

> :Enin] = 0. Hence, we define &, as the demeaned residual for individual ¢ that

features in the variance of 7;:

Corollary D.1. Under Assumptions[1] to [,

m(% ™) 4 no.1), (D.5)

where

vu =7 Z > Elémul. (D.6)

=1 jEN;

This result is a corollary of the existing normality results and law of large numbers.
Comparing this context to our framework, n;n = min, & = min — E[myy], and
vy = Vrwa. Using our framework, we can answer questions on whether multiway
clustering matters and whether multiway clustering is appropriate. Using the one-way

CRVE on dimension G (without loss of generality) yields the following estimand:

Varr = Lar (03) ™ (Dchwnr (03) + poar D (03) + pusepran e (03)) Lar (03,) "
(D.7)
Then, answering the question on whether two-way clustering matters involves com-

paring Vo with Vi gy and answering the question on whether two-way clustering
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is appropriate involves comparing Vi, with V. The comparisons yield:

Viwn — Vam
=L (03) " <,0UM,0G’MAH,M (03r) (D.8)

— pumpampan (Dpar + Apcoma + Dpev + Apm) >LM 3) "

Viwsa — Vo = Lar (04) ™" (pusepane D (047)) Las (05) " (D.9)

Consider the environment with constant treatment effects. Then, w;p;(1)—u;,(0) =
0 and hence E[m;| = 0 and all the Ag terms in the equation above are 0, so the two
comparisons become identical. If there is multi-way clustered assignment only or if
there is clustered assignment on H and clustered sampling on G, then cannot
be simplified further. However, if there is multiway clustered sampling only or if there
is clustered assignment on G and clustered sampling on H, then Agy p(63,) = 0 in
so Vrwsm = Vrway = V. This result implies that, under constant treatment
effects, it suffices to cluster on the assignment dimension and the usual CRVE is no

longer conservative?

D.1.2 Fixed Effects Estimand under Clustered Assignment

With clustered data, empirical papers often include fixed effects (FE) in a regression.
A first-order question is: What are these FE estimators approaching to in the limit
within our finite population framework? In particular, when can FE estimands be
interpreted as the ATE? We focus on an environment where assignment X, is binary
and two-way clustered with Ay, B, € {0,1} as described in Section [D.1.1] and we
observe the entire population, i.e., R;y; = 1 for all ZH Nonetheless, since we allow
for two-way clustered assignment and study estimands for both one-way and two-way
fixed effects, the results in this section are new relative to |Abadie et al.| (2023)) and
Athey and Imbens (2022): |/Abadie et al.| (2023) study one-way fixed effects with one-

way clustering, and |Athey and Imbens| (2022) require a random adoption date in the

22This result complements Corollary 1 of Abadie, Athey, Imbens, and Wooldridge| (2017): they find
that one-way clustering is unnecessary if there is both constant treatment effects and no clustering
in the assignment.

23Due to how fixed effects estimators transform variables using within-cluster means, any form
of sampling leads to random sample sizes within each cluster which introduces additional technical
complications that is beyond the immediate scope of our theory, so it is left for future research.
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two-way fixed effects environment with one-way clustered assignment.
We start with one-way fixed effects. Let the ATE be defined in the following way.

| M
Z yinr (1) — yinr (0)) (D.10)
=1
In a one-way FE estimator, let
_ Z/L'GNG XlM
XgM = M—G, and

o(i)
Yoy Vs (Xiar — Xgiour)

= . D.11
fo\il Xim (XiM - Xy(i)M) ( )

TOWFE ‘=

Proposition D.1. Under Assumptians to IZL ToWrE = Towrg, where

TOW FE —Z (yine (1) — vine(0)) , and

GNH G GNH
M(g(z) ny T <M i)~ Mgana >>> ps

w; = papp | 1—

Since pup € [0, 1], all weights w; are positive, so the estimand is a weighted average
of treatment effects. In the special case where we have perfectly balanced clusters

GNH el
M(g() h(i) = k and hence Mg(z

unlike the difference-in-means example where clustered dependence only affects the

) = HE, then Towpr = Tas. This result suggests that,

variance, clustered dependence here also affects the interpretation of the estimand.
Mechanically, the difference is that the estimator here contains products X;y X for
i # j that is not present in Section [D.1.1], so correlation in X affects the estimand.

Moving on to two-way fixed effect (TWFE), we focus on the case with multiway
assignment where a unit is treated if and only if both its clusters are treated. This
setup is different from one-way assignment at the intersection level (see Remark .
With a linear model

Yi = 17X + gy + i) + i (D.12)
the TWFE estimator is v <
R =1 XimYi
TTWFE = ZJZ\ZI v (D.13)
Zizl XzMXzM
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where X;y is the residual when regressing X on the fixed effects. Due to Baltagi

(2008) Chapter 3,

2jeng BiniXinr X jenn BineXjua . M X

G H
My My M

Proposition D.2. Under Assumptions to[4 if MGOM =k, MY = Hk, M{ = Gk
(i.e., all cluster intersections are balanced), then Trwrg TN Trwrg, where

Zij\il E [XiMY;‘M]
2?11 E [XiMXiM]

=TM.

TTWFE =

This result is fairly weak in that it requires balanced clusters, but in this ideal-
ized situation, the TWFE estimand is the ATE. Unlike Proposition [D.1], we cannot
interpret the estimand as a weighted average of treatment effects in general, but this
result is not surprising considering the large difference-in-differences literature on how
TWFE cannot be interpreted as a weighted average of treatment effects, even with
parallel trends. The difficulty with unbalanced clusters is attributed to how TWFE
takes a particular linear combination of outcomes that is not necessarily a convex

combination.

D.2 Proofs for Section 2

Proof of Theorem [2.1} (Proof of Theorem [2.3| follows the same structure.)
Let pgy = 1. We first show that éN — 03 2 0.
Denote Qn(6) := + S M Rinegins(Wing, 6). Note that

Mpynp 1. R
g) — PUMPGM 2 _tumMm it (Wi, 0). D.15
Qn(0) N M;PUMPGMqM( M, 0) ( )

By Lemma |C.2[ and the continuous mapping theorem, W % 1. Hence, it is
sufficient to show that for each 6§ € ©

S 3 MqiM(WiM, 0) — L > E g (Wing, 0)]

p,
— 0. D.16
M i—1 pUMpGM M ( )

M M ‘

i=1
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Condition (v) in Assumption implies V 0 € ©

R;
sup E M
i M

qine(Winr, 0) i SUPE[SUP |QiM(WiM79>|T} <00

<
PUMPGM (purtpenr)™ ' im 0O

(D.17)

for some r > 1, which further implies

i
(D.18)

(D.16)) thus follows by Theorem 1 in Hansen and Lee (2019) under Assumption 4’.
Next,

RiM

givt(Winr, 9)' : 1(

PUMPGM

R;
—Mqimwm,e)\ > c)] 0.
PUMPGM

sup [Qn(0) = Qu(0)] = 0p(1) (D.19)

follows from Lemma above and Corollary 2.2 in [Newey| (1991)) under condition
(vi) in Assumption [A.1] As a result, consistency follows, e.g., from Theorem 3.3 in
Gallant and White (1988)).

To prove asymptotic normality, we start by verifying that

iE[miM(WiM, 0:r)] =0, (D.20)

i=1
which holds by Lemma 3.6 in Newey and McFadden! (1994)) and Jensen’s inequality
under conditions (iv) and (vii) in Assumption [A.1]

By the element-by-element mean value expansion around 63,

M

121 N
0,(N71?%) = VMl/QN Z Rinr - mint(Wing, On)

i=1

_youed 3 R Wins, 0% SER Wirr, 0)(Ox — 67

=V NZ it - Mg (Wang, 03) + Vi NZRinemiM( v, 0)(On — 03),
i=1 i=1

(D.21)
where 6 lies on the line segment connecting 6%, and 0.
We first show

A

Ln(0) = La(03) (I + 0p(1)). (D.22)

56



Since we can write
Lv(8) = Lar(83) [T + Lur (030~ (En(0) — L (630)) . (D.23)

it suffices to show

| Ear(@3) 7 (Ex(0) = Lus(630) | 2 0. (D.24)

We can write

M
- _ Mpyyvpen 1 Rinv

N( ) N i 2t piipan 0 M( M )
= (D.25)
1 < Ry
=(1+40,(1))— Y ———Vomirs(Wia, 6).
(o) 37 2 o Voo (Wias, )
Since V 6 € ©
R; ’
supE ’—MVGmiM(WiMae)
M PUMPGM (D.26)
1
g—_lsupE[Sup ||v0miM(VViM70)HT] < o0
(pUMpGM)T i M 0cO
for some r > 1,
S f: Rl—'MVQm'M(W'M 0) — La(0)|| =0 (D.27)
M — PUMPGM ' o ‘

by Theorem 1 in Hansen and Lee| (2019)) under Assumption 4’ and condition (ix) in
Assumption . By Corollary 2.2 in [Newey (1991)) and Lemma above,

| 20307 (£ (0) = Lar83)| (D.28)
SO(E‘;S HﬁNw) - LM(9>H + || Lar(8) — Lag(63)) > 2 (D.29)

under conditions (x) and (xi) in Assumption [A.1]
(D.22) implies

A

Ln(0)7" = Lag(03) "N (I + 0,(1)). (D.30)
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Using (D.30)), (D.21)) can be written as

Var PVN (O — 03) = — Vi L (03)” \/_ ZRM mant(Wiar, 03)

M
B 1
= Vi Lar03) on1) 7 3 R (W i) + 301,

(D.31)

We can write

M
/MPUMPGM 1
R m; iy Ohp) minv (Wi, 03
\/—ZMMM M21\/mM(MM)

M
1 Rim
1+0 my; Wl ,6* .
( ol VM;\//)UMPGM w(Waar, 63)
(D.32)

Plug (D.32) into (D.31]), we have
Vi, /2Ny — 03,)

M
_ 1 Rinv
— _ V 1/2L 0* —1 (2 mi WZ ’6*
v La(B) mzlm s (War, )
/ 1 < R
— Vi P Ly (6 M i (Wiag, 0%) - 0p(1) + 0,(1).  (D.33

Since

M
mi V[/’L 79*
< ;\/UT/)GM (W M)>

1
_— V vt - Mg (Wi, 6
MPUMPGM { Z e - mane (Wans M>]

+ Z Z Z COV[Rins - mint(Wing, 031), Rjna - ij(WjM,Q&)]}

9=1ieN§ jeNF\{i}

1 M
= E Rz . i V[/’L 79* ; m ’9* ’
MPUMPGM{;[ (Rins - mins (Wing, 037)ming(Wing, 03)’)

- E(RiM : miM(VVin 97\4))E(Ri1\/f ) miM(VVin e}k\/l)”
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e
- Z Z Z [E(RiMRjM s mint(Wing, O3)mne(Wing, 034)')

=1 ieNG JENG\[3)

— E(Rins - mint (Wi, 03) ) E(Rjng - mjne (Wi, 934))/] }
LM

:M{ Z [E(miM(VVz‘Ma Orr)mint(Wing, 03)')

=1

— pumpcamE (miM<WiM7 97\/1))]E(miM(VViM> 97\4))/}

+ Z Z Z [pUME (mans (Want, 030 )mns (Wina, 03)')

9=1ieN§F jeENF\{i}
- /)UM/)GME(miM<WiM> 97\4))E(ij(WjM7 97\4)),] }

= Achwmt (03) — pusmperiDen + pusiDeuster i (03;) — puspamDecn, (D.34)

we have
| XM

V(v 2Ly (5)" mint(Wing, 05) | = I.. D.35
GivenV 0 € ©
sup H mivt(Wing, 0) ' < ! su E[su lming (W, )H]

p \/pUMpGM T = (pumpan)/? 11\5) § MM AT,
(D.36)
for some r > 2 under condition (vii) in Assumption
1 < R
Vi Ly (05,) 3 mant(Wiag, 05) =5 N(0, I,,) (D.37)

\/ M <= v/ PumpPcm

by Theorem 2 in Hansen and Lee (2019) under Assumption 4’ and condition (viii) in

Assumption [A.1]
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Because of (D.37),

M
_ - 1 Riy
VMl/Qm(QN — 97\/[) = — V 1/2LM (9* N Z mZM(VVZM, 9?\4)
\/M -1 VPuMPGM
+0,(1)0,(1) + 0,(1) 5 N(0, I).
(D.38)
As for Theorem . it is equivalent to show HVSM VSNVSM — Il & o.
Slnce ) holds by replacing 6 with Ox,
Ln(0n) ™" = Lar(0%) 7" (I + 0,(1)). (D.39)
We can write
Aehw N(Q) + Acluster N(e)
/
Z—Z [ Z Riae - ming(Wing, } [ Z RiM'miM(WiMae)}
=1 “ieN§ iENE
G /
Mpumpen 1 [ Rin } { Rin ]
AP - ——min (Wi, 0 ——mun (Winr, 0
N M ; zgf; VPUMPGM s(Waar. 0) ig;c VPUMPGM w(Wa, f)
g g
e R; R; /
(14 0,(1)) & A, m,eH B, ,e]
(1ol >)M;L§Gm {Warr,6) %:\/m (Wi, )
(D.40)
Note that
1« R; R; /
{M gzz; L;N:G VPUMPGM s(Waar, 6) Z.EXN:G VPUMPGM w(Waar, 0)

M UMPOM iM iM M M

. 1 & Rip Rjnr W 0 W Y
+ [MZZ Z —miM( iM )ij( JM> ):|

=L ieNG jeng\(iy PUMPGM
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G
+ %Z S Y purEman(Wing, 0)mjns(Winr, 0)']

9=1ieN§ jeNG\{i}

:Aehw,M(Q) + pUMAcluster,M<0)- (D41)

Hence, V 0 € ©

!/

G
1 Rin ]{ Rin
= ———— iy (Wirs, 0) | | Y ————=marr(Wins, 6
MZ[.Z\/WM(M) Voo (Wi, )

iENF

- (Aehw,M(9> + pUMAcluster,M(0>) H £> 0 (D42>

follows by and the same proof of (62) in [Hansen and Lee| (2019) under As-
sumption 4'. Also, Acpw () + pusrAeuster s (0) is continuous in @ for all M by the
dominated convergence theorem (DCT), Jensen’s inequality, and Cauchy-Schwarz In-
equality under conditions (iv) and (vii) in Assumption

In addition,

Aehw,N(9~> + Acluster,N(é) - (Aehw,N(e) + Acluster,N(9>) H

G /
1 ~ -
SNZ [ Z Rin - miM(WiMae)} [ Z Rin - miM(VViM,Q)]
g=1 iENE iENE
[ Z int - ming (Wi, ] { Z Rin - miM<WiM79)}
ieNE ieENE

ZZsup ZRzM mint(Wint, 0)

=1 0cO ENG

Z Rin - miM<WiMa é) - Z Rin - miM(VViMa 9)
ieNE ieNE

ZSUP ZRZM ming(Wing, 0 ZRszle( Winr)h (H9 0l)- (D.43)

1969 |liene iENG
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under condition (xii) in Assumption [A.1] Let

By : =N Zsup Z Rine - ming(Wing, 6) Z Rirebrine(Wing)
1969 |liene iENG

G

Mpyppen 1 Riv Riv
=27 E sup E ——mine (Wi, 0 E b1 i (Winm
N 7 0€0 || .S VPUMPGM ( ) iva VPUMPGM vane (Waar)

1+0 su —— 0 7} Wz ,9 —b K W,L .
ol Zeeg Z < VPUMPGM s(Waar, 6) Z.EXN:G V PUMPGM vane (Waar)
(D.44)
Since
2
R;
Elsup| Y —2 —mip(Wirr,0)|| | < C (M) (D.45)

0€0 || “ve VPUMPGM
g9

by Cr inequality and Jensen’s inequality under condition (vii) in Assumption [A.1]

G
2 Rin Rim
El— su — (Wi, 0 _ M (W
V2508 | 2o v Voo 2 o M’]
9 G R 205172 . 1/2
= E | sup ————— s (Win, 0 : E[ — by (Wi 2}
M;iezj\/gG{ vco iGZNgG VPUMPGM m(Waar, 0) ]} { ovaoem | m(Winr)
1 < )
G
g=1

by Cauchy-Schwarz inequality under Assumption 4’ and condition (xii) in Assumption
. As aresult, By, = O,(1) by Markov’s inequality. Therefore, given condition (viii)

in Assumption [A.T]

H [Aehw,M(G}kw) + pUMAcluster,M<9}k\/[)} o

[Aehw,N(éN> + Acluster,N(éN) - Aehw M(e ) pUMAcluster M(e}kw)} H

SC ( 211@13 ”Aehw,N(0> + Acluste'r,N(Q) - Aehw,M(e) - pUMAcluster,M(e) ||
S
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+ HAehw,M(éN) + pUMAcluster,M(éN) - Aehw M(G ) pUMAcluster M XJ) H ) = Op(1>

(D.47)
by Corollary 2.2 in Newey| (1991)) under On — 0%, 2 0. Hence,
Aehw,N(éN) + Acluster,N(éN)
= (Aehw,M(Q ) + pUMAcluster M(e )) [[k + (Aehw7M<0}k\/[) + pUMAcluster,M(e}kw))

(Aehw,N<éN) + Acluster,N(éN) - Aeh'w M(e ) pUMAcluster M(e}k\/j))]
- (Aehw,M(e*M) + pUMAcluster,M<9}k\4)) (]k + Op<]-)) .

Using (D:39) and (D48),

—1/2¢;

-1

(D.48)

= ‘VS N(éN)_ (Aehw N(QN) + AclusterN(gN))LN(eN) 1VS 1/2 — [kH
=! Vi “Lar(03) ™ (I + 0p(1)) (Denao 11 (631) + puarDetusten s (031)) (I + 0,(1))
2 (O) " (I + 0, (1)) VY2 — I, ‘

< ‘V‘WVSMVS‘A}/2 - IkH + HVS‘A} VerVirs?

b{

op(1)

—o,(1). (D.49)

Proof of Proposition [2.1} We define:

Varwsam (0) .= Aenw,nr(0) + pusr Acnmy, v (0) + pusiprv A, (0) + puni pan A (0).
(D.50)
We first show pointwise convergence for a given 6 in that Varywsar(6) ™ (VATWS v (0)—

Varwsm (6)) = 0,(1)1. By applying Lemma ,

(Achw,n (02r) + puri D (03r) + ,OUM,OHMAG,M(97\4))_1 (Aehw,N(éN) + AG,N(éN)> 2 I,

(Bt Oss) + puseBcrimarO30) + poaspen dmar(030)) ™ (Bery Ox) + A (Bn)) 2 I
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It remains to consider the intersection terms. Consider the following condition

)‘J\GFH
M

We show that when (D.51)) fails, the intersection variance can be consistently esti-

mated, i.e.,

(PUMAGmH,M+Aehw,M)71 <AGQH,N + Aehw,N<6) — pumDanmm(0) — Aehw,M(9)> = 0p(1) 1,
(D.52)
but when it holds, the intersection term is negligible:

(purmpamDcm + pumDenm + Aehw,M)il <AGmH,N(é) + Aehw,N(é)> = 0,(1)I.
(D.53)

If (D.51) fails, then

o(1), so A§ > CX§,. Due to Lemma |C.1

14 0,(1
M PUMPGMPHM

Z Z Z Rin Ry mZM<W'LM79)m]M(W]M,9) .

g.h i e/\/(cg"“hH ]e/\/G”H

Acna N+ Achw N =

(g,h)

(D.54)
Hence,
H(,OUMAGmH,M + Achwar) " (AGOH,N + Achwn(0) = prarDenma(8) — Aehw,M(e)) H

c + Op ' /
< Z Z (Rine Rjnemint(Wing, )mjns(Wing, 0) — E [Rine Rjneming (Wing, €)mjar(Wing, 6)'])
g:h i jeNcmH
(D.55)
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The term then converges in probability as

/\G Z Z (Rive Rjneming Wing, 0)mjns (Wing, 0) — E[Ring Rjnamint Wing, 0)mjns Wing, 0)'])|| > €

GNH
g;h l]EN(g P

Z Z (Rine Rjnemint Wing, 0)mjns (Wiing, 0)" — E [Ring Rjneming (Wing, 0)mjng(Wing, 0)'])

L ENG

QZZ Z Z (Aip + A + Aji + Ajy)

gh 9" i, GENGON kIENGT

QZZ Z Z Aig+Au+ Aj+ Aj) = o(1)
g’ z]ENleeNG

(D.56)

due to the same argument as Lemma [C.4]
If (D.51) holds, then, due to Assumption [6] pointwise convergence holds as

H(pUMpHMAG,M + pusmAcrma + Aehwr) ! (AGOH,N(é) + Aehw,N(é)) H

Sw ZZ Z Z Rini Rjneming(Wine, 0)mijns (Winr, 0)'

9 hoeNGOE jeNGOH

C(1+o0,(1
SM Z Z (Rive Rjnamming (Wing, 0)mijng (Wing, 0) — E [Ring Rjneming Wing, 0)mjne (Wi, 0)'])

)\G
M g,h 1j€N(G”hI){

n C(1 +0p ZZ Z Z [Rine Rineming (Wing, 0)mng (Wiar, 6)']

GnN GNH
hieNGOE jeNGOE

GNH

—o,(1) +C(1+ op<1>>AM—

3o = (D). (D.57)

To obtain the convergence in the final line, apply the convergence in probability
from and condition (D.51). By applying the continuous mapping theorem,
VATWSM(H) converges in probability. Next, we proceed with uniform convergence.
Here, )\_]\J/{{(Aehw,M(‘g) + pumDcamm(0) + purprn e (0) + pusipenDun(0)) is
continuous in ¢ for all M by the dominated convergence theorem (DCT), Jensen’s
inequality, and Cauchy-Schwarz inequality under conditions (iv) and (vii) in Assump-
tion [A.3] In addition,

N
)\G

(0) ~ Varwsu(0)|
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G /
S)\LG Z |: Z RzM sz zMa :| |: Z RZM sz 7,M70):|
M

g=1 1ENE iENE
/
- { Z Rins - ming (Wi, } [ Z Ring - mina zM>9)]
iENE ieNE
/
Y Z [ Z Rin - miM<WiM79):| { Z Rin - mz’M(VViMae):|
M p=1 |l bienit ieNH

_ [ > R mz‘M(Wz’Mue):| { > B miM(WiM’Q)]/

ieNH ieNH

5 ZZ { > RiM-miM(WiM,é)}{ > RiM-miM(WiM,é)},

g=1 h=1 1l =ieNGO Y iEeNGOY
/
—{ > RiM-mZ-M<WZ-M,0>H > R@-M-miM(mMﬁ)} : (D.58)
iEeNGOY iEeNGOY

By applying the same expansion steps as (D.43)-(D.46) for each of the three terms,

we conclude that

N

= (0) = Vazwsu (9)|| < BRA(I8 - o)), (D.59)

where BY = O,(1).
Since the smallest eigenvalue is bounded below from (viii) in Assumption [A.3]

HVATWSM(Q*M)_l (Varws(Ox) = Varwsar(03,)] H

N N N N
SC(SUP \Varwsa (0) — VATWSM(G)H)\—G + Varwsam (On) — VATWSM(QZJ)H/\_G> = 0p(1)
0e© M M

(D.60)
by Corollary 2.2 in Newey! (1991) under 6y — 6%, % 0. Hence,

Varwsa(On) = Varwsu (0 [[k + Varwsu (05,) 7 (VATWSM(éN) - VATWSM(Q&))}

= Varwsum (03r) (Ix + 0p(1))

Given the convergence of EN(éN) from |D the entire object converges using the
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same argument as in Theorem [2.1]

Since Vo is consistent for Viyrgar, it remains to compare Vo gy with V.

*

Vrwsy — Vrwu ZLM(QM)f1 (/)UMPGMPHMAE,M + pUMpGM,OHMAE(GﬂH),M

*

+ pumpempaMAEc M + PUMPGM/)HMAEH,M> Ly (03,71
=pumpcrpumLar(0,) " <AE,M + Ap@enmy,m + Apa,m + AEH,M) Ly (03"
(D.61)

It is possible to construct a data generating process where Ag iy + AgGrm),m +

Apgm + Agpgv < 0, as seen in Example B.1.

Proof of Proposition [2.2} Pointwise convergence of the A objects is immediate
from applying Lemma under Assumption [6] since the estimator and estimand
can be written as an additive combination of one-way cluster-robust objects. The

argument for uniform convergence is similar to that of the previous proposition.

Viwsae — Vewn =L (05,) 7 (Aehw,M(Q*M) + pum Acnmy, v (03)
+ pumpar PHMAE M + PUMPGMPHMAEGAH),M

+ pumpempPaM ARG M + pUMpGMpHMAEH,M> Ly (03)71
(D.62)

Given
Aehw,M(e}kw) + PUMA(GmH),M(e}kV[) > ,OUM,OG’MPHMAE,M + PUMPGMPHMAE(GmH),M,

(D.63)

Vrwsme — Vewar 2pusepereprm L (0h) ™ (QAE,M + 2ApGnE),m + Apam + AEH,M) La(03)7 "
(D.64)

Since Ag p + Apenm,m +Aegm 2> 0 and Ag ar + Aganmy,v +Apmym > 0, we have
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a conservative estimand.

Proof of Lemma
The strategy follows Hansen and Lee (2019) (62) in the proof of their Theorem 6.
We can suppress dependence on 6 for notational convenience. Fix any # and § > 0.
Set £ = (6/C)*. Define
1 (Hfgu < \/Ms) . (D.65)

Let A§, denote the rate such that )\%HEQM(Q)H is O(1) but not o(1). Then,
M

1B (0)] 10 (6) — B (0)]]| < || 1B 0)]

(€021(6) - Es (9)]
< o)™ H[QM(Q) - EQM(9>]H

(A~

w>—E@Mww

Erg fq

+2(0§) 7! ZG:IE (

g ( foll > \/ﬁa)) .
(D.66)

’ <C (]\49G)2 by the Cr

Iy

Since we have finite moments, for some C' < oo, E

inequality. Using Jensen’s inequality,

o\ 1/2

G G
Z — Ei,i) || < Z — Ef i) (D.67)

2

The argument that (\§,)2E HZQ 1 rg — Ergr )H < 46 is similar to the proof
strategy of variance consistency in Yap (2025) Lemma 7. To be precise, due to
finite moments, and using A;; to denote an adjacency indicator of whether 7, are

dependent,

G
Z Erg

G
< CZ Z Z Z (A + Ay + Ajr + Ay) - (D.68)
g=1 g

" i jeNE k,leNf

There are only four adjacency terms: if (i,j) are independent of (k,[), then the
demeaning would have removed the relevant terms. Hence, an additional correlation

can only exist if units are correlated across the g clusters. We make the argument for
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the A;, term as the other terms are analogous.

SYY S ALY Y Y A

g=1 ¢ i,jeNgGk,leNgG, =1k jeN leNg(k>
Z > Au
i=1 kEN;
, M
ax (MgG) Z Z Z A
=1 keNg(z) keNh(l)
G H
< max (M) (Z (ME) + (M,{f)2> (D.69)
g=1 h=1
Then,

DPYE Y Y Au<06) e () (Z <Mf>2+i<w>2).

9=1 g i.jeENG kIeNT

(D.70)

By assumption in the lemma, (A§;)~! max, (MgG)2 = o(1), (\§)! chzl (MgG)2 -
O(1), and (A§)~* S0, (M,f’)2 = O(1). Hence, we can pick M large enough so that
(A\§) 2 max, (MS)* (2C) < 6.

it

Next, consider 2 (/\%)71 Zngl E ( fq fy
is uniformly integrable. Their lemma can

> v/ ME)) Lemma 1 of Hansen

2
and Lee| (2019) implies that H(Mf)fl fo ‘

be applied because it holds regardless of the covariance structure. This means we can

pick B sufficiently large so that:

sup (H(MG

Pick M large enough so that

1 () g,

> B)) g (D.71)

(D.72)

G\—1/2 € <\/_g
H()\M) ngaXMg <5
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Then

M>ZE( 7,

g=1

MC}

(|17 >B>)

(o)™,

25.  (D.73)

>><2 (G zlE(
)Y (g

@

Q
N
QI%

We have shown that E HQM(H) — EQu(0) H < 64. Since ¢ is arbitrary, by Markov’s

inequality, we obtain the result.

D.3 Proof of Theorem 3.3

(The proof of Theorem is almost the same as that of Theorem with sampling
indicators and is hence omitted here.)
Recall that

G

Pan = (Z Mng) (ZngmgM ) (D.74)

€] -l a
PG,M = [Z’%_;M’%gM] ZZ;ME mgM )}/ (D75)

g=1 g=1
We derive convergence results for the G dimension as the H dimension is analogous.
To show convergence of these objects, we require the order of variances for z to be
similar to that of m. Namely, for C' € {G, H} and arbitrary constants a > 0, A < oo,

AG mzn Z Z ZlejM ]Mye}kw)/] SA
=1 ]EN
(D.76)
)\G m'm Z Z EZ’LMZ]M SA

1
=1ENG

\§, is the scaling factor such that Ai% Zle ZonrZem = O(1) but not o(1). To show
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HpG’N — PG’MH N 0, we show

a a
1
G Z ZgM — ZE[mgM(QL)} 2gM ﬁ) 0.
M g=1 g=1
As a first step, we show V 6 € ©
a a
_G Z ZgM — Z]E[rth(G)] ggM £> 0.
M g=1 g=1

Fix § > 0. Set ¢ = (§/C)?. Let

o = g 6)zyart (g 6)zyul < ).

Then
1 ||& G
E A Z ~gM(9)£9M_ZE|:m9M(9)}29M ]
M g=1 g=1
1 C s
S)\—GE{ Z [lgM _E(ZQM)H }
M g=1
9 G
+ )\_GZE 72901 (6) Zgn | 1( 72901 (0) Zgne || > ME)]
M g=1
Observe that
1 SIS
2| |2 (=)
M g=1 J
, . 24 1/2
S)\—G{E Z <lgM _]E(ZQM)> ] }
M L ] g=1
N 1/2
1 - 2
%—G{ZE[ I ]}
M g=1
<44
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(D.80)

(D.81)



follows by an argument similar to the proof of Lemma [C.4] Also,

sup]E{ngM ng/ H]

<{sg1ﬁ>E[zlelgngM(9)/ (Mf)“4]}l/2{SUPE[“ng/( >H }}

(o = (g wosio ]) " D)
{Supg;(;( [/ G)Hﬂ)w}Q

1/2
<supE {Sup e (Wing, )| } sup HZiMH2 <0
i, M 6co i, M

by Jensen’s inequality under condition (vii) in Assumption and condition (ii) in
Theorem [3.3] Hence, we can pick B sufficiently large so that

)
supE ngM(e)ng/ (MC)? 11( MO > B> 2 (D.83)
9.M - C
Pick M large enough so that
(MF)" _ e
g —
TN =B (D-84)
which is feasible under Assumption [6] Then
2 o 28 _
2> 0l 1 )2 > M)] S NUARE
g=1 M g=1
(D.85)

Combining (D.81)) and (D.85)), (D.78]) holds by Markov’s inequality.
Next,
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)\GE E E sz Wi, Z]M_E E sz Win, 0 Z]M

g=1 |[ieNF jeNE iENE jeNE

_“GEijXNWM a0, 0) = ming (Winr,0)| - 1z

9=1ieN§ jeNE

—%ZZ > bt (Wing) - lzsnel - A((16 = 6]]) (D.86)

9=1 ieN§ jeNE

Let

MWZZZMMMMW (D.87)

9=l ieN§F jeNE

Since

G
E(BY) = —%Z Z Z (b1, (Wing)] |z |
PN SN (D.88)
1 G 2 97 172
< 3o 2 (M) sup {E[broas (Wirr)?] } sup |z | < oo

1

g
by Jensen’s inequality under condition (xii) in Assumption condition (ii) in Theo-

rem , and Assumption@, B3, = 0,(1) by Markov’s inequality. Also, /\ng 25:1 E [rign (0) ] Zgr
is continuous in # for all M by the DCT and Jensen’s inequality under Assumption

[6] and conditions (iv) and (vii) in Assumption [A.3] As a result,

el A G
5 [ o3~ LB 05

g=1

1
<—-sup
1\G4 6eo

Z Mgn (0)Zgn — Z E [mgM (0)} ZgM
G . " G
Z E [mgM(eN)] 29M - Z E [mgM(e;J)] 29M

g=1 g=1

) ‘

1

+ )\_G 0. (D.89)
M

follows by Corollary 2.2 in Newey| (1991) under 0y — 6%, 2 0.

The result HPG N — Pa MH 2 0 follows immediately under the continuity of inver-
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sion and multiplication.

w
@
=
o
&
>
QN
&
=
|
Zl=
Ma
2
~
Su
=
B:Z\zz
=
&
<
=
(@]
©
=
=
=,
&

g=1
1 G
Y Z (Pé‘,M + Op(l))Z;MZgM (PG,M + Op(l)). (D.90)
g=1
Then,
|(aZea) " (Blsn — Apnr) || = 00D (D91)

To show the ordering of the variance-covariance matrices in Theorem [3.3] notice
that

Z
Apn +Apcm — AGenm

1 & :
= Z E 1190 (03,)] E [172900 (031)]
1 < ~ * = 1 = Ay 711 / ~ * \1/
_MZ]E[mgM(QM)}ZgM MZZQMZQM MZ o E[mgn (03)]. (D.92)

Let Ag and Dg be the matrices with g-th rows equal to E[?’th(H}‘w)]//\/M and
Zom/V M respectively. Let I be the identity matrix of size G. Then,

Apn + Apay — Mgy = Ag(Ie — Da(DgDe) ' Dy) Ac, (D.93)

which is PSD. Hence, the result.
The final part of the theorem follows from previous derivation in (D.52) and
059,
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E Online Appendix

E.1 Derivation for Shrinkage Variance Expressions

Derivation for Table 1:
It suffices to work with the estimand, because subsequent theorems show con-
sistency. The superpopulation cluster variance (Vasy = Achwmr + pusiQeciuster,nr)

over-estimates the true variance by:

Vasu — Vam = pumpamDem + puvpeviDec,u (E.1)

First, consider Case 1. Without cluster assignment, Agcy = Agusterp- Since

Acpustery consistently estimates pyarAecusternr, pumpeym can be estimated by N/M,

and pgys can be estimated by G /G, the proposed adjustment is:

Gn N .
(?NAcluster,N + MA§> (EQ)

Then, the proposed estimator is:

A A Gy N .
Ae w Ac uster - _Ac uster _AZ E
hw,N T Dcluster,N (G lt,N+M N) (E.3)

which is of the form required.

In Case 2 and Case 3, since Agc v # Acuster, v 0 general, we can correct for both
term simultaneously. The proposed adjustment is hence (N/M )A(%E N

In Case 4, pay = 1 without clustered sampling and Agc .y = Acusternr Without
clustered assignment so that Vay = Aehw,mr — pumAgcy. Hence, the proposed

variance is as stated.

Derivation for Table 2:

In this derivation, we retain the notation with pyar, panr, pry to accommodate
both the case where we observe the entire population and the case where sampling is
allowed with unbounded cluster sizes.

Taking the meat of the Vry sao expression, the estimand of 2Aehw7 N—l—AG, N—i—A HN

5
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*

Va.camz = 20 chw v (03) 200 Ay, v (O3 oo pr A (O3 +ponepene D (03)-

(E.4)
Hence, the CGM2 estimand over-estimates the true variance by:
Va,camz — Varwu = Dehwvr + pumAenm,m
+ pumpamPaMAE M + pUMPGMPHMAEGAH) M (E.5)

+ PUMPGMPHMAEG,M + PUMPGM,OHMAEH,M

As before, pyypampam can be estimated using N/M. Since pgy and pyy can be
estimated using G /G and Hy/H respectively, pyas can be estimated using %%H—va

Consider Case 1. With only clustered sampling on both dimensions, Ag x con-
sistently estimates pyypumAcm + pumAnmy,u and AH,N consistently estimates
pumpPam A + punmAGnm),m- For the terms to appear, the estimation for Ay, ar +
puMA(Gnm),M uses Achwn + A(GQH),N- We estimate pyuvpanviprm AeGrm),m using
%V%A(GQH)’N. We estimate pyypermpamDecy using %\’(AGW — A(GQH%N) and
puMPGMPHMAEH M USING H—éV(AH,N - A(GmH),N)- We adjust for pyaparpamAem

using N/MA%. Hence, the estimator is:

2Aehw,N + AG,N + AH,N — Aehw,N — A(GmH),N — N/MA]%/

G He - o . X Heo . A (E.6)
—FNFNA(GOH),N — FN(AG,N - A(GﬁH),N) - FN(AHJV - A(GHH%N)’

which simplifies to the expression in Table 2.
Consider Case 2. We use A%IE,M to correct for Ag y + Apanmy,m + Apam. We

can use N/M : Ag’E,M to correct for Aehw,M + pUMA(GﬂH),M + PUM,OGM,OHMAEG,M-

Since Acpw,nr + pumDGnmy,v = pumpamPEMAE M + pUMPGMPHMAEGAH) M,

Achwnr + pusAenmy,v + puspeypEMAEG M — pUMpG’MpHMAg‘E,M (E.7)

>pumpempPam(De v + Apenm,m + DApa,m — A§E7M) >0,

so our adjustment of N/M - (ACZ;EN + AfIEN) still makes the variance estimator

conservative.
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E.2 Proofs for Sections 2 and 3

Proof of Theorem [2.2:

First, using similar arguments in the proof of Theorem [2.1]
AN — Vi =0 (E.8)

under conditions (i), (i), and (vi) in Assumption [A.2]

By the mean value expansion around 63,

Vf_j\l/[/2\/—ZRszzM 1M79N>

Vil V—ZRM‘W Wint, 03) (E.9)

_1/9 1 . R
+ Vf,z\lfﬁ Z RineVo fit(Winr, )V N (On — 03),

=1

where 6 lies on the line segment connecting 6%, and 0.
Given Theorem , V]\;lm\/ﬁ(é]\; —03,) = O,(1). Further,

Fy () = Far(83) + 0p(1) (E.10)
under conditions (i), (iv), and (v) in Assumption Therefore,

Vil ZRszef@m i OV O — 837) = V2 Fur (838 R (B — 03y) + 0p(1).
(E.11)

According to the mean value expansion in the proof of the asymptotic normality of

Vil PN Oy — 63p),

M
B R 1 1
Vi VN (O —030) = Vg = 3~ Baaa Laa (030)” mass (Waar, 031) +0,(1). (E.12)
=1

7



Combining (E-9), (E-11), and (E-12),

M

1
f]\lj/Q\/—ZRszzM zMaeN)

Vi }ZRM Fit (Woar, 03) = Fas(03) Las(030) mns (Wiar. 030)] + 0,(1).

(E.13)

Subtract V| UQ\/N”y}"W from both sides of (E.13).

Viad VN (3 =3)
M

A ZRzM Sie(Wint, 03r) — vir — Fana(03) Laa (63) sz(mM’eM)}—i_op(l)

Vil 75 2

—1/2 /MPUMPGM 1 .
_Vf]W/ pUMpG’M [sz( 1M QM) /YM

— FM LM 0 )7 mlM<W’LM79 )] +0P(1)

:(1+0p 1/2\/_2 sz( ivts Oar) — Var

PUMPGM

— Fai(03) Lar(03,) " mins (Winr, 03)] + 0,(1) (E.14)

Observe that V 8 € ©

supE{H I (Wi 0) = 2 — P 05) L 05) s (Woss 0] }
1/r
<(PUMPGM)T/2 1{[SupE<sup||sz( iM > )“T)} + [17all
1/r) "
+ C' || Far(03)) ] {SUPE<SUP||m¢M( ing, 0)[]" )] } < o0 (E.15)
7, 0cO

for some r > 2 by Minkowski’s inequality and Jensen’s inequality under conditions
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(ii) and (iv) in Assumption and condition (vii) in Assumption [A.1] Also,

{\/_ 2 m [fine(Wane, 03) = i = FMWMLM(%)*WM(W;M,9;4)]}

=Alynr = PUsPart A ar + pUsDlsienar — PUMPGI AL -
(E.16)
By Theorem 2 in |[Hansen and Lee| (2019)

Vo2 o (Winr, 0 Frr(02) Lag (05 ) mans (Wing, 05)] - N(0, T
ot WZ T it (Wane, 030) == Far (B3 Las (630) ' mae (Waar, 630)] 5 A(0.1)

(E.17)
under Assumption 4’ and condition (iii) in Assumption [A.2]

To show Theorem [2.2{2), observe that

A({hw N + Acluster N
G
Mpyypan 1 Rin .
_SPupar LN S [ (Wi, ) — A
N OM&) & pUMpGM[zM< s 0) =
g

— Fn(On)Ln(On) "ming (Wi, éNﬂ }

{ 3 %[m( Wonr, ) — A —FN@N)iN(éN)—lmiM(W@-M,ém]}

1 & Rim .
(1+0p(1))M;{i§;gcm[sz( zM;QN) '7M+0p(1)

- (FM(QL) + Op<1))LM(97\/[)_1(Ik + Op(l))miM(VViM, éN)] }

R *
{ i;;ga \/ﬁ [sz( i, On) — iy + 0p(1)

— (FM(Q}"M) + op(l))LM(ij)*l(]k + op(l))miM(VViM, éN)] }

—<1+0p<1>>%z{z¢%um< Wor.Ix) = i

g=1 \ieN§
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~ Far(030) Las (030) ™ maas (Waar, )] }

Ri N * * * O\ — N /
{ 2. \/PUT%[J%M(W@%GN) — v — Fu(03) L (6)) lmiM(WiM’eN)]} ot
iENE

(E.18)

under condition (ii) in Assumption , condition (vii) in Assumption , and As-

sumption 4. Denote

M;{ 2 m[ﬁm iar 0) - V;W_FM(GMLMQ%)1mz’M(WiM,9)}}

zENG

igfd;\/%[ﬂM( Wine,0) — var — Frne(03,) Las(03) mlM(VViM,Q)}}.

(E.19)

It suffices to show

H (Aghw,M + pUMAZZuster,M)_l/QA(QN)(Ai:rhw,M + pUMAglusteT,M)_1/2 - IQH = Op(l)‘

(E.20)
Note that
| { Ui WiarB) =50 = i) L) s Wi )
o War, 0) = 2 = Fua850 Ear(85) e (Wi, )] |
Ry
Sm{ Jint(Win, ) fint (Wi, )H (E.21)
+C HmiM(WiMaé) — mz’M(VViM,@)H]
Rinr
<[ (W 1)+ Vi (16~ )]
Let B
bsive(Win) = \/ﬁ [bQ,iM(VViM) + Cbl,iM(WiM)}- (E.22)
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Observe that

sup E (b3 inr (Winr)?] <supE [bainr (Wing)?] + C sup E [by i (Wing)?]

o, M i,M i,M

1/2
+ C’{ sup E[bo in (Winr)?] sup E[by in (Wi )2}} < 0
M M

(E.23)

by Cauchy-Schwarz inequality under condition (xii) in Assumption and condition
(vi) in Assumption[A.2] Therefore, (E.20) follows from similar arguments in the proof

of Theorem [2.1)(2).

Proof of Theorem [3.1} Let

M

Ky = (ézMzM) 1{ S 2 E [mans (Wi, e}w}’}.

=1

To show HKN — KMH LN 0, we first show

1 Y 1 &
—ZRiMzZ{MziM——ZzZ{MziM 0.
N i=1 M i=1
We can write
M M

1 Mpuypanmpamr 1 Rin

— RiniZinzive = — —Z2 %M

lel Mzt N M;PUMPGMPHM Mt

. M y D .
Since ~PUMECMPHM. = 1 it suffices to show

1 < R 1 <
M P
E3 o LRSS S o SV [
M “—~ pympampem M
Given
Rin 2 1
supE ‘ — %M = ————sup ||zZ~M||4 < 00
M PUMPGMPHM PUMPGMPHM i,M

under condition (ii) in Theorem [3.1] (E.27) is implied by Lemma[C.1]
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Next, we show

M

NZRZM mint(Wint, On) zins — Z mae(Wint, 03] zant || = 0. (E.29)
Again, we can write
1 < Mpurvpeup =
_Rz"iVViéi—UMGMHM it (Winr, On)zi
NZ M - Mt (Wing, On) zing ZPUMPGMPHMmM( M, ON)zim

1 M Rias A
(1 + op(1 M Z ————————mint(Wing, On ) 2ina-

PUMPGMPHM
(E.30)
We first show V § € ©
1 & R 1
iM P
M;pUMpchHM ur(Wint, 0)zina M; [mint(Wiar, 0)) zint (E-31)
Since VO € ©
R; 2
sup E ' i (Winr, 0) zias ]
iM PUMPGM PHM (E.32)
1 1/2 )
<o LB s s War O} sup s < o
PuMPGMPHM \ i,M e i,M

(E.31) holds Lemma . Next, we show the Lipschitz condition. ¥V 6,6 € ©

HmiM(VViMaé)zz‘M - mz‘M(I/ViMag)ZiM” < ||ZZM|| : HmiM(VViMaé) - miM(VVz‘Mae)H

< lzan |l brane (Wan)R([16 = 1))
(E.33)

and

1/2
sgvljaE[uziM|\b1,iM(mM)}sst}l&oHziMHs%o{E[bl,immm} <oo  (E34)
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by Jensen’s inequality. As a result,

- M
PR WZ ) 9 Z'L m; l ) Zi
2:: PUMPGMPHM w(Wiar, On)zins = g m(Win M)] M
1 - R 1 M
iM
<sup||— ——————min(Wing, ) zing — — E[min (Wing, 0)] 2
bc© Zl PUMPGMPHM 1 (Was, 6)zias M ZZI [mine(Wing, )] i |

50 (E.35)

1 & . 1 &
i ;E[miM(VViM; On)]zin — i ;E[miMa/ViM» 030)] i

by Lemma m above and Corollary 2.2 in Newey| (1991) under On — 05, 2 0. Com-
bining (E.25|) and (E.29), we conclude that HKN -

Hence,
M
Z (K + 0p(1)) 2 zins (Kar + 0,(1)). (E.36)
Let
M -1y M
* * !
A%, ; mint(Wing, 03) le( Zlele) M;ngE[miM(WiM,QM)] .
(E.37)
HAJZV - AA@H = 0,(1) (E.38)
given (E.25)).

Let Ay and Dy, be the matrices with i-th rows equal to E [miM(VViM, 9}*\/[)}1/\/M
and z;s /v M respectively. Let I, be the identity matrix of size M. Then,

Apy — A = Ay (I — Du(Dy D) "' Dly) A, (E.39)

which is PSD. Hence, the result.
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E.3 Proofs for Appendix C

Proof of Lemma By Chebyshev’s inequality, for any € > 0,

ZM VM 2 2

zg<M§‘> o 1
E =o(1).

(E.40)

<C

The second inequality follows from bounded variances and the final o(1) equality

follows from Assumption [4

Proof of Lemma Observe that:

N - X (R — E[Ri])

E.41
M pumpanpam M punrpanvpram ( )

Since pyar, peu, Py are nonzero by Assumption [2] Lemma yields the result.

Proof of Lemma We first show result (1).
[ENGEFNO)

M [aiM(WiM, 9~) — ainy(Win, 9)}

l

Rin ‘ Qipm VVzMﬁ) - azM(WzMae)H

i
S HM: M=
=

1
SN;RZM bosr Waar (18 — 61

=Byh(0 - 6 (E.42)
M M
1 MPUMPGMPHM 1 Rin
By =+ i b iM) = rY; ——0b; i
N N;RM M(WM> N M =1 PUMPGMPHM M(WM)
(E 43)

Because of Lemma [C.2[ and the contlnuous mapping theorem, MMMM 1. As

a result, it is sufficient to prove 57 Z — L., (Win) = O,(1). For all € > 0,

PUMPGMPHM
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let b, = C/e for some C < oo,

1 & R;
Pl|—S — M po (W, ‘>be>
<’M§pUMpGMpHM w(War)| 2
M
1 Ry )
<E|[ |— — b (W b,
- (‘MEPUMPGMPHM u M)’ /

(E.44)

g%iE(L>EUb1M(MW”/bE

PUMPGMPHM
<SUpE| [bias (Wany)|| /e < C/b =
Hence, By = O,(1).
Next, we show {Ay/(0)} is uniformly equicontinuous. The proof is based on slight

modification of the proof of Theorem 2 in |Jenish and Prucha/ (2009).

sup sup HAM<‘§)_AM('9)H

0€© g B(6,0)
M
<— sup su HEaZ W, ,9 aini (Wi, 0 H
MZ@GgQEBga) uWaar,8) = duae(War )}
M
Z [sup sup ‘az‘M(VVz'M,@)—CLiM(WiM,@)M
00 g B(9,9)
M
Z (E.45)
=1
where Y;p(9) 1= SUPgee SUPjcp(o, HCI,ZM(WiM,‘9>_0JiM( i, 0)]).

Define ;s = supgee ||@ins (Wins, )H Given condition (ii), there exists k = k(€) < oo

for some € > 0 such that

lim sup
M—o0

”ME

B[l 1l > k)] < g. (E.46)

Under condition (i), a;ns (Wi, 0) is Ly stochastically equicontinuous on © by Propo-
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sition 1 in |Jenish and Pruchal (2009). Hence, we can find some § = d(¢€) such that

)>¢/3) < —. (E.47)

li
im sup - o

M—o0

||M:

lim sup — Z]E i (9))

M—o0 i—1

<e/3 + hmsup—ZE Mm(0)L(Yins(6) > €/3,lins > k)]

M—o0

+hmsup— ZE m(6)L(Yiar(0) > €/3, Ly < k)]

M —oc0 i1

<e/3 + 2lim sup -~

M —oc0

B[l 1l > k)] + 2]{—thsupP(Y (0) >€/3) =¢

i1 M—o0

||M§

(E.48)

As a result, limsup,;_,.. SuPyee SUPjep,) HAM(HN) - AM(H)H —0asd—0.

E.4 Proofs for Further Examples in Appendix D.1

Lemma E.1. Suppose there is multiway clustering in a binary assignment described
in Section [D.1.1.  Then, if c(i) = c(j), then E[XiuX;m] = (04 +03%) (1% + 0%).
If g(i) = g(5), h(i) # h(j), then E[XinyX;m] = (u + 03) pp- If g(i) # 9(j) and
h(i) # h(j), then B[ Xin X = 1%

Proof:

E [Xin Xjn] = E[E [Xinr Xjn|Ag, Bal]
=E[AJB}] =E[A2]E [B}] = (45 + 0%) (uh + o) (E.49)

Further,

E [(XinXjm] = E[E [Xin Xjn|Ag, Bu, Bu, g(i) = g(j) = g, k(i) = h, h(j) = ]
=E[A2B,By] =E [A2 E (B = (14 + o3) 1% (E.50)
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Lemma E.2. Let Vi and Sip be two-way clustered scalar random variables that are

potentially correlated that have bounded second moments. Under Assumptions|]] to[4)
| M
P
i ZSi = > Viu-— 7 Z Z [SineVim] = 0 (E.51)
i=1 ]ENG i=1 ]ENG

Proof: Using Chebyshev’s inequality,

2

1
P i Z Z . (SineViu — E[SineVim]) | > €

i=1 ;e \NC (%)
=IENG)

1 1
= M2€2E Z Z MC (Sins Vi — E[SinrVin))

1 1
M2€2 Z Z zMV}M ZM—262V617" Z Z W&MV}M

=1 jeN§, 9 i) g ijeNg 9

M2€2 ZZ > Z Ap + Au + gy + Ag) = o(1)

g l]ENGk:ZGNG

Proof of Proposition [D.1} Define the (infeasible) terms in the following way:

L3 ()

9 ieNg
einr(0) = yinr (0) — gy
eint (1) := yine (1) — Qg(oynr — Tg(ym (E.52)

Since Yin 1= Xinyine (1) + (1 — Xinr) yine (0),
Yine = eins (1) Xins + €ine (0) (1 — Xing) + ageyar + Toym Xin (E.53)
Substituting this expression into 7pg,

Zij\il (eans (1) Xinr + €inr (0) (1 — Xinr) + ogoynr + gy Xint) (Xint — Xgaoymr)

TOWFE =

Yoty Xiar (Xanr — Xgoym)
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Yoty Xiar (Xinr — Xgoym)

by noticing that:

iM

M
Z Qg )M (XiM z)M Z Z Ag(i)M
i=1

9=1 ieNE zGNG
G

= ZagM Z XzM — Z RjMXjM = 0. (E55)
g=1 iENE JENE

Convergence of Tow rr is immediate from applying Lemma [E.2] Every cluster has

independent assignment probability of Agy;. To evaluate the denominator, observe
that, due to Lemma [E.1}

VG
g ieNg,)
1 1 1
=+ [Xa] + 175 ST EXauXju] + e Z E [Xin X;u]
g 9 GeNCH A\ {i} 9 ieNG \N
(9D k(D) o WG
1 1 1
= G tars + e Z (% +0%) (0B +05) + e Z (1% + 03) 1p
J NG men AN WG )
| MO MG, — MSDH
= o Haks + —(g(]i’;é)) (13 + 0%) (1 + o) + —22 MG(Q MO (12 + 0?) 1
g(?) g(i) g(i)
1
= e (rams + (MG — 1) (84 +03) (w5 +0B) + (Mly) — Miglhy) (W4 + %) #B)

(i)

By imposing A,, B, € {0,1} so that y% + 0% = pa as 04 = pa (1 — pa),

] 1
E [Xiar (Xins = Xgoyur)] = 3, (ams + (MGG — 1) ans + (Mg — M) ian)
g(i

pLagt

= pafip — ]\;czf (MG hay + (Mgl — MG hy) 1)
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GNH GnN
B Mgaymey T (Mg(> M), h(z))) ps
gz

Next, we proceed to the numerator:

Z ((einr(1) + Tgeyne) Xins + €ins (0) (1 — Xing)) (Xins — Xgiiyumr)

=1

M M
= Z ToomXint (Xinr — Xgym) + Z (eins (1) — einr(0)) Xins (Xins — Xgoym)
=1 =1
M —

i=1
Taking expectations of the final term, Ef\ilE [eiM(O) (XZ-M — X'g(z-)M)] = 0 is
immediate. Using previous results on the first expectation,

M

Z(Tg(i)M + e (1) — e (0))E [Xz'M (XiM — Xg(i)M)]

=1

= Z(%M(l) —yim(0))E [XiM (Xz’M - Xg(i)M)] . (E.57)

The following lemma is used to derive the two-way fixed effects estimand.

Lemma E.3.

M OH) MGOH)

b S (G’

ﬁ:ﬂf {XzMYzM} = UAUB (ZMGQHTCM Z Z TCM Z Z TeM~—— g —

g=lceM§ h=1cemH

+ MMAMB (M > ME Mgy — ZMG > MM - ZMh > MG”H%MJFZ (MENH) TcM)

g=1 cEMG h=1 ceMH

1 G (MGnH)2

oy (47 22 3 o (MEMEW — EY) 3 5 e (g - DD
g=1ceM§ g=1ceM§ 9

1 & H (MGmH)2

ot (3722 5 (MME — uE)?) < 32 5 g (g - BT
h=1ce Ml v=1ce M} h

(E.58)
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M N G (MGmH)2 H (MGmH)2 1 )
DB [KurXoar| = puanm | M =32 30 S =30 30 S+ gy 3 (4E)
i=1 9=1 ce M§ g h=1 ce MH h c

G MchH 2 1 G
iy (-3 5 L (S gy - 3 (e
g=1 CEM? 9 g=1 c
H NGNH)? 1 H
st (M3 & B (S - X ey
h=1 ce mMH h h=1 c
1 s 1 & > 1 )
oy (30 3 Y 3 )+ X’
g9=1 h=1 c

Convergence occurs by applying Lemma[E.J to the numerator and denominator of

Trwre Separately.

Proof: Let ¢ := (g,h) denote the intersection of clusters g and h. Previously, we
defined the residuals e;);(d) with respect to the cluster. Now, we define it with respect
to the cluster intersection c. To further ease notation, we use ¢ € MgG to denote that

intersection c has the G index of g. Then, ZCGMQG MENM = MgG. As before, we have:

1
Qepp = MOH Z Yinr (0)

iENGNH
1
TeM = NGNH Z (yine (1) — yine (0))
¢ iENGNH

ein(0) == yinr (0) — aciym

ein(1) == yine (1) — Qeiypmr — Teiym

The estimator in TWFE is slightly different, because the residualization is dif-
ferent. First consider the expectation of the denominator Zﬁl E [f(z X M]. The

assignment mechanism is where X;n = Agi)avBriym, where A, B are independent
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with means pu, g respectively. This means that E [X;y]| = paps.

M ~ M [ 1 ] ) M
ZE[XiMXz'M] :ZE Xi (Xi Y Z XjMWZXjM+MZXiM):|
i=1 =1

i=1 9 jeNg h jen,
v | 1 1 1

IZE XiM_W Z XiMXjM_W Z XiMXjM+MZXiMXjM
=1 | 9 jeNg h jenn j

(E.61)

For a given i, let g = g(7):

> EXiuXin) = Y E[Au] E [Buyn Bugm]

; G ; G
JENS JEN

=pa| > E[BuoauBugn] + Y E[BuwarBag]

JeNSNH jeNgG\NCG(SH

—pa| D, E[Buom]+ D E[Bueu] E [Bugu]

JENGOH JENG\NGHH

= MG paps + (My — MGS™) papi; (E.62)

C

Using this in the larger sum,

M a
1 1
> v 2 B XX = Y0 3 e (MG s + (M~ M) uasiy)
i=1""9 jeN, g=1 zENgG g
G MGNH G GNH
:ZZ C(gMMB+Z (1— A}%)MAMQB
9=1ieNg g 9=1ieNg g
G Y scal:i 2 G G N GNH 2
=> ( MG)uAquLZZMcG”Hu pE=> ) ( G)uAuB
9=1 ce M§ g 9=1 ce M§ 9=1 ceM§ g
G MGOH 2
= Z Z <X4—G)MAPJB (1= p) + Mpapsy
g=1 ce M§ g
G M 2 G JVical:a%
= papy | M= > ( ;46,) +paps (DY ( ;WG) (E.63)
9=1 ce M§ 9 9=1 ce M§ 9



Similarly,

Z i Z E [ Xin Xjm] = Z WNAMB (1= pa) + My (E.64)
h h

H
=1 ]EN}{{ h=1 CEM?

Finally,

ZE[XZMX]M] = Z E zMX]M + Z zMX]M
J

JEN§ ]ENH
- > EXw X+ Y. E[XaXu] (E.65)
JENENH FENGUNH

Observe that:

> EXauXju] = MG paps

; GNH
TENG)

M
Yo D EXawXoul =) MM paus (E.66)

=1 4 GNH
=1 jeNc(i)

Since 3 v B [Xonr Xju] = (M — MG, — M+ MC((;SH> 2,

M
Z Z E [XivXjm] = pinh Z (M — MgG(i) - Mf?(ri) + MCG(SH)
i=1 jgNGUNH i=1
e H
A L ST SIS W)
g=1

(E.67)

Evaluate the first few terms:

M G
D > EXarXpul =3 > (M5 nans + (ng = M") pan)

=1 jeNg, 9=1ieNg

Q

G
(MEHY? s + 3 3" MO (ME — MO il

L ceM§ g=1 ce M§

g
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G G

=30 (MEMY paps (1= ) + > (ME)” pap

9=1 ce M§ g=1
G G
= [Lapi (Z Z > (MEn) ) + paps (Z > (MCG”H)2)
g=1 9=1 ceM§ 9=1 ce M$
G
= Hat (Z =2 (M) ) + paps (Z (MfﬁHf)
(E.68)

h=1 c

G H
L (Z (aignmy’ um) NS ( Sy ()Y (ME”H)2>
(E.69)

Putting these results together,

G N GNH )2 G G2
3 [Sxa] = s (Mz ) (3 5
9=1 ceM§ 9 9=1 ce MG 9
H 2 H (]MGQH)2
—paps | M=) Z —paps (D D S
h=1 ce M} h=1 ce MH h

g=1 c

+

==

e (s (S 7 32 <Mf“’>2) s (S )
(32 00" 52 0 i (3 0057

=1 c

Sk

) )+ sy (o 3 U5 3 a4 3 a1’

C
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which simplifies to the expression in the lemma.

Proceeding with the numerator,

M ~ o 1 1
;E |:XiM}/;M:| :ZE YEMXZ‘M—W Z Yin Xjn — H Z YiuX M+M;Y;MXJM

=1 9 JENE jENH

(E.71)

Let’s look at the first term, using Y;n = €;nr(1) Xiar + € (0) (1 — Xonr) + oggiynr +
Tg(i)MXiM:

M M
Z E [YinXin] = Z (eins (1) + Te(oynr + Qe(iynr) pafin

i=1 i=1

= Z MEM (g + cenr) paps. (E.72)
For a given i, let g = g(4):

S ENVinXin = > E[((emr(1) + Teoynr) Xinr + eans (0) (1 — Xing) + ceqiynr) Xjna]
JENE JENE
= Z ((eiM(l) + Tc(z’)M) E [ X Xjm] + (eiM(O) + ac(i)M) paps — e (0)E [XiMXjMD
JENE
= (Q’M(l) + Te(ym — 61’M(0)) Z E [ X Xim]| + MgG (Q’M(O) + Oéc(z‘)M) HARB,
JENE

(E.73)

c(4)

where 3o E[Xin Xju] = MCC(;SH,UAMB + (MG MG”H) pap% was derived from

before. Using the notation é.p(w) = ﬁ Y ienena e (w) in the larger sum,

Z Z E zMX]M

= Z Z ( einr(1) — e (0) + Teynr) (M) ) Tpaps + (MY Mfng) LAl

9=l ieN§ g

+ M (einr(0) + cveqiynr) MAMB)
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G 2 2
MCGOH MCGQH
= (€enr (1) = €car(0) + 7enr) <<M—G)MAMB + M papy — (M—G)ﬂAMQB>
9=1 ce M§ g g
G
+)° M oy piapis (E.74)
9=1 ce M§
Similarly,
1
> 7 2 ElarXu]
i=1""h e
H GNH 2 GNH\?2
MC MC
=D > (Een(1) = eerr(0) + 7enr) << v Hams + M g — ( MH) uw%)
h=1 ce MH h h
H
- Z Z MCGQH&CM/'LA/"LB (E.75)
h:106A4f
Finally,

Y ENiXul= ) ENawXul+ Y ENXul— D E¥aXul+ Y ElYiuXu]
J JENE JENH JENENH JENGUNH

(E.76)
Using ZjeNCG(p)HE[XiMXjM] = MG papp and S ZjeNCC(’SHE[XiMXjM] =
2
>, (MCC(:SH> [aptn, observe that:

Z E[YinXjm) = Z E [(emns (1) X + i (0) (1 = Xing) + cveiynr + Teymr Xant) Xju)

; GNH ; GNH
TENCG) TN

= D ((eanr(1) + 7eopns — €ns(0)) B [WiW5) + (eaar (0) + aeqipnr) prapi)

JENGHH
= (Ce(iynr (1) = e(iynr(0) + Teyar) MG paps + ML (eeone(0) + ceqiynr) traps
= (Ee(iymr (1) + ceynr + Teynr) MG paps (E.77)
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Z Xl = Y Eerr(1) + qear + 7enr) (MST) paps (B78)

C
Let’s focus on the last term:

Z E [YinXjm) = (M — Mﬁi) - M}{{(i) + MC?SH) E [Yin] E [Xju]

FENGUNH
= (M — Mgy — Myt + MZH") E [(Xingyine (1) + (1 = Xoar) yine (0)] prapes
= (M — Mg%) — Mh( + MGQH) (sz( ) + papB (sz( ) M(O)))MAMB
(E.79)
Hence,
M

2. 2 ENwX
=1 SENFUNG
M

= HAKB Z (M - MgG(i) - Mﬁi) + MCG(SH) (Yine (0) + paps (Yinr (1) — 4ire (0)))
=1

(E.80)

To simplify this expression, observe that:
M
Z Yin (0) = Z ME™ oy
Zu%FZWZ%W%
g=1

Z MGy (0) = > (MEM) ans (E.81)

M
> Y ENwWiul = paps (M > MEMa,
1=1 c

JENGUNH

g9
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G H
- ZM!/G Z MchHO‘cM - ZM;I Z MCGOHOécM + Z (MCGOH)20¢CM>
g=1

cEMG = ceMH
+ 1Ak (MZMG”H ZMG > MMy ZMh ST MOy,
ceM§ ceMH

+ > (M) TcM) (E.82)

[

Z Z E[Yim Z Z ( einr (1) — einr(0) +Tc(i)M) (M() Happ + (M MCG(SH) ,uA,u%)

=1 jeNg 9=1ieN¢

+ M (einr(0) + cegiynr) MAMB)

G

Z (€cnr (1) — €car(0) + Tenr) ((MCGQH)Q papi + Mg M papd — (M&nH? MAM%)
G

Z MGMGWH (atens + €r(0)) prapis. (E.83)

Hence, by using é.p(w) = 0 as before,

Z ZE YinXju) = MMAMB (MZMGHHQCM + Z%M MGmH) )
Al/[ﬂAluB (MZMGQH'QM ZMG Z MGmH

g=1 CEMG
CSME S M, 3 (MO0’ %M>
h=1 meMy, c
1 G
i YD T (MEMEH — (ME0))
9=1 ce M§
1 H
s Y Y T (MEME — (MEH)?) (E.84)
h=1 meMy,

Combine the expressions to obtain the result.
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Proof of Proposition [D.2}
Under the hypothesis of the lemma, M = MgMpgk, so by applying Lemma [E.3

and simplifying terms,

M
Z]E [XZMXZM] = HAalUB (1 — UB — A + ,uA,uB) (M — Gk — Hk + k?) (E85)
=1

M
Y E [XZ-MYZ-M] = Tagpaps (1 — pp — pa + paps) (M — Gk — Hk + k) (E.86)
i=1

Then, the estimand reduces to:

" -
2 i E [XiMY;M} ~ Tapraps (1 — pp — pa + papp) (M — Gk — Hk + k)

Y E [XiMXiM} paps (1 — s — pa+ paps) (M — Gk — Hk + k)

(E.87)

Convergence occurs by decomposing (D.13]) with (D.14) then applying Lemma
to the respective terms.
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