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Abstract

We show how clustering standard errors in one or more dimensions can be
justified in M-estimation when there is sampling or assignment uncertainty.
Since existing procedures for variance estimation are either conservative or in-
valid, we propose a variance estimator that refines a conservative procedure and
remains valid. We then interpret environments where clustering is frequently
employed in empirical work from our design-based perspective and provide in-
sights on their estimands and inference procedures.

Keywords: Finite population inference; M-estimation; Cluster-robust infer-
ence; Two-way clustering; Design-based inference; Potential outcomes; Triple
differences

JEL classification: C21, C23

1 Introduction

In our survey of articles published in American Economic Review in the years 2021

and 2022, 70% of 133 articles containing empirical specifications reported some cluster-

robust standard errors. Among these papers, 12 reported two-way clustered standard
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errors. Despite the common use of cluster-robust inference in empirical work, lit-

tle guidance has been provided on the motivation for clustered standard errors and

the level of clustering for linear regressions and nonlinear estimators. Even less is

known about the formal reasoning underlying two-way clustered standard errors. In

this paper, we establish asymptotic properties of M-estimators under finite popu-

lations with potentially multiway cluster dependence, allowing for unbalanced and

unbounded cluster sizes in the limit.

We use the finite population framework for the choice of appropriate inference

because we can combine sampling-based uncertainty that arises from possibly not

observing the entire population with design-based uncertainty caused by the stochas-

tic assignment of treatment or policy variables. Following Abadie, Athey, Imbens,

and Wooldridge (2023), we distinguish between two situations that justify computing

clustered standard errors: i) cluster sampling induced by random sampling of groups

of units, and ii) cluster assignment caused by correlated assignment of “treatment”

within the same group. While Abadie et al. (2023) justify cluster-robust standard

errors for the difference-in-means estimator with one-way clustering, we generalize

their setup both in considering general M-estimators and in allowing for multiway

clustering.

We show that for conducting inference with general M-estimators, one-way clus-

tering is only necessary when there is either cluster sampling or cluster assignment,

or both on nested or same dimensions. Multiway clustering can be justified when

clustered assignment and clustered sampling occur on different dimensions, or when

either sampling or assignment is multiway clustered. The same results are also shown

for functions of M-estimators with the estimator of the average partial effect (APE)

as a leading example. In the special case of linear regression on a binary treatment

variable, one-way clustered standard errors on the assignment dimension is sufficient

under homogeneous treatment effects even if the sampling and assignment dimensions

are non-nested.

We view our main contribution as developing a framework and procedure for

design-based inference of M-estimators with multiway clustering. Within the growing

literature on design-based inference (e.g., Abadie, Athey, Imbens, and Wooldridge

(2020); Xu (2020); Athey and Imbens (2022); Abadie et al. (2023); de Chaisemartin

and Ramirez-Cuellar (2024)), there are at least four nuances that are unique to our

environment that we find from our theory and from analyzing applications of cluster-
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robust inference. First, there are special cases where two-way clustering reduces to

one-way clustering even under two-way dependence. Second, the two-way clustered

variance estimator as proposed in Cameron, Gelbach, and Miller (2011), henceforth

CGM, can be anti-conservative while standard one-way robust variance estimator

is conservative. Third, with multiple assignment variables on different clustering

dimensions, we find that in certain cases it suffices to use one-way cluster variances

on the respective dimensions. In contrast, this setting is not allowed or cannot be

discussed in one-way clustering. Fourth, beyond the special case of Abadie et al.

(2023), estimands from a fixed effects regression cannot be interpreted as the average

treatment effect in general. A broader lesson here is that cluster dependence not

only affects variance estimation in inference; it can also affect the interpretation of

estimands.

Until recently, accounting for the large sample behavior of design-based settings

with multiway clustering has been a difficult problem. Asymptotic theory for variables

that have multi-dimensional dependence has thus far relied on separate exchangeabil-

ity (e.g., Davezies, D’Haultfoeuille, and Guyonvarch (2018)). Separate exchangeabil-

ity implies that the marginal distributions of clusters are exchangeable (MacKinnon,

Nielsen, and Webb, 2021). However, by construction, separate exchangeability is vi-

olated within a design-based framework. Consider a binary assignment variable Xi.

Since the error term ui = Xiui(1)+(1−Xi)ui(0) depends on the nonstochastic poten-

tial error ui(x), even if treatments Xi are identically distributed across clusters, the

marginal distribution of ui differs because Xi is weighted differently. Hence, a limit

theory that accommodates heterogeneity of clusters and observations is required. By

building on the central limit theorem in Yap (2025), we derive results on large-sample

behavior of standard estimators in this environment.

When estimating the variance-covariance matrix, the usual variance estimators

are typically too conservative for the finite population variance-covariance matrix in

one-way clustering. However, we find that CGM can be anti-conservative and hence

the resulting test is invalid. In response to the anti-conservativeness of the CGM es-

timator in design-based settings, there are two approaches that empirical researchers

may take. The first approach is to make an assumption on how the individual treat-

ment effects are correlated within the same cluster: CGM is conservative when the

correlation is positive, which is reasonable in most applications. The second approach

is to remain agnostic and to use CGM2, a more conservative version of the CGM vari-
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ance estimator proposed by Davezies et al. (2018). Since simulations show CGM2 is

often unnecessarily conservative, we propose a simple shrinkage variance estimator re-

lying on adjustments using covariates. The probability limit of our adjusted variance

estimator is guaranteed to be no smaller than the finite population variance matrix

and provides a smaller upper bound than CGM2.

We discuss several practical settings involving clustering and justify the validity

of cluster-robust inference within a design-based framework. These examples include

a standard difference-in-means estimator, fixed effects regressions, a linear regression

on two assignment variables clustered on different dimensions, and a triple differences

estimator. (Some of these results are contained in the supplementary appendix to save

space.) We also show the performance of our proposed shrinkage variance estimators

in simulations and two empirical illustrations. Our adjusted standard errors can be

substantially smaller than CGM2 while still maintaining correct coverage.

Our paper contributes to at least three strands of literature that have gained recent

attention. First, we contribute to the literature on design-based inference (cited and

summarized above). Second, we contribute to the literature on multiway clustering

(e.g., Davezies et al. (2018); Menzel (2021); Chiang and Sasaki (2023); Yap (2025);

Chiang, Hansen, and Sasaki (2024)). To the best of our knowledge, we are the first to

consider any design-based environment with multiway clustering, which is a difficult

problem as separate exchangeability used in most multiway clustering limit theorems

does not hold in the general design-based setting. Consequently, our consistency and

normality results are new relative to the existing literature on multiway clustering.

Third, we contribute to the literature on causal panel data (e.g., De Chaisemartin and

d’Haultfoeuille (2020); Callaway and Sant’Anna (2021); Sun and Abraham (2021);

Athey and Imbens (2022); Borusyak, Jaravel, and Spiess (2024); Gardner, Thakral,

Tô, and Yap (2024); Arkhangelsky and Imbens (2024)). By using a design-based

setup, we make an assumption on assignment instead of the potential outcome as most

of these papers do with parallel trends. Considering multiway clustered assignment is

new relative to the design-based setting of Athey and Imbens (2022), and our setting

provides new insights into the interpretation of the fixed effect estimands in these

designs.
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2 Asymptotic Properties of M-estimators

2.1 Setup

Consider a sequence of finite populations indexed by population size M , where

M diverges to infinity in deriving the asymptotic properties. Suppose there are G

mutually exclusive clusters in population M defined as either the primary sampling

units in the sampling scheme or the partition in the assignment design, where each

cluster has MG
g units, g = 1, 2, . . . , G. Further, suppose the population can also

be partitioned into H mutually exclusive clusters according to either the sampling

scheme or assignment design on dimensions possibly different from that of G clusters.

Each cluster H contains MH
h units, h = 1, 2, . . . , H. We use NC

c to denote the set

of observations in the cth cluster on the C ∈ {G,H,G ∩ H} dimension, and c(i) to

denote the cluster that i belongs to on the relevant dimension. If there is only one

way of partitioning, H and G clusters coincide with each other.

Unit i within cluster g and cluster h is characterized by (XiM , ziM , YiM). The vec-

tor XiM is the vector of stochastic assignment variables, ziM is a set of non-stochastic

attributes, and YiM is the realized outcome. The categorization of assignments and

attributes depends on the empirical question. Typically, the key variables of interest

in an empirical study could be viewed as assignment variables, and the remaining

covariates as attribute variables. With the potential outcome framework, there exists

a mapping, denoted by the potential outcome function yiM(x), from the assignment

variables to the potential outcomes. For example, yiM(x) = xθ01 + ziMθ02 + eiM for

continuous outcomes, and yiM(x) = 1[xθ01 + ziMθ02 + eiM > 0] for binary outcomes,

where ziM and eiM are observed and unobserved attributes respectively.1 The poten-

tial outcome function yiM(·) is non-stochastic.2 Nevertheless, the realized outcome,

YiM = yiM(XiM), is random. Hence, the finite population setting can be understood

as a setting that conditions on the potential outcomes and attributes of theM units in

the population. We use WiM := (XiM , YiM) to denote the random vector for brevity.

We study solutions to a population minimization problem, where the estimand of

1We emphasize x as the argument of the potential outcome function because it is the only
stochastic variables in the function.

2This implies that the unobserved attributes are non-stochastic.
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interest is a k × 1 vector denoted by θ∗M :

θ∗M = argmin
θ

1

M

G∑
g=1

H∑
h=1

∑
i∈NG∩H

(g,h)

E
[
qiM(WiM , θ)

]

= argmin
θ

1

M

M∑
i=1

E
[
qiM(WiM , θ)

]
.

(1)

The expectation E in (1) is taken over the distribution of X since X is the source

of randomness here. The function qiM(·, ·) is the objective function for a single unit.

Examples include (nonlinear) least squares, weighted least squares, and maximum

likelihood estimation. The subscripts of the objective function imply its dependence

on the non-stochastic attribute variables ziM , so covariates are allowed in the model.

Interpreting this estimand is context-dependent, so we abstract from this discussion

in our general framework.

LetRiM denote the binary sampling indicator, which is equal to one if unit i is sam-

pled and zero otherwise. Hence, the sample size is N =
∑G

g=1

∑H
h=1

∑
i∈NG∩H

(g,h)
RiM =∑M

i=1RiM . The sample size is random unless the sample is population. The estimator

of θ∗M is denoted by θ̂N , which solves the minimization problem in the sample:

θ̂N = argmin
θ

1

N

G∑
g=1

H∑
h=1

∑
i∈NG∩H

(g,h)

RiMqiM(WiM , θ)

= argmin
θ

1

N

M∑
i=1

RiMqiM(WiM , θ). (2)

Our random variables are two-way clustered in that random variables for indices

i and j are independent if g(i) ̸= g(j) and h(i) ̸= h(j), formalized in the following

assumptions.

Assumption 1. The assignments are independent if units do not share any cluster,

i.e., c(i) ̸= c(j),∀ c ∈ {g, h}, but are allowed to be correlated within clusters.

Assumption 1 allows assignments to be correlated within clusters on the dimen-

sions of G,H, or both. The assignment variables XiM are not necessarily identically

distributed, which allows the assignments to depend on the fixed attributes ziM .

Although the assignment mechanism is not perfectly known in observational stud-
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ies, researchers typically impose implicit assumptions or leverage institutional knowl-

edge to infer the correlation pattern of assignment variables. This understanding is

then used to identify and estimate causal effects. Within a design-based framework,

these underlying assumptions can also support inference. Notably, only one out of

the 12 papers that reported two-way clustered standard errors in our empirical survey

is an experimental study. A design-based framework is useful for both experimental

and observational studies. For instance, Abadie et al. (2020) analyze design-based

inference for regressions without experimental data and Rambachan and Roth (2025)

develop a design-based framework suitable for analyzing quasi-experimental settings

in social sciences.

Assumption 2. With Be(ρ) denoting the Bernoulli distribution with success probabil-

ity ρ, the sampling indicator is RiM = RG
g(i)MR

H
h(i)MR

U
iM , where the random variables

RG
gM ∼ Be(ρGM), RH

hM ∼ Be(ρHM), and RU
iM ∼ Be(ρUM) are independently drawn

across g, h, i. The sequence of sampling probabilities ρGM , ρHM , and ρUM satisfies

ρlM → ρl ∈ (0, 1] for l ∈ {G,H,U}, as M → ∞ and does not vary by cluster or

units.3

Various sampling schemes are allowed under Assumption 2. When all sampling

probabilities are equal to one, we observe the entire population; when ρGM = ρHM = 1

but ρUM < 1, we have independent sampling; if the dimensions of H and G coincide

or H is nested within G without loss of generality (e.g., zip code areas nested within

counties), ρGM < 1 or ρHM < 1 implies one-way cluster sampling; lastly, if the di-

mensions of H and G differ, ρHM < 1 and ρGM < 1 implies two-way cluster sampling.

For instance, one can first sample according to occupations and industries and then

sample individuals from the chosen intersections of occupations and industries.4

Remark 1. This sampling scheme is different from one-way cluster sampling at the

intersection level. To see this, one-way clustering at the intersection level implies that

3Equivalently, we can think of the sampling scheme as consisting of two steps. In the first step,
a subset of clusters is drawn according to Bernoulli sampling at the G clustering dimension with
probability ρGM > 0; simultaneously, another subset of clusters is drawn according to Bernoulli
sampling at the H clustering dimension with probability ρHM > 0. Sampling probabilities ρGM and
ρHM do not differ across clusters. In the second step, units are independently sampled, according
to a Bernoulli trial with probability ρUM > 0, from the subpopulation consisting of all the sampled
intersections of clusters.

4Notice that zero sampling probabilities are ruled out in the limit to maintain bounded moment
conditions. A similar approach has been used by Abadie et al. (2023) in their study of one-way
clustering.
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RiM |= RjM for g(i) ̸= g(j) or h(i) ̸= h(j), which implies RiM |= RjM for some i, j with

g(i) = g(j) and h(i) ̸= h(j). However, under our sampling scheme Cov(RiM , RjM) =

E[RiMRjM ]− E[RiM ]E[RjM ] = ρGM(1− ρGM)ρ2HMρ
2
UM ̸= 0.

Assumption 3. The vector of assignments is independent of the vector of sampling

indicators.

Independent sampling and assignment processes imply Assumption 3, which rules

out sample selection due to assignment status. Cluster sizes in our theorems are

allowed to be unbalanced and unbounded in the limit. Nevertheless, in order to

apply asymptotic theory, we have assumptions that restrict cluster heterogeneity and

the growth rate of the cluster sizes relative to the population size and variances.

Assumption 4.

G∑
g=1

(MG
g )

2

M2 → 0 and

H∑
h=1

(MH
h )

2

M2 → 0 as M → ∞.

This assumption implies G,H → ∞, and rules out the case where a particular

subset of clusters dominates the population. In the results that follow, for matrices

A and B, when we say A ≥ B, we mean that A−B is positive semi-definite (PSD).

2.2 Asymptotic Distribution

2.2.1 One-way Clustering

To fix ideas, we start with the simpler case of one-way clustering. Namely, there

is only one way of partitioning so that G and H clusters coincide. Without loss of

generality, let ρHM = 1 in this case. Let miM(WiM , θ) denote the score function of

qiM(WiM , θ). The variance matrix of M-estimators is defined as

VM :=LM(θ∗M)−1V∆MLM(θ∗M)−1, (3)

where

V∆M := V

[
1√
M

M∑
i=1

RiM√
ρGMρUM

miM(WiM , θ
∗
M)

]
(4)

and

LM(θ) :=
1

M

M∑
i=1

E
[
∇θmiM(WiM , θ)

]
. (5)
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It can be shown that:

V∆M = ∆ehw,M(θ∗M) + ρUM∆cluster,M(θ∗M)− ρUMρGM∆E,M − ρUMρGM∆EC,M , (6)

where

∆ehw,M(θ) =
1

M

M∑
i=1

E
[
miM(WiM , θ)miM(WiM , θ)

′] (7)

and

∆cluster,M(θ) =
1

M

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

E
[
miM(WiM , θ)mjM(WjM , θ)

′] (8)

account for heteroskedasticity (Eicker-Huber-White (EHW)) and within-cluster cor-

relation respectively. The terms

∆E,M =
1

M

M∑
i=1

E
[
miM(WiM , θ

∗
M)
]
E
[
miM(WiM , θ

∗
M)
]′

(9)

and

∆EC,M =
1

M

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

E
[
miM(WiM , θ

∗
M)
]
E
[
mjM(WjM , θ

∗
M)
]′

(10)

are the finite population counterparts of ∆ehw,M(θ∗M) and ∆cluster,M(θ∗M).

The conventional superpopulation variance matrix is denoted by

VSM =LM(θ∗M)−1
(
∆ehw,M(θ∗M) + ρUM∆cluster,M(θ∗M)

)
LM(θ∗M)−1

=VM + ρUMρGMLM(θ∗M)−1
(
∆E,M +∆EC,M

)
LM(θ∗M)−1.

(11)

Notice that the middle part of the sandwich form of VM is different from that of VSM

due to two “extra” (E) terms ∆E,M and ∆EC,M scaled by the composite sampling

probability.

The usual cluster-robust variance estimator (CRVE) that uses the estimator from

Liang and Zeger (1986) for VSM is given by

V̂SN = L̂N

(
θ̂N)

−1
(
∆̂ehw,N(θ̂N) + ∆̂cluster,N(θ̂N)

)
L̂N(θ̂N)

−1, (12)
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where

L̂N(θ) =
1

N

M∑
i=1

RiM∇θmiM(WiM , θ), (13)

∆̂ehw,N(θ) =
1

N

M∑
i=1

RiM ·miM(WiM , θ)miM(WiM , θ)
′, (14)

and

∆̂cluster,N(θ) =
1

N

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

RiMRjM ·miM(WiM , θ)mjM(WjM , θ)
′. (15)

For one-way clustering, we use a stronger version of Assumption 4 to enhance in-

terpretability. This assumption ensures convergence at rate N−1/2 and follows Hansen

and Lee (2019). The results are extended to an arbitrary convergence rate and two-

way clustering in the next subsection.

Assumption 4′.

G∑
g=1

(MG
g )

2

M
≤ C <∞ and max

g≤G

(MG
g )

2

M
→ 0, as M → ∞.

Theorem 2.1. Under one-way clustering, Assumptions 1-3, Assumption 4′, and As-

sumption A.1 in Appendix A, (1) V
−1/2
M

√
N(θ̂N−θ∗M)

d→ N (0, Ik); (2) V
−1/2
SM V̂SNV

−1/2
SM

p→
Ik.

Theorem 2.1 shows asymptotic normality with the finite population cluster-robust

asymptotic variance (CRAV). In the variance-covariance matrices, the term ∆cluster,M(θ∗M)

is scaled by the sampling probability ρUM because of the two-stage sampling scheme.

Nevertheless, the usual CRVE, V̂SN , converges to VSM , in which the estimation of

ρUM has been accounted for.

Remark 2. Clustering is necessary if and only if there is cluster sampling (ρGM < 1)

or cluster assignment (∆cluster,M(θ∗M) ̸= ∆EC,M), or both.

The term related to clustering in the variance formula, ∆cluster,M(θ∗M)−ρGM∆EC,M ,

is zero if we have both independent sampling (ρGM = 1) and independent assignment.

Otherwise, these components in the variance must be accounted for. Hence, Remark

2 suggests that we should adjust standard errors of M-estimators for clustering at the

level of cluster sampling or cluster assignment. It generalizes the results in Abadie

et al. (2023): they prove the case for the difference-in-means estimator, while the
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remark above holds for all M-estimators with either continuous or discrete assignment

variables.

Remark 3. The superpopulation CRAV of M-estimators is no less than the finite

population CRAV, in the matrix sense.

Since the sum of the two additional terms, ∆E,M +∆EC,M , is PSD, we reach the

conclusion in Remark 3. Remark 3 together with Theorem 2.1(2) imply that the

usual CRVE is often too conservative. There are exceptions where using the usual

CRVE for inference is approximately correct, with the leading scenario summarized

in the remark below.

Remark 4. If a relatively small number of clusters is sampled from a large population

of clusters, i.e., ρGM is close to zero, or there is at most one unit sampled from each

cluster, i.e., ρUM is close to zero, then it is approximately correct to use the usual

CRVE of M-estimators for inference.

Another special case for the usual CRVE to be correct for inference is when ∆E,M+

∆EC,M = 0, which is true if either E
[
miM(WiM , θ

∗
M)
]
= 0, ∀ i = 1, . . . ,MG

g , g =

1, . . . , G or
∑

i∈NG
g
E
[
miM(WiM , θ

∗
M)
]
= 0, ∀ g = 1, . . . , G. The former is true for the

variance of the coefficient estimator on the assignment variables under the sufficient

conditions provided by Abadie et al. (2020), including constant treatment effects and

other linearity conditions. The latter holds if the finite population is composed of

repetitions of the smallest cluster. With this kind of data structure, θ∗M that solves

E
[∑G

g=1

∑
i∈NG

g
miM(WiM , θ

∗
M)
]
= 0 is also the solution to E

[∑
i∈NG

g
miM(WiM , θ

∗
M)
]
=

0 for each cluster g. However, these kinds of special cases rarely hold in practice.

Sometimes, we are interested in the functions of M-estimators rather than M-

estimators themselves. Let fiM(WiM , θ
∗
M) be a q×1 function ofWiM and θ∗M . Suppose

we wish to estimate γ∗M = 1
M

∑M
i=1 E

[
fiM(WiM , θ

∗
M)
]
. As an example, γ∗M could be

the APE from nonlinear models, where f(·, ·) is some partial derivative for continuous

variables or some difference function for discrete variables.

Let γ̂N = 1
N

∑M
i=1RiMfiM(WiM , θ̂N) be the estimator of γ∗M . Denote the finite

population variance matrix by

Vf,M = ∆f
ehw,M + ρUM∆f

cluster,M − ρUMρGM∆f
E,M − ρUMρGM∆f

EC,M . (16)

The superpopulation variance matrix is then Vf,SM = ∆f
ehw,M + ρUM∆f

cluster,M . And
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the usual CRVE is denoted by V̂f,SN = ∆̂f
ehw,N +∆̂f

cluster,N . The detailed definition of

each term can be found in Appendix A.

Theorem 2.2. Under one-way clustering, Assumptions 1-3, Assumption 4′, and

Assumptions A.1-A.2 in Appendix A, (1) V
−1/2
f,M

√
N(γ̂N − γ∗M)

d→ N (0, Iq); (2)

V
−1/2
f,SM · V̂f,SN · V −1/2

f,SM

p→ Iq.

Theorem 2.2 shows that the conservative property of the usual CRVE of M-

estimators also applies to the usual CRVE of any functions of M-estimators.

2.2.2 Two-way Clustering

Now, suppose the H and G clusters are partitioned on different dimensions. The

variance matrix of M-estimators is defined as

VTWM :=LM(θ∗M)−1V∆TWMLM(θ∗M)−1, (17)

where

V∆TWM := V

[
1√
M

M∑
i=1

RiM√
ρGMρHMρUM

miM(WiM , θ
∗
M)

]
. (18)

By grouping the cross products of score functions into different cases: individual

units (∆ehw,M(θ∗M)), units belonging to the intersection of G and H (∆(G∩H),M(θ∗M)),

units belonging to G but in different H’s (∆G,M(θ∗M)), and units belonging to H but

in different G’s (∆H,M(θ∗M)), it can be shown that:

V∆TWM =∆ehw,M(θ∗M) + ρUM∆(G∩H),M(θ∗M)

+ ρUMρHM∆G,M(θ∗M) + ρUMρGM∆H,M(θ∗M)

− ρUMρGMρHM∆E,M − ρUMρGMρHM∆E(G∩H),M

− ρUMρGMρHM∆EG,M − ρUMρGMρHM∆EH,M

(19)

where

∆(G∩H),M(θ) =
1

M

G∑
g=1

H∑
h=1

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g,h)
\{i}

E
[
miM(WiM , θ)mjM(WjM , θ)

′], (20)
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∆E(G∩H),M =
1

M

G∑
g=1

H∑
h=1

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g,h)
\{i}

E
[
miM(WiM , θ

∗
M)
]
E
[
mjM(WjM , θ

∗
M)
]′
,

(21)

∆G,M(θ) =
1

M

G∑
g=1

H∑
h=1

H∑
h′ ̸=h

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g,h′)

E
[
miM(WiM , θ)mjM(WjM , θ)

′], (22)

∆EG,M =
1

M

G∑
g=1

H∑
h=1

H∑
h′ ̸=h

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g,h′)

E
[
miM(WiM , θ

∗
M)
]
E
[
mjM(WjM , θ

∗
M)
]′
, (23)

∆H,M(θ) =
1

M

H∑
h=1

G∑
g=1

G∑
g′ ̸=g

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g′,h)

E
[
miM(WiM , θ)mjM(WjM , θ)

′], (24)

and

∆EH,M =
1

M

H∑
h=1

G∑
g=1

G∑
g′ ̸=g

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g′,h)

E
[
miM(WiM , θ

∗
M)
]
E
[
mjM(WjM , θ

∗
M)
]′
. (25)

As in one-way clustering, ∆E(G∩H),M , ∆EG,M , and ∆EH,M are the finite population

counterparts of ∆(G∩H),M(θ∗M), ∆G,M(θ∗M), and ∆H,M(θ∗M), respectively.

The two-way superpopulation cluster-robust asymptotic variance is:

VTWSM =LM(θ∗M)−1
(
∆ehw,M(θ∗M) + ρUM∆(G∩H),M(θ∗M)

+ ρUMρHM∆G,M(θ∗M) + ρUMρGM∆H,M(θ∗M)
)
LM(θ∗M)−1

=VTWM + ρUMρGMρHMLM(θ∗M)−1
(
∆E,M +∆E(G∩H),M +∆EG,M +∆EH,M

)
LM(θ∗M)−1.

(26)

Our normality result for M-estimators with two-way clustering uses the following

assumption.

Assumption 5. Let λmin(·) denote the smallest eigenvalue. With λM :=Mλmin(V∆TWM),

and for some C <∞, we have 1
λM

maxg(M
G
g )

2 → 0, 1
λM

maxh(M
H
h )2 → 0, 1

λM

∑
g(M

G
g )

2 ≤
C, and 1

λM

∑
h(M

H
h )2 ≤ C as M → ∞.

Assumption 5 ensures that the overall variance is not driven by a few large clusters.

A stronger way of stating Assumptions 4 and 5 is that 1
M

G∑
g=1

(
MG

g

)2 ≤ C < ∞ and

max
g≤G

(MG
g )

2

M
→ 0, as M → ∞ with an analogous condition in the H dimension where

13



λM ≥ cM for some c > 0. This assumption is more similar to the setting of Hansen

and Lee (2019), but rules out two-way balanced clusters where there is one unit in

every intersection: if there are G clusters on both the G and H dimensions, then

M = G2 so 1
M

G∑
g=1

(
MG

g

)2
= G3/G2 = G → ∞. Assumption 4 as stated makes no

such restriction as 1
M2

G∑
g=1

(
MG

g

)2
= G3/G4 = 1/G → 0. With more flexible cluster

sizes, the convergence rate depends on the variance of the sum, which motivates

Assumption 5. The stronger version of the assumption only allows a convergence

rate of M−1/2, which is not necessarily true in the weaker version. For instance, the

weaker version can allow a slower convergence rate of (
∑G

g=1(M
G
g )

2/M2)−1/2 = G−1/2

instead of M−1/2 = G−1. Since we can allow for different convergence rates, we use

the scale λM to restrict cluster heterogeneity in Assumption 5 to obtain normality.

Theorem 2.3. Under Assumptions 1-5 and Assumption A.3 in Appendix A, V
−1/2
TWM

√
N(θ̂N−

θ∗M)
d→ N (0, Ik).

The proof of this theorem is largely analogous to Theorem 2.1, just that we apply

the central limit theorem (CLT) from Yap (2025) instead of Hansen and Lee (2019).

Chiang and Sasaki (2023) (Table 1) pointed out that the two-way cluster-robust stan-

dard errors are usually valid. A notable exception is when the additive components

are degenerate, such that the random variable can be written as Dit = αiγt, where

αi, γt are cluster-specific random variables on the respective dimensions. As noted in

Remark 1 of Yap (2025), this data generating process (earlier pointed out by Menzel

(2021)) is ruled out by our summability condition in Assumption 5.

Remark 5. VTWM reduces to VM (i.e., the one-way CRAV) if (i) ρHM = 1 and

∆H,M(θ∗M) = ∆EH,M or (ii) ρGM = 1 and ∆G,M(θ∗M) = ∆EG,M .

Remark 5 coupled with Remark 2 imply that two-way clustering is only justified

if there is (i) two-way clustered sampling (i.e., ρGM < 1 and ρHM < 1); (ii) two-way

clustered assignments (i.e., ∆G,M(θ∗M) ̸= ∆EG,M and ∆H,M(θ∗M) ̸= ∆EH,M); or (iii)

clustered sampling and clustered assignments on different dimensions. For the third

case, there could be many combinations of sampling schemes and assignment designs,

possibly combining two-way sampling and two-way assignments at the same time.

One important implication of Remark 5 is that researchers may report two-way

clustered standard errors more frequently than necessary in their empirical studies. It

14



is essential for researchers to understand the sampling scheme and carefully consider

the assignment pattern when deciding which robust inference method to apply. Our

analysis is not only relevant for identifying the appropriate level of clustering when

two-way clustering is required but is also crucial for determining whether the use of

any two-way clustered standard errors is justified.

Remark 6. In a special case, G and H clusters could be partitioned at different but

nested levels. Without loss of generality, suppose H clusters are nested in G clusters.

The variance-covariance matrix can be simplified to be

VTWM =LM(θ∗M)−1
(
∆ehw,M(θ∗M) + ρUM∆(G∩H),M(θ∗M) + ρ1M∆G,M(θ∗M)

− ρ2M∆E,M − ρ2M∆E(G∩H),M − ρ2M∆EG,M

)
LM(θ∗M)−1,

(27)

where (i) ρ1M = ρUMρHM and ρ2M = ρUMρGMρHM for nested sampling; (ii) ρ1M =

ρ2M = ρUM for nested assignment; (iii) ρ1M = ρUM and ρ2M = ρUMρGM for sam-

pling at the G level and assignment at the H level; (iv) ρ1M = ρ2M = ρUMρHM for

assignment at the G level and sampling at the H level. As a consequence, one-way

clustering at the higher level G is sufficient.

Remark 7. In the special case of the difference-in-means estimator, which is equiva-

lent to linear regression on a constant and a binary treatment variable, the score has

mean zero for all observations when there are constant treatment effects. If there is

clustered sampling on dimension G and clustered assignment on dimension H, where

G and H are non-nested, then it suffices to cluster on the assignment dimension H. To

see this, since E[miM(WiM , θ)] = 0 for all i, the difference between V∆TWM and one-

way cluster-robust variance on H is 1
M

∑
i

∑
j∈NG

g(i)
\NH

h(i)
E[miM(WiM , θ)mjM(WjM , θ)].

Since E[miM(WiM , θ)mjM(WjM , θ)] = E[miM(WiM , θ)]E[mjM(WjM , θ)] when i, j do

not share a H cluster, the difference is zero.

While the usual variance estimators are conservative for the finite population

variance-covariance matrix in one-way clustering, the usual variance estimator is

not necessarily conservative with multiway clustering. We denote the usual two-way

cluster-robust variance estimator proposed in Cameron et al. (2011) (CGM) by

V̂CGM = L̂N

(
θ̂N)

−1
(
∆̂ehw,N(θ̂N) + ∆̂G,N(θ̂N) + ∆̂H,N(θ̂N)− ∆̂G∩H,N(θ̂N)

)
L̂N(θ̂N)

−1,

(28)
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where

∆̂C,N(θ) =
1

N

∑
c

∑
i∈NC

c

∑
j∈NC

c \{i}

RiMRjM ·miM(WiM , θ)mjM(WjM , θ)
′, (29)

for C ∈ {G,H,G ∩H}.
For variance estimators to converge to the variance-covariance matrices in the

general environment, we impose an additional assumption.

Assumption 6. For C,C ′ ∈ {G,H},
let λCM := λmin

(∑M
i=1

∑
j∈NC

c(i)
E[RiMRjMmiM(WiM , θ

∗
M)mjM(WjM , θ

∗
M)′]

)
. Then,

(λCM)−1maxc′(M
C′

c′ )
2 = o(1) and (λCM)−1

∑
c′(M

C′

c′ )
2 = O(1).

The condition in Assumption 6 is required in the following propositions so that

the asymptotic error incurred by using the matrix estimator V̂ relative to the true

matrix V converges to zero. The difference between Assumption 6 and the existing

assumptions is that the previous assumptions defined λM as the variance of the sum,

which includes all two-way clustered terms, but here, λCM only includes terms from one

of the two dimensions. Since the strategy for showing such convergence is similar to

Yap (2025), an analogous summability condition and a condition on the largest cluster

having a negligible contribution to the variance are required. Since Assumption 6 only

accounts for one-way clustering in the denominator, Assumption 6 is stronger than

Assumption 5.5

Proposition 2.1. Under Assumptions 1-4, Assumption 6, and Assumption A.3 in

Appendix A, V
−1/2
TWSM V̂CGMV

−1/2
TWSM

p→ Ik. However, VTWSM could be smaller than

VTWM in the matrix sense.

The difference in the meat of the variance sandwich between VTWSM and VTWM

is ρUMρGMρHM(∆E,M +∆E(G∩H),M +∆EG,M +∆EH,M). Notice that the sum of the

5Assumption 6 in its present form requires that the cluster correlation on each clustering dimen-
sion be of comparable scale. However, Propositions 2.1 and 2.2 hold even when the cluster correlation
on one dimension is negligible compared to the other, as the proof only requires the condition to
hold for the denominator λC

M where C is the cluster dimension with correlation that is not negligible.
Nonetheless, Assumption 6 is required in Theorem 3.3 as we are shrinking the dimensions separately
for CGM2, so in order for the proof strategy in Yap (2025) to apply, we require the variances to be
of the same order. To ensure consistency across sections, we impose the stronger assumption.
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first three terms within the parentheses

∆E,M+∆E(G∩H),M+∆EG,M =
1

M

G∑
g=1

∑
i∈NG

g

E
[
miM(WiM , θ

∗
M)
]∑

i∈NG
g

E
[
miM(WiM , θ

∗
M)
]′

is PSD. ∆EH,M , on the other hand, cannot be written in quadratic form and is

therefore not guaranteed to be PSD by its definition. As a result, the difference

between the superpopulation and finite population two-way cluster robust variance

matrices can be positive or negative in general (in the matrix sense).

Above, we show that the probability limit of the CGM variance estimator can

be smaller than the finite population two-way cluster robust variance, which is a

population property. The anti-conservativeness results from the subtraction of the

correlation terms within intersection clusters ∆̂G∩H,N(θ̂N). Correspondingly, in finite

samples the CGM variance estimator may not be PSD and can numerically be nega-

tive, a result acknowledged in Cameron et al. (2011).6 In Example B.1 in Appendix

B, we give an example where VTWSM is anti-conservative, and report a related sim-

ulation where V̂CGM has a coverage rate that is less than the nominal rate in Table

8.

If all within-cluster correlations of E[miM(WiM , θ
∗
M)] are positive, then V̂CGM is

still a conservative variance estimator. Davezies et al. (2018) propose an alternative

variance estimator that does not adjust for double counting the intersection clusters.

Let

V̂CGM2 = L̂N

(
θ̂N)

−1
(
2∆̂ehw,N(θ̂N) + ∆̂G,N(θ̂N) + ∆̂H,N(θ̂N)

)
L̂N(θ̂N)

−1 (30)

and
VTWSM2 =LM(θ∗M)−1

(
2∆ehw,M(θ∗M) + 2ρUM∆(G∩H),M(θ∗M)

+ ρUMρHM∆G,M(θ∗M) + ρUMρGM∆H,M(θ∗M)
)
LM(θ∗M)−1.

(31)

Proposition 2.2. Under Assumptions 1-4, Assumption 6, and Assumption A.3 in

Appendix A, V
−1/2
TWSM2V̂CGM2V

−1/2
TWSM2

p→ Ik. VTWSM2 is guaranteed to be no smaller

than VTWM in the matrix sense.

Hence, in contrast to CGM, CGM2 is asymptotically conservative.

6Let Ni = NG
g(i)∪NH

h(i). When considering E
[
miM (WiM , θ∗M )

]
as the analog of an observation, if∑

i

∑
j∈Ni

WiMW ′
jM need not be PSD, then

∑
i

∑
j∈Ni

E
[
miM (WiM , θ∗M )

]
E
[
mjM (WjM , θ∗M )

]′
also

need not be PSD.
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3 Proposed Variance Estimation

Even though we restore conservativeness of the usual variance estimator by us-

ing V̂CGM2, it can be too conservative. The terms in the usual CRAV can be

estimated in the standard way. Taking one-way clustering as an example, it is

more challenging to estimate the two extra terms, ∆E,M and ∆EC,M appearing in

(6), because E
[
miM(WiM , θ

∗
M)
]
is generally non-identifiable due to the missing data

problem of the potential outcome framework. For instance, with a binary assign-

ment variable, E
[
miM(WiM , θ

∗
M)
]
= P (XiM = 1) ·miM

(
(1, yiM(1)), θ∗M

)
+ P (XiM =

0) ·miM

(
(0, yiM(0)), θ∗M

)
, and we do not observe both yiM(0) and yiM(1) at the same

time. This observation motivates a simple method to estimate a bound on these ex-

tra terms such that the corrected variance estimators are still conservative, but are

smaller than the one-way CRVE or CGM2.

The variance estimator depends on the sampling and assignment schemes. If the

cluster variance matrix is purely induced by sampling, then ∆EC,M = ∆cluster,M , which

can be consistently estimated, as ∆̂cluster,N consistently estimates ρUM∆cluster,M . Then,

it remains to identify a lower bound of ∆E,M . On the other hand, if there is cluster

assignment, we have to identify a lower bound of ∆E,M + ∆EC,M jointly. Similarly,

if there is cluster sampling on the G dimension but cluster assignment on the H di-

mension, we only need to adjust for the H dimension. If there are multiway cluster

assignments, we need to adjust for both dimensions.

We first discuss estimating the ∆E,M component defined in (9). We can elimi-

nate part of ∆E,M by employing the regression-based approach outlined below, which

involves partially predicting the expected value of the score functions using the co-

variates ziM . Notice that this set of covariates may be identical to the ziM used in

Section 2 to identify the estimand, or it may be a subset of that set. Consider the

estimator,

∆̂Z
N =

1

N

M∑
i=1

RiMK̂
′
Nz

′
iMziMK̂N , (32)

where K̂N =
( M∑

i=1

RiMz
′
iMziM

)−1
[

M∑
i=1

RiMz
′
iMmiM(WiM , θ̂N)

′
]
. With clustered data,

we can include cluster dummies as regressors in the linear projection ofmiM(WiM , θ̂N)

onto the fixed attributes.

Theorem 3.1. In addition to Assumptions 1-4 and Assumption A.3 in Appendix A,
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assume that (i) limM→∞
1
M

∑M
i=1 z

′
iMziM is nonsingular; (ii) sup

i,M
∥ziM∥ < ∞. Then

0 ≤ ∆Z
M ≤ ∆E,M , where

∥∥∥∆̂Z
N −∆Z

M

∥∥∥ p→ 0 (all inequalities are in the matrix sense).

This theorem holds for both one-way and two-way clustering. Under one-way

clustered sampling but independent assignment, the estimator for an upper bound

of the finite population CRAV is given in Case 1 of Table 1 below, where GN is the

number of clusters in the sample. The composite sampling probability ρUMρGM can

be estimated by N/M , where the population size M is assumed to be known. If the

entire population is observed, ρUMρGM is simply one. We ignore the Hessian matrix

as it does not affect the discussion here. This estimator is asymptotically conservative

because ∆Z
M ≤ ∆E,M .

Next, we turn to ∆E,M+∆EC,M . We could summiM(WiM , θ̂N) within each cluster,

and linearly project
∑

i∈NG
g
RiMmiM(WiM , θ̂N) onto the fixed attributes. The number

of observations in the linear projection is the number of clusters in the sample. To

reduce the dimensionality of the regressors, the fixed attributes can also be summed

within clusters as one way of aggregation. As a result,
∑

i∈NG
g
E
[
miM(WiM , θ

∗
M)
]
can

be partially estimated by its predicted value from the linear projection.7 Let

z̃gM =
∑
i∈NG

g

ziM , (33)

ˆ̃zgM =
∑
i∈NG

g

RiMziM , (34)

m̃gM(θ) =
∑
i∈NG

g

miM(WiM , θ), (35)

ˆ̃mgM(θ) =
∑
i∈NG

g

RiMmiM(WiM , θ), (36)

and

P̂N =

( G∑
g=1

ˆ̃z′gM ˆ̃zgM

)−1( G∑
g=1

ˆ̃z′gM ˆ̃mgM(θ̂N)
′
)
. (37)

7As the sample size in the linear projection is the number of clusters, there could be more
covariates than the sample size. The linear projection is credible when the dimension of the covariates
is not too high. Therefore, practitioners should carefully select a subset of covariates to achieve a
tighter upper bound on the finite population variance. Potentially, high-dimensional regression
techniques could be applied. Since we do not propose a sharp upper bound for the finite population
variance, the optimal choice of covariates for prediction is left as future research.
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Case Cluster Sampling Cluster Assignment Variance Estimator

1 ✓ × ∆̂ehw,N + (1−GN/G) · ∆̂cluster,N −N/M · ∆̂Z
N

2 × ✓ ∆̂ehw,N + ∆̂cluster,N −N/M · ∆̂Z
CE,N

3 ✓ ✓ ∆̂ehw,N + ∆̂cluster,N −N/M · ∆̂Z
CE,N

4 × × ∆̂ehw,N −N/M · ∆̂Z
N

Table 1: Variance Estimators for One-Way Clustering

Estimate ∆E,M +∆EC,M with

∆̂Z
CE,N =

1

N

G∑
g=1

P̂ ′
N
ˆ̃z′gM ˆ̃zgM P̂N . (38)

Theorem 3.2. In addition to Assumptions 1-3, Assumption 4′, and Assumption

A.1 in Appendix A, suppose that (i) limM→∞
1

λG
M

∑G
g=1 z̃

′
gM z̃gM is nonsingular, where

λGM is a scaling factor defined in the appendix; (ii) sup
i,M

∥ziM∥ < ∞; (iii) ρUM =

1; (iv) we have one-way clustering. Then 0 ≤ ∆Z
CE,M ≤

(
∆E,M + ∆EC,M

)
, where∥∥∥∆̂Z

CE,N −∆Z
CE,M

∥∥∥ p→ 0 (all inequalities are in the matrix sense).

Theorem 3.2 proposes an easy way to partially remove ∆E,M + ∆EC,M all at

once with one-way clustering, and ∆̂Z
CE,N is PSD. In this case, we require no within-

cluster sampling but allow for sampling at the cluster level.8 With large samples,

even though the limit of the adjusted finite population CRVE is still conservative (as

∆Z
CE,M ≤

(
∆E,M +∆EC,M

)
), it is less conservative than the limit of the usual CRVE.

We list all possible cases of sampling and assignment and their corresponding ad-

justed variance estimators in Table 1 for one-way clustering. Case 4 reduces exactly to

the approach in Abadie et al. (2020) for linear regression. While they take the square

of the difference between the score and the predicted score as their estimator, their

approach is numerically equivalent to taking the difference of the second moments as

we propose.9

8This requirement is reflected as ρUM = 1 in the theorem, so Theorem 3.2 is not an immediate
analog of Theorem 3.1. In Theorem 3.1, sampling is allowed because we have a sum over units, so
scaling by N is sufficient for the sum. In contrast, when we sum over squares of cluster sums, the
sampling scale for i = j is different from the sampling scale for i ̸= j, so scaling by N in (38) is
insufficient to obtain its population analog — an issue that does not arise when ρUM = 1.

9Our approach is fundamentally different from the proposal in Abadie et al. (2023). They split
the data into subsamples and directly estimate the finite population variance, while our approach
here shrinks the variance using information from covariates. All cluster sizes need to diverge in their
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A similar shrinkage procedure can be applied to two-way clustering with CGM2

since the additively separable one-way cluster objects can be shown to converge to

their limit even with multiway dependence. The variance estimator after adjustment

is still conservative for the finite population two-way CRAV in (19). To be precise,

let:

P̂G,N =

( G∑
g=1

z̃′gM z̃gM

)−1( G∑
g=1

z̃′gMm̃gM(θ̂N)
′
)
, (39)

P̂H,N =

( H∑
h=1

z̃′hM z̃hM

)−1( H∑
h=1

z̃′hMm̃hM(θ̂N)
′
)
, (40)

∆̂Z
GE,N =

1

M

G∑
g=1

P̂ ′
G,N z̃

′
gM z̃gM P̂G,N , (41)

and

∆̂Z
HE,N =

1

M

H∑
h=1

P̂ ′
H,N z̃

′
hM z̃hM P̂H,N . (42)

Theorem 3.3. In addition to Assumptions 1-4, Assumption 6, and Assumption A.3

in Appendix A, suppose that (i) limM→∞
1

λG
M

∑G
g=1 z̃

′
gM z̃gM is nonsingular, where λGM

is a scaling factor defined in the appendix; (ii) sup
i,M

∥ziM∥ < ∞; (iii) ρUM = ρGM =

ρHM = 1; (iv) the variance order condition (A.9) in Appendix A holds. Then, for C ∈
{G,H}, 0 ≤ ∆Z

CE,M ≤
(
∆E,M+∆EC,M+∆E(G∩H),M

)
, where

∥∥∥(∆Z
CE,M)−1

(
∆̂Z

CE,N −∆Z
CE,M

)∥∥∥ p→
0 (all inequalities are in the matrix sense). Further, either∥∥∥(ρUMρHM∆G,M (θ∗M ) + ρUM∆G∩H,M (θ∗M ) + ∆ehw,M (θ∗M ))−1

(
∆̂G∩H,N (θ̂N ) + ∆̂ehw,N (θ̂N )

)∥∥∥ p→ 0 or∥∥∥(ρUM∆G∩H,M (θ∗M ) + ∆ehw,M (θ∗M ))−1(
∆̂G∩H,N (θ̂N ) + ∆̂ehw,N (θ̂N )− ρUM∆G∩H,M (θ̂N )−∆ehw,M (θ̂N )

)∥∥∥ p→ 0.

When adjusting the variance matrix estimator with two-way clustering, we use

the entire population.10 Theorem 3.3 also provides formal guarantees that the cluster

estimators for the intersection of G and H either converge to their estimand or are

approach, which is not required here. We also allow for constant assignment within clusters, which
is ruled out by Abadie et al. (2023).

10This requirement is reflected as ρGM = ρHM = ρUM = 1 in the theorem. The consideration here
is similar to Theorem 3.2. With the given adjustment, three different sampling scales are required:
one for i = j, one for i and j sharing both g and h, and another when i and j share a cluster on one
dimension but not another.
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Case Environment Variance Estimator

1 Both Sampling Only
∆̂ehw,N + (1−GN/G) · (∆̂G,N − ∆̂G∩H,N)

+(1−HN/H) · (∆̂H,N − ∆̂G∩H,N)

+(1−GN/G ·HN/H) · ∆̂G∩H,N −N/M · ∆̂Z
N

2 Both Assignment 2∆̂ehw,N + ∆̂G,N + ∆̂H,N −N/M ·
(
∆̂Z

GE,N + ∆̂Z
HE,N

)
Table 2: Variance Estimators for Two-Way Clustering

negligible based on the scale of the cluster correlation on different clustering dimen-

sions.

Table 2 summarizes our proposed variance estimators for multiway sampling or

multiway assignment (Hessian matrix is ignored here). HN and GN are the number

of clusters in the sample on the dimensions of H and G respectively. We expect cases

2 and 3 in Table 1 and case 2 in Table 2 to be the leading cases in empirical practice.

Remark 8. If all cluster sizes are unbounded, we can allow for sampling. The proof

would be constructed first showing that the within-cluster sample average of ziM con-

verges to its within-cluster population average. The adjusted cluster variance estima-

tor ∆̂Z
CE,N in (38) must then be further divided by certain sampling probability. Since

our assumptions do not imply that all cluster sizes are unbounded in general, we omit

this case from our theorem. Nonetheless, its adjustment is presented in Table 2, where

two-way clustered assignment can be combined with sampling.

In the context of doing inference for functions of M-estimators, we can also apply

the same techniques to estimate the two extra terms, ∆f
E,M and ∆f

EC,M in (16). The

only difference is that the dependent variables in the regression-based approach would

be the cluster sum of

fiM(WiM , θ̂N)− γ̂N − F̂N(θ̂N)L̂N(θ̂N)
−1miM(WiM , θ̂N) (43)

rather than miM(WiM , θ̂N) alone. (See the details of the notation in Appendix A.)

The results for multiway clustering can be derived in a similar fashion and hence are

omitted here.
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4 Simulation

In this section, we compare the Monte Carlo standard deviation of the coefficient

estimator and the APE estimator of the assignment variable in a binary response

model with a set of different standard errors. We are mainly interested in the finite

sample performance of the proposed shrinkage variance estimators. As a leading case

in empirical practice, we focus on (multiway) clustered assignment with the entire

population observed.

In the population generating process, there is a single assignment variable XiM ∈
{0, 1} and a single attribute variable ziM = zg(i)M+zh(i)M , where zhM = ±1 with equal

probability and zgM = ±1 with equal probability in the design of two-way clustered

assignment, and zgM = ±2 with equal probability in the design of one-way clustered

assignment. The potential outcome of a binary response is generated as

yiM(x) = 1[x+ 2ziM · x+ eiM > 0]. (44)

The idiosyncratic unobservable eiM is the residual from regressing random realization

of a standard normal distribution on ziM . The data of ziM and eiM are generated

once and kept fixed in the population M .

We partition the population units into 50 clusters each on the two dimensions G

and H with one unit for every (g, h) cluster pair. As a result, the population size is

2,500. The results for 100 clusters on both dimensions are similar and hence omitted

to save space.

The assignment variable XiM = Ag(i)Bh(i), where Ag and Bh are binary cluster

assignment variables drawn independently with P (Ag = 1) = P (Bh = 1) = 1/2,

∀ g = 1, 2, . . . , G and h = 1, 2, . . . , H. Therefore, the assignments are clustered at

both the G and H dimensions. For the case of one-way cluster assignment, we fix

Bh = 1. There are 10,000 replications for both designs. For each replication, XiM is

re-assigned according to the assignment rules above.

Estimates from the pooled probit regression of YiM on 1, XiM , and ziM are dis-

played in Table 3 below. Columns (1) and (2) collect results for one-way cluster

assignment and columns (3) and (4) show results for two-way cluster assignment.

The first two rows of Table 3 report the Monte Carlo standard deviation of the

point estimates and the coverage rate of the 95% confidence interval based on the

oracle standard error, i.e., Monte Carlo standard deviation. The oracle coverage rates
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are very close to the nominal level of 95%. Thus, normal approximation seems to work

well in finite samples. The next two rows report the average superpopulation EHW

standard errors and the corresponding coverage rate of the 95% confidence interval.11

The EHW standard errors are too small and the confidence interval undercovers as

expected.

For one-way clustered assignment, we focus on one-way cluster-robust standard

errors at the level G. Here, we demonstrate how our shrinkage variance estima-

tors work in finite samples. For two-way clustered assignment, we report results on

both one-way cluster-robust and two-way cluster-robust standard errors. All reported

standard errors are averages across replications.

The adjusted one-way clustered standard errors at the level G are more than

half smaller than the superpopulation one-way clustered standard errors, though

still above the Monte Carlo standard deviation under one-way clustered assignment.

Switching to two-way clustered assignment, the adjusted one-way clustered standard

errors are both too small. The two-way clustered standard errors for both CGM and

CGM2 estimators work well in this population generating process. There is slight

downward bias of the adjusted CGM standard errors. The adjusted CGM2 standard

errors are larger but are guaranteed to be conservative.

We conclude from the simulation results that the usual superpopulation one-way

cluster-robust standard errors and the two-way CGM2 cluster-robust standard errors

are overly conservative. When there are fixed attributes available, they can be used

to estimate an upper bound of the finite population CRAV. Although the adjusted

finite population cluster-robust standard error is still conservative, it often improves

over the usual cluster-robust standard error. In particular, our adjusted standard

errors are 40% smaller than CGM while still maintaining correct coverage.

5 Clustering in Practice

In this section, we discuss some empirical settings where two-way clustered standard

errors have been considered. The first example on two assignment variables clustered

on different dimensions is an example where two-way clustering is unnecessary while

the second example on triple differences is an example where two-way clustering

11The 97.5th percentile of t(G − 1) is used as the critical value in constructing the confidence
intervals.
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Table 3: Standard Errors and Coverage Rates for Pooled Probit

One-way Assignment Two-way Assignment

APE Coefficient APE Coefficient
(1) (2) (3) (4)

SD 0.0225 0.0643 0.0397 0.1065
Cov (Oracle) (0.953) (0.953) (0.952) (0.952)
EHW 0.0185 0.0531 0.0220 0.0581
Cov (EHW) (0.918) (0.918) (0.755) (0.748)
One-way (G) 0.0591 0.1716 0.0446 0.1187
Cov (G) (1.000) (1.000) (0.972) (0.973)
One-way adj (G) 0.0260 0.0752 0.0294 0.0792
Cov (G, adj) (0.993) (0.994) (0.876) (0.879)
One-way (H) - - 0.0481 0.1284
Cov (H) - - (0.982) (0.983)
One-way adj (H) - - 0.0321 0.0867
Cov (H, adj) - - (0.909) (0.912)
Two-way CGM - - 0.0620 0.1655
Cov (CGM) - - (0.997) (0.998)
CGM adj - - 0.0377 0.1022
Cov (CGM, adj) - - (0.955) (0.957)
Two-way CGM2 - - 0.0658 0.1756
Cov (CGM2) - - (0.999) (0.999)
CGM2 adj - - 0.0437 0.1180
Cov (CGM2, adj) - - (0.980) (0.981)

1 Columns (1) and (2) collect superpopulation and adjusted finite population
standard errors and the coverage rates of the 95% confidence interval based
on these standard errors for the APE and coefficient estimators on X under
one-way clustered assignment; Columns (3) and (4) report the same set of
statistics under two-way clustered assignment.

2 “SD” stands for the standard deviation of the point estimates across 10,000
replications; “Oracle” stands for the coverage rate of the 95% confidence
interval based on the Monte Carlo standard deviation; “EHW” stands for
the superpopulation heteroskedasticity-robust standard errors; “One-way
(C), C ∈ {G,H}” stands for the superpopulation one-way cluster-robust
standard errors clustered at the level C; “Two-way” stands for the two-way
cluster-robust standard errors at both levels of G and H, using either CGM
or CGM2 estimator; “adj” stands for the adjusted finite population standard
errors; the columns below each standard error report the corresponding
coverage rates.
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could be necessary. Additionally, in our supplementary appendix, we consider the

simple example of a difference-in-means estimator under multiway clustering and

homogeneous treatment effect. We also examine its associated extension to fixed

effects. We find that clustered assignment changes the interpretation of the fixed

effects estimand in that the estimand cannot be interpreted as the average treatment

effect in general.

5.1 Two Assignment Variables Clustered on Different Di-

mensions

There are instances where assignment on multiple variables could be clustered at dif-

fering dimensions. Suppose there are two assignment variables X1iM and X2iM . The

assignment of X1iM is clustered on the dimension of G, whereas the assignment of

X2iM is clustered on the dimension of H. As an empirical example, Hersch (1998)

studies wage and injury risk trade-off for men and women. The two assignment vari-

ables are injury rates for individual i’s industry and for i’s occupation respectively.

Hence, one assignment variable is clustered at the industry level and the other as-

signment variable clustered at the occupation level.

When two assignment variables are independent of each other, the Frisch–Waugh

theorem implies that we only need to cluster the standard errors on one dimension for

each of the assignment variables in a linear regression. We conduct a simple simulation

to compare two-way clustered standard errors with one-way clustered standard errors

on each dimension for the coefficient estimator on both assignment variables.

The potential outcome function is given below.

yiM(xg(i), xh(i)) = τ1ixg(i) + τ2ixh(i) + eiM ,

where eiM is the nonstochastic individual unobservable. The cluster assignment vari-

ables Xg and Xh are binary with probabilities P (Xg = 1) = P (Xh = 1) = 1/2. In the

first design, we impose heterogeneous treatment effect on cross dimensions. Namely,

τ1i = τh(i) = ±1 with equal probability; τ2i = τg(i) = ±1 with equal probability. In

the second design, we set τ1i = τg(i) and τ2i = τh(i). We regress YiM on 1, Xg(i), and

Xh(i) and report different superpopulation standard errors as upper bounds for the
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finite population ones.12

Table 4: Standard Errors for Two Assignment Variables

Design 1 Design 2

Xg Xh Xg Xh

SD 0.103 0.103 0.103 0.103
Coverage (oracle) (0.950) (0.953) (0.950) (0.954)
One-way s.e. (G) 0.102 0.103 0.143 0.020
Coverage (G) (0.947) (0.957) (0.992) (0.297)
One-way s.e.(H) 0.103 0.102 0.020 0.143
Coverage (H) (0.953) (0.950) (0.305) (0.993)
Two-way s.e. 0.142 0.142 0.142 0.141
Coverage (two-way) (0.993) (0.995) (0.992) (0.993)

1 The second and fourth columns collect superpopulation standard
errors and the coverage rates of the 95% confidence interval for the
coefficient estimator on Xg; the third and fifth columns report the
same set of statistics for the coefficient estimator on Xh.

2 “SD” stands for the standard deviation of the coefficient estimates
across 10,000 replications; “Oracle” stands for the coverage rate
of the 95% confidence interval based on the Monte Carlo standard
deviation; “One-way s.e. (C), C ∈ {G,H}” stands for the one-way
cluster-robust standard errors clustered at the level C; “Two-way
s.e.” stands for the two-way cluster-robust standard errors at both
levels of G and H; the columns below each standard error report
the corresponding coverage rates.

3 We partition the population units into 100 clusters each on the
two dimensions G and H with one unit for every (g, h) cluster
pair. As a result, the population size is 10,000. We observe the
entire population.

As we can see from Table 4, indeed one-way clustered standard errors are sufficient

for the coefficient estimators on the corresponding assignment variables. Namely,

we can report one-way clustered standard errors at the level G for τ̂1 and one-way

clustered standard errors at the levelH for τ̂2. In the second design, using the two-way

clustered standard errors is harmless, although both one-way and two-way clustered

standard errors are conservative. However, when the heterogeneous treatment effects

are more asymmetric in the first design, the two-way clustered standard errors can

be a lot larger than the one-way clustered standard errors, making the inference

unnecessarily overly conservative.

12In the first design, the usual one-way CRVE is no longer conservative in this specific data
generating process. Hence, we do not report the adjusted finite population standard errors.
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5.2 Triple Differences

Recently, triple differences method has got more attention among empirical researchers.

There has been ample discussion on the correct inference on difference-in-differences;

see, e.g., Bertrand, Duflo, and Mullainathan (2004). Nevertheless, the dicussion on

the inference method for triple differences has been limited. In the simulation of

Olden and Møen (2022), they report one-way cluster-robust standard errors on the

treatment level to directly compare with the simulation results in Bertrand et al.

(2004). Recently, Strezhnev (2023) advocates for two-way cluster-robust standard

errors for triple difference estimators. Both one-way and two-way clustered standard

errors have been reported in empirical research according to our survey.

Borrowing the notation from Strezhnev (2023), (45) is a common specification for

triple differences.

Yight = τiDight + αgh + γht + δgt + ϵight (45)

Unit i in stratum h and group g is treated at time t if Dight = 1. The terms αgh, γht,

and δgt are the group-stratum, stratum-time, and group-time fixed effects respectively.

ϵight is the individual idiosyncratic term. Suppose there are multiple strata h ∈
{1, 2, . . . , H} and multiple groups g ∈ {1, 2, . . . , G}. Otherwise, there is not much we

can do in clustering the standard errors.

We can rewrite the treatment variable Dight as an interaction of three variables,

Dight = Dh(i) × Dg(i) × Post, where Post is a time dummy variable that takes the

value of one for periods post the initial treatment period. Consequently, it is tempting

to compare one-way clustering with two-way clustering. In our view, other than the

time variable, the key boils down to the nature of the other two variables within the

triple interaction term. Let us focus on the assignment mechanism, as the sampling

process is less ambiguous if we know how the data are collected.

If both grouping indicators are stochastic assignment variables on non-nested di-

mensions, one would like to report the two-way clustered standard errors. An example

is Marchingiglio and Poyker (2019), where h and g represent state and industry, re-

spectively. Their assignment variable is the state-level adoption of gender-specific

minimum wage laws applying to specific industries that employed a larger share of

women. By 1920, twelve states had enacted laws related to minimum wages. Six

of these states eventually established minimum wage laws that applied to women

across all industries, while the other six gradually implemented such laws in selected
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industries over time. In a thought experiment, we can examine the application of

minimum wage policies across different states and industries, reflecting the decision-

making process of state governments. There is a clear correlation within states re-

garding the assignment of minimum wage laws. If a state does not choose to adopt

such policies, no one in the states will be treated. Across states, industries that are

predominantly female, such as hotels, restaurants, the laundry and dry cleaning sec-

tor, and mercantile, are the primary focus of these gender-specific minimum wage

laws. In states with partial coverage, male-dominated industries are never treated,

whereas female-dominated industries are more likely to receive this treatment. This

introduces a second dimension of cluster assignment at the industry level.

Alternatively, if treatment is assigned based on one grouping indicator, and the

other grouping indicator is some nonstochastic attribute, one-way clustered standard

errors are the most appropriate. For example, in Bau (2021) h indicates province

and g represents ethnicity. The policy they study is the roll-out of pension plans at

the provincial level, measured by the intensity of pension offices in a province. Al-

though the pension program was national, its coverage expanded over time, and initial

compliance was imperfect, leading to geographic variation in exposure. Importantly,

the pension plan offices were not specifically targeted to areas with particular ethnic

groups. The researchers are interested in the differential effect of the pension plan on

ethnic groups. From this perspective, ethnic belonging is treated as non-stochastic

within our design-based framework, capturing the heterogeneity of the pension treat-

ment effect. The pension plan may inherently influence ethnic groups differently

because of cultural traditions. For example, it could affect matrilocal females–those

who live with their parents after marriage and provide care for them in old age, serv-

ing as a form of informal insurance–more than non-matrilocal females, even though

they are exposed to the same pension office intensity in their birth province. In a

thought experiment, exposure to pension offices would be reassigned for provinces

without differential exposure based on ethnicity, inducing cluster assignment at the

provincial level.13

To showcase the differences between one-way and two-way clustered standard

errors, we conduct a simple simulation of a triple differences regression based on (45).

13It is worth noting that although there are 45 ethnic groups, the ethnicity indicator is a binary
variable that reflects whether an ethnic group practices matrilocality, resulting in effectively two
clusters. This makes it challenging to adjust for cluster correlation at the ethnicity level in practice.
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There are two time periods. The treatment is essentially randomly assigned in the

second time period. Both Dg and Dh are cluster binary variables with probabilities

P (Dg = 1) = P (Dh = 1) = 1/2. In the first design, Dg andDh are stochastic, whereas

in the second design, Dg is the nonstochastic attribute variable but Dh remains as

the stochastic assignment variable. We construct τi in a way that the parallel trends

assumption for triple differences holds.14 We report the adjusted finite population

standard errors for τ̂ and the coverage rate of the 95% confidence interval based on

these standard errors.15

Table 5: Standard Errors for Triple Differences Estimators

Dg & Dh stochastic Dh stochastic
SD 0.184 0.105
Coverage (oracle) (0.952) (0.954)
EHW s.e. 0.040 0.038
Coverage (EHW) (0.337) (0.536)
One-way s.e. (G) 0.153 0.142
Coverage (G) (0.902) (0.992)
One-way s.e.(H) 0.103 0.105
Coverage (H) (0.730) (0.955)
Two-way 2 s.e. 0.185 0.177
Coverage (two-way 2) (0.953) (0.999)

1 The second column collects adjusted finite population standard errors
and the coverage rates of the 95% confidence interval for the triple
differences estimator when both grouping indicators are stochastic;
the third column reports the same set of statistics when only one of
the grouping indicators is stochastic.

2 “SD” stands for the standard deviation of the triple differences es-
timates across 10,000 replications; “Oracle” stands for the coverage
rate of the 95% confidence interval based on the Monte Carlo stan-
dard deviation; “EHW s.e.” stands for the heteroskedasticity-robust
standard errors;“One-way s.e. (C), C ∈ {G,H}” stands for the one-
way cluster-robust standard errors clustered at the level C; “Two-way
2 s.e.” stands for the CGM2 two-way cluster-robust standard errors
at both levels of G and H; the columns below each standard error
report the corresponding coverage rates.

3 We partition the population units into 100 clusters each on the two
dimensions G and H with one unit for every (g, h) cluster pair. As a
result, the population size is 10,000. We observe the entire population.

14Specifically, we construct τ̃i = τg(i)+ τh(i), where τg = ±3/2 with equal probability and τh = ±1
with equal probability. In design 1, τi is the demeaned τ̃i. In design 2, we average τ̃i across units
with Dg(i) = 1 and denote this average by ¯̃τ . τi = τ̃i − ¯̃τ .

15We use τi as the attributes in the estimation of the adjusted finite population standard errors.
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As shown in Table 5, the EHW standard errors underestimate as expected. When

both grouping indicators are stochastic assignment variables, one-way clustered stan-

dard errors are generally not sufficient. By fluke the one-way clustered standard errors

could be larger than the standard deviation, but that is because they are conservative

within the design-based framework. The adjusted CGM2 standard error works pretty

well with coverage rate of the confidence interval close to its nominal level. Switching

to the case when only the grouping indicator Dh is stochastically assigned, cluster-

ing the standard errors at the level of H suffices. Two-way clustered standard error

is overly conservative and can be more than 50% larger than the one-way clustered

standard errors clustered on H.

6 Empirical Illustration

6.1 Tenure-Clock Stopping Policy

The adjusted finite population CRVE proposed in Theorem 3.2 is applied to Antecol,

Bedard, and Stearns (2018), who study the effects of tenure clock stopping policies

on tenure rates among assistant professors. The unique dataset collected by them

contains all assistant professor hires at the top-50 Economics departments from 1980-

2005 as pooled cross sections, resulting in 1,392 observations in total. Furthermore,

the tenure clock stopping policies are assigned at the university level while the data

are collected at the individual level, implying that we have a setting of observing the

entire population with cluster assignment.16 The standard errors in Antecol et al.

(2018) are clustered at the policy university level, which is the correct level to cluster

the standard errors as implied by Remark 2. As a result, there are 49 clusters in total

with cluster sizes ranging from 11 to 57.

Since the dependent variable is a binary response, we analyze the linear probability

model (LPM) given in Antecol et al. (2018) along with an additional probit model

16This group of assistant professors is treated as the population.
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given in (46) below, which adopts the same notation from their paper.

P (Yugit = 1|GNut, Fugit, Eut, FOut, Xugit, Zut, ρgt, ψug) =

Φ(β0 + β1GNut + β2GNut × Fugit + β3GNut × Eut + β4GNut × Eut × Fugit

+ β5FOut + β6FOut × Fugit + β7FOut × Eut + β8FOut × Eut × Fugit

+Xugitξ + Zutη + ρgt + ψug)

(46)

The dependent variable Y is an indicator of obtaining tenure at the university of

initial placement. Binary variables GN and FO are indicators of gender-neutral and

female-only tenure clock stopping policies respectively. The dummy variable F is the

indicator for females. The variable E is an indicator of starting jobs in years zero

through three after policy adoption. The vector X contains individual characteristics

and the vector Z includes university level controls.17 The parameter ρ captures

gender-specific time trend and ψ represents gender-specific university heterogeneity.

The subscripts, u, g, i, t, are indicators for university, gender, individual, and the

year the job started, respectively.

Antecol et al. (2018) include gender-specific university dummies to capture dif-

ferent unobserved university heterogeneity for males and females. Adding group

dummies in the linear model is equivalent to performing fixed effects with clustered

data. However, adding group dummies in a nonlinear model may cause the inciden-

tal parameter problem. Since the cluster sizes are unbalanced, we use pooled probit

with correlated random effects as suggested by Wooldridge (2010) to allow correla-

tion between the gender-specific university heterogeneity and the covariates. Using

Chamberlain-Mundlak device, the cluster size, the gender-specific university averages

of individual and university characteristics and policies, and their interactions with

cluster sizes are included as additional controls.

Given the probit model above is a nonlinear “difference-in-differences” model, the

common trend assumption is imposed on the latent outcome variable following Puhani

(2012) and Wooldridge (2023). The treatment effects are defined as the differences in

the probit probabilities when the treatment variables equal one or zero. We report the

average of the treatment effect for those actually treated by the specific policy. Since

our emphasis in this study is on inference, we adhere to the specification presented

in Antecol et al. (2018) to facilitate a direct comparison with their reported standard

17We refer to Antecol et al. (2018) for the details of the variables included as controls.
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Table 6: Effects of Clock Stopping Policies on the Probability of Tenure at the Uni-
versity of Initial Placement

LPM Probit

APE
Standard Error

APE
Standard Error

inf pop finite pop inf pop finite pop
(1) (2) (3) (4) (5) (6)

Panel A. Policy Effects Years 0-3
Men FOCS -0.0085 0.0670 0.0616 -0.0068 0.0623 0.0558
Women FOCS 0.1723 0.1405 0.1191 0.1454 0.1750 0.1484
Men GNCS 0.0511 0.0787 0.0757 0.0446 0.0726 0.0700
Women GNCS -0.0166 0.1071 0.0959 0.0220 0.1031 0.0957

Panel B. Policy Effects Years 4+
Men FOCS 0.0023 0.0747 0.0701 -0.0055 0.0649 0.0606
Women FOCS 0.0493 0.1015 0.0797 0.0415 0.0902 0.0681
Men GNCS 0.1757 0.0826 0.0794 0.1537 0.0767 0.0734
Women GNCS -0.1945 0.1057 0.0899 -0.1856 0.1041 0.0892

1 Standard errors are clustered at the university level.
2 Columns (1) and (4) report the APEs under the linear probability model and the correlated random effects
probit model, respectively; columns (2) and (5) report the usual infinite population cluster-robust standard
errors of the APE estimators (linear functions of the coefficient estimators in the case of the LPM); columns
(3) and (6) report the adjusted finite population cluster-robust standard errors of the APE estimators.

3 We refer to Antecol et al. (2018) for detailed control variables.

errors. Assume that ψ conditional on the sufficient statistics (the additional controls

included) follows a normal distribution, APEs can be obtained via pooled probit.

In Table 6, panel A presents the total effects for men and women hired in years zero

through three after policy adoption, and panel B shows the effects for those employed

in years four or later. The left panel (columns (1)-(3)) summarizes the results under

the LPM. Columns (1) and (2) report the total effects and the standard errors, as

shown in column (1) of Table 2 in Antecol et al. (2018), while column (3) reports

the adjusted finite population clustered standard errors. The coefficients (APEs) are

interpreted as the policy effect on the tenure attainment of the assistant professors

compared with those of the same genders at the same university but without any

clock stopping policies.

To estimate the adjusted finite population CRAV, we sum all the estimated score

functions and control variables within clusters and apply the variance estimator in
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Case 2 of Table 1 together with the usual estimator of the Hessian matrix. Since the

number of control variables exceeds the number of clusters in the data, we only include

university characteristics as the fixed attributes in the linear projection, resulting in

a linear regression with 49 observations and eight independent variables. Compared

with the usual cluster-robust standard errors, the finite population cluster-robust

standard errors shrink by about 4% to 21% across the eight treatment groups. In

terms of the statistical significance, the effect of gender-neutral policy for women hired

three or more years after the policy adoption is significant at the 5% rather than the

10% level based on the adjusted finite population cluster-robust standard error. The

same result holds when the critical values from t(48) distribution are used.

In the right panel (columns (4)-(6)), we can see that the APEs from the probit

regression are close in magnitudes to those from the linear model. The adjusted finite

population CRAV is estimated applying Theorem 3.2 and the delta method. Using

the same set of university characteristics as the attribute variables, the reduction from

the usual clustered standard errors to the finite population clustered standard errors

ranges from 4% to 25%. Based on the critical values from t(48), the effect of gender-

neutral policy for women hired in later years is significant at the 5% level rather than

the 10% level when the finite population clustered standard error is adopted.

To sum up, control variables can help shrink the standard errors when the popu-

lation is treated as finite in both linear and nonlinear models. The empirical evidence

suggests that gender-neutral tenure clock stopping policy is beneficial to men in ob-

taining tenured positions but detrimental to women.

6.2 Return to Protectionism

We apply our adjusted finite population CRVE for two-way clustering to Fajgelbaum,

Goldberg, Kennedy, and Khandelwal (2020), who were interested in the short-run

impact of tariffs. In 2018, the U.S. enacted several waves of tariffs on various products

and countries. With the population data of U.S. trading partners and product exports

and imports, this application is a good candidate for finite population inference. The

unit of observation is a tuple of country, product, and time. Since we focus on

inference rather than estimation, we retain the original specification from the authors

to ensure the estimand remains the same. Namely, we run an event study regression
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to examine the impacts of the tariff war on trade:

ln yigt = αig+αgt+αit+
6∑

j=−6

β0jI(eventigt = j)+
6∑

j=−6

β1jI(eventigt = j)×targetig+ϵigt,

(47)

where i indexes country, g indexes product, and t indexes time (month), so the spec-

ification includes country-product (αig), country-time (αit), and product-time (αgt)

fixed effects. The assignment variable is targetig, a binary variable indicating whether

the import tariffs for specific varieties—defined as country-product pairs—have been

increased. The United States raised tariffs on certain products, such as solar panels

and washing machines, and these tariffs have been applied in a discriminatory manner

across different countries. China was the most heavily targeted, with an expanded

range and value of affected products. As a result, if two varieties share either a coun-

try or a product code, their assignments could be correlated. This creates a two-way

clustered assignment based on both product and country levels. 18

Our outcome variable is the log duty-inclusive unit value of imports. In the

regression of interest, we have 1,664,601 observations across 8820 product types and

209 country codes.19 We report the CGM, CGM2, and our adjusted CGM2 standard

errors, which are all two-way clustered by country and product (encoded at the HS-8

level, as tariffs are set at this level). This is done for the coefficient estimators of

{β1j}6j=−5 with j = −6 treated as the baseline. To adjust for the conservativeness of

the CGM2 variance estimator, we project the cluster sum of our score functions onto

three covariates: an indicator for whether the unit of product involves aluminum, an

indicator for steel, and the level of duty.

The results are summarized in Figure 1. Our finite population adjusted standard

errors can be substantially smaller than the CGM standard errors reported in the

original paper, with some estimates being as low as 11% of the original estimates.

It is important to note that, ex ante, our standard errors are not guaranteed to be

smaller than those of CGM, as CGM may be anticonservative. However, we do know

that our standard errors are guaranteed to be smaller than those of CGM2. Similar

18One-way clustering based solely on country-product pairs is inadequate because this approach
suggests that two observations from the same country, but involving different products, have inde-
pendent assignments.

19Our assumptions allow the number of clusters on one dimension to be much larger than the
number of clusters on another, so this application falls within our framework.
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results are observed for other outcome variables in this event study.

7 Conclusion

This paper develops finite population inference methods for M-estimators with data

that is potentially clustered multiway. The takeaway for empirical practice is sum-

marized as follows. One should only adjust standard errors for clustering if there is

cluster sampling or cluster assignment. Two-way clustered standard errors are justi-

fied if there are two-way cluster sampling or two-way cluster assignments, or cluster

sampling and cluster assignment on different dimensions. While the standard one-way

CRVE from Liang and Zeger (1986) is conservative for the true variance under one-

way clustering, the standard two-way variance estimator from Cameron et al. (2011)

is no longer conservative. Although a subsequent proposal from Davezies et al. (2018)

is guaranteed to be conservative for two-way clustering, their variance estimator is

often too large, so we provide a refinement. Our proposed refinement uses control

variables, such as baseline characteristics, and ensures that the estimators remain

valid for inference. Evidence from our simulation and empirical illustration suggests

that gains from our variance correction can be substantial.

Through a survey of when clustered standard errors are used in empirical work, we

offer insights on the appropriateness of clustering in various contexts from our theory

on M-estimation with clustering. With spatiotemporal correlation, the magnitude

of two-way clustering and spatiotemporal variance estimators cannot be ordered in

general. With two assignment variables clustered on different dimensions, we find

that it suffices to apply one-way clustering on the respective dimensions rather than

to use two-way clustering in certain cases. In the estimation of triple differences, we

find that the choice between one-way and two-way clustering depends on the nature

of the variables in the triple interaction term. In the supplement, we investigate the

difference-in-means estimator and find that two-way clustering can reduce to one-way

clustering under homogeneous treatment effects. In the context with one-way fixed

effects, we find that the estimand is interpretable as an ATE only in special cases, but

the estimand is still a weighted average of treatment effects in general. With two-way

fixed effects, the requirements for the estimand to be interpretable as an ATE is even

more restrictive.

The current paper focuses on the asymptotics as the number of clusters tends to
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infinity in the limit. For a small number of clusters or wildly unbalanced clusters, the

wild cluster bootstrap20 has been proposed as a better-performing inference method

for linear models in the setting of superpopulations. The finite population inference

method for few heterogeneous clusters remains an interesting future research topic.

A Notation and Regularity Conditions

The following notation provides details of the asymptotic variances and the variance

estimator for functions of M-estimators:

∆f
ehw,M =

1

M

M∑
i=1

E
{[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]
·

[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]′}

, (A.1)

∆f
E,M =

1

M

M∑
i=1

{
E
[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]
·

E
[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]′}

,

(A.2)

∆f
cluster,M =

1

M

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

E
{[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]
·

[
fjM(WjM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1mjM(WjM , θ

∗
M)
]′}

,

(A.3)

∆f
EC,M =

1

M

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

{
E
[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]
·

E
[
fjM(WjM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1mjM(WjM , θ

∗
M)
]′}

(A.4)

with

FM(θ) =
1

M

M∑
i=1

E
[
∇θfiM(WiM , θ)

]
. (A.5)

The terms ∆f
ehw,M and ∆f

cluster,M account for heteroskedasticity and within-cluster

correlation, whereas ∆f
E,M and ∆f

EC,M are their finite population counterparts. The

20See, for example, Cameron, Gelbach, and Miller (2008) and MacKinnon and Webb (2017).
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estimators are

∆̂f
ehw,N =

1

N

M∑
i=1

RiM

[
fiM(WiM , θ̂N)− γ̂N − F̂N(θ̂N)L̂N(θ̂N)

−1miM(WiM , θ̂N)
]
·[

fiM(WiM , θ̂N)− γ̂N − F̂N(θ̂N)L̂N(θ̂N)
−1miM(WiM , θ̂N)

]′ (A.6)

and

∆̂f
cluster,N =

1

N

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

RiMRjM

[
fiM(WiM , θ̂N)− γ̂N − F̂N(θ̂N)L̂N(θ̂N)

−1miM(WiM , θ̂N)
]
·

[
fjM(WjM , θ̂N)− γ̂N − F̂N(θ̂N)L̂N(θ̂N)

−1mjM(WjM , θ̂N)
]′
,

(A.7)

where

F̂N(θ) =
1

N

M∑
i=1

RiM∇θfiM(WiM , θ). (A.8)

Definition 1. The random function giM(WiM , θ) is said to be Lipschitz in the parame-

ter θ on Θ if there is h(u) ↓ 0 as u ↓ 0 and b(·) : W → R such that supi,M E
[
|biM(WiM)|

]
<

∞, and for all θ̃, θ ∈ Θ,
∣∣giM(WiM , θ̃)− giM(WiM , θ)

∣∣ ≤ biM(WiM)h(∥θ̃− θ∥), ∀ i,M .

We impose the following regularity conditions for the theorems in the paper.

Assumption A.1. Suppose that 1
N

M∑
i=1

RiM ·miM(WiM , θ̂N) = op(N
−1/2) and

(i) Let QM(θ) := 1
M

∑M
i=1 E

[
qiM(WiM , θ)

]
. {QM(θ)} has identifiably unique minimiz-

ers {θ∗M} on Θ as in Definition 3.2 in Gallant and White (1988);

(ii) Θ is compact;

(iii) θ∗M ∈ int(Θ), ∀ M ;

(iv) qiM(w, θ) is twice continuously differentiable on int(Θ) for all w in the support

of WiM , ∀ i,M ;

(v) sup
i,M

E
[
sup
θ∈Θ

|qiM(WiM , θ)|r
]
<∞ for some r > 1;

(vi) qiM(WiM , θ) is Lipschitz in θ on Θ;

(vii) sup
i,M

E
[
sup
θ∈Θ

∥miM(WiM , θ)∥r
]
<∞ for some r > 2;

(viii) infM λmin(V∆M) > 0, where λmin(·) stands for the smallest eigenvalue;

(ix) sup
i,M

E
[
sup
θ∈Θ

∥∇θmiM(WiM , θ)∥r
]
<∞ for some r > 1;

(x) ∇θmiM(WiM , θ) is Lipschitz in θ on Θ;
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(xi) lim
M→∞

LM(θ∗M) is nonsingular;

(xii) there is h(u) ↓ 0 as u ↓ 0 and b1(·) : W → R such that sup
i,M

E
[
b1,iM(WiM)2

]
<∞,

and for all θ̃, θ ∈ Θ,
∥∥∥miM(WiM , θ̃)−miM(WiM , θ)

∥∥∥ ≤ b1,iM(WiM)h(∥θ̃ − θ∥).

Assumption A.2. Suppose that

(i) fiM(w, θ) is continuously differentiable on int(Θ) for all w in the support of WiM ,

∀ i,M ;

(ii) sup
i,M

E
[
sup
θ∈Θ

∥fiM(WiM , θ)∥r
]
<∞ for some r > 2;

(iii) infM λmin(Vf,M) > 0;

(iv) sup
i,M

E
[
sup
θ∈Θ

∥∇θfiM(WiM , θ)∥r
]
<∞ for some r > 1;

(v) ∇θfiM(WiM , θ) is Lipschitz in θ on Θ;

(vi) there is h(u) ↓ 0 as u ↓ 0 and b2(·) : W → R such that sup
i,M

E
[
b2,iM(WiM)2

]
<∞,

and for all θ̃, θ ∈ Θ,
∥∥∥fiM(WiM , θ̃)− fiM(WiM , θ)

∥∥∥ ≤ b2,iM(WiM)h(∥θ̃ − θ∥).

Assumption A.3. Suppose that we maintain conditions (i)-(iv), (vi), (x)-(xii) in

Assumption A.1. In addition,

(v) sup
i,M

E
[
sup
θ∈Θ

|qiM(WiM , θ)|2
]
<∞;

(vii) sup
i,M

E
[
sup
θ∈Θ

∥miM(WiM , θ)∥4
]
<∞;

(viii) infM λmin(V∆TWM) > 0;

(ix) sup
i,M

E
[
sup
θ∈Θ

∥∇θmiM(WiM , θ)∥2
]
<∞.

Finally, for Theorem 3.3, we require the following condition. For C ∈ {G,H} and

arbitrary constants a > 0, A <∞,

a ≤ 1

λGM
λmin

 M∑
i=1

∑
j∈NC

c(i)

E[ziMmjM(WjM , θ
∗
M)′]

 ≤ A

a ≤ 1

λGM
λmin

 M∑
i=1

∑
j∈NC

c(i)

E[ziMz′jM ]

 ≤ A

(A.9)

λGM is the scaling factor such that 1
λG
M

∑G
g=1 z̃

′
gM z̃gM = O(1) but not o(1).
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B Example for CGM anti-conservativeness

Example B.1: This section theoretically constructs a counterexample such that the

CGM estimator is anti-conservative in the difference in means setting. For treatment

variable X ∈ {0, 1}, we denote the nonstochastic potential outcome as yiM(x). We

are interested in the population average treatment effect (ATE):

τM =
1

M

M∑
i=1

(yiM(1)− yiM(0)) (B.1)

Multiway assignment is treated in the following way. Data is generated by indepen-

dently drawingAg ∈ [0, 1], Bh ∈ [0, 1] and ei ∼ U [0, 1], withXiM = 1
{
ei < Ag(i)Bh(i)

}
.

The random variables Ag and Bh have means µA, µB > 0 and variances σ2
A, σ

2
B re-

spectively. The CGM estimand is VTWSM , so using our framework, VTWSM − vM =

(N/M2)
∑

i

∑
j∈Ni

E[ηiM ]E[ηjM ], and we have shown that E[ηiM ] = τiM − τM . Hence,

for a counterexample where VTWSM − vM < 0, it suffices that
∑

i

∑
j∈Ni

(τiM −
τM)(τjM − τM) < 0.

Let k1 denote an odd number, and (g, h) describe a cluster intersection that is in

cluster g on the G dimension and in cluster h on the H dimension. Suppose there

are G clusters on both G and H dimensions, where G is even. Let G0 be a fixed

number. In the population, individuals can only belong to cluster intersections of

the form (k1, k1), (k1, k1 ± 1) and (k1 ± 1, k1). This assumption implies that there

cannot be individuals in cluster intersections where both cluster indexes are even, or

if their difference is more than one. There are 4G0 observations in (k1, k1) clusters

and G0 observations in other cluster intersections that are nonempty. Hence, the

total number of observations is M = 8G0G.

Table 7: Distribution of population with bounded cluster sizes
Type Proportion (g, h) τiM − τM

1 1/2 (k1, k1) 1
2 1/4 (k1, k1 ± 1) -1
3 1/4 (k1 ± 1, k1) -1

The τiM −τM values for observations belonging to the various cluster intersections

are given by Table 7. Then, we show how this particular construction results in∑
i

∑
j∈Ni

(τiM−τM)(τjM−τM) < 0. First, consider an observation i in (k1, k1) — they
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Table 8: Coverage Under Null

EHW G Cluster H Cluster CGM CGM2

0.161 0.925 0.924 0.916 0.976

account for half the observations. Then, |Ni| = 8G0, where 4G0 of those observations

are in (k1, k1) and the remaining 4G0 are either in (k1 ± 1, k1) or (k1, k1 ± 1). Hence,∑
j∈Ni

(τiM − τM)(τjM − τM) = (1)(4 − 1 − 1 − 1 − 1)G0 = 0. Next, consider an

observation i in (k1, k1 ± 1). The treatment of (k1 ± 1, k1) is identical. The units

in either (k1, k1 ± 1) or (k1 ± 1, k1) account for the other half of the units. Here,

|Ni| = 7G0. For instance, for some unit i in (k1, k1 + 1), 4G0 of |Ni| are in (k1, k1)

intersections, G0 are in (k1, k1+1), G0 are in (k1, k1−1) and G0 are in (k1+2, k1+1).

Then,
∑

j∈Ni
(τiM − τM)(τjM − τM) = (1)(4 − 1 − 1 − 1)G0 = −1. Combining these

results,

1

M

∑
i

∑
j∈Ni

(τiM − τM)(τjM − τM) =
1

2
(1) +

1

2
(−1) = −1/2 < 0.

To illustrate this numerically, we run a simulation using the difference-in-means

example. Using the population parameters stated in Table 7, we have XiM that is

independent over individuals, with XiM = 1 with probability 1/2. We generate data

with clustered sampling with ρGM = ρHM = 0.1 and ρUM = 0.5. When generating

data under the null, the coverage rates are reported in Table 8 for 5000 simulations.

With a coverage rate of 91.6%, CGM can be anti-conservative and hence the test is

invalid.

C Proofs of Main Results in Section 2

We use the following three lemmas for the two-way clustering normality proof. To

save space, proofs of the lemmas are collected in an online appendix posted on the

authors’ website.

Lemma C.1. Suppose Assumption 4 holds. For any scalar two-way clustered random

variable ViM with E[ViM ] = 0 and E[V 2
iM ] ≤ C, 1

M

∑M
i=1 ViM

p−→ 0.

Lemma C.2. Under Assumptions 2 and 4, N
MρUMρGMρHM

p→ 1.
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Lemma C.3. Under Assumptions 2 to 4, suppose (i) aiM(WiM , θ) is Lipschitz in

θ on Θ; (ii) supi,M E
[
supθ∈Θ ∥aiM(WiM , θ)∥r

]
< ∞ for some r > 1. Then (1)

Let AN(θ) := 1
N

∑M
i=1RiMaiM(WiM , θ).

∥∥∥AN(θ̃)− AN(θ)
∥∥∥ ≤ BNh(∥θ̃ − θ∥), where

BN := 1
N

∑M
i=1RiM · biM(WiM) = Op(1) for biM(·) in Definition 1; and (2) AM(θ) =

1
M

∑M
i=1 E

[
aiM(WiM , θ)

]
is uniformly equicontinuous.

To show the consistency of variance estimators in two-way clustering, we use an

intermediate lemma, which is the analog of Hansen and Lee (2019) (62) under two-way

clustering.

Lemma C.4. Suppose Assumptions 1-4 hold. Additionally, assume that for all θ,

E [∥f(Xi, θ)∥4] is bounded, and that for C,C ′ ∈ {G,H},
and λCM := λmin

(∑M
i=1

∑
j∈NC

c(i)
E[f (Xi, θ) f (Xj, θ)

′]
)
, we have (λCM)−1maxc′(M

C′

c′ )
2 =

o(1) and (λCM)−1
∑

c′(M
C′

c′ )
2 = O(1). Let f̃g(θ) :=

∑
j∈NG

g
f (Xj, θ) and Ω̃M(θ) =∑G

g=1 f̃g(θ)f̃g(θ)
′. Then,∥∥∥[EΩ̃M(θ)]−1[Ω̃M(θ)− EΩ̃M(θ)]

∥∥∥ p−→ 0.

We show the sketch of the proof of Theorem 2.3 below. More proofs are collected in

the supplemental appendix included and an online appendix on the authors’ website.

Proof of Theorem 2.3: Let QN(θ) :=
1
N

∑M
i=1RiMqiM(WiM , θ). Then, with Lemma

C.2,

QN(θ) =
MρUMρGMρHM

N

1

M

M∑
i=1

RiM

ρUMρGMρHM

qiM(WiM , θ)

=
(
1 + op(1)

) 1

M

M∑
i=1

RiM

ρUMρGMρHM

qiM(WiM , θ).

(C.1)

Hence, it is sufficient to show that for each θ ∈ Θ∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGMρHM

qiM(WiM , θ)−
1

M

M∑
i=1

E
[
qiM(WiM , θ)

]∥∥∥∥∥ p→ 0. (C.2)

Condition (v) in Assumption A.3 implies ∀ θ ∈ Θ

sup
i,M

E

[∥∥∥∥ RiM

ρUMρGMρHM

qiM(WiM , θ)

∥∥∥∥2
]
≤ 1

(ρUMρGMρHM)3
sup
i,M

E
[
sup
θ∈Θ

∥qiM(WiM , θ)∥2
]
<∞

(C.3)
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(C.2) thus follows by Lemma C.1. By the element-by-element mean value expansion

around θ∗M ,

op(N
−1/2) = V

−1/2
TWM

1

N

M∑
i=1

RiM ·miM(WiM , θ̂N)

=V
−1/2
TWM

1

N

M∑
i=1

RiM ·miM(WiM , θ
∗
M) + V

−1/2
TWM

1

N

M∑
i=1

RiM∇θmiM(WiM , θ̌)(θ̂N − θ∗M),

(C.4)

where θ̌ lies on the line segment connecting θ∗M and θ̂N .

We first show

L̂N(θ̌) = LM(θ∗M)
(
Ik + op(1)

)
. (C.5)

Since we can write

L̂N(θ̌) = LM(θ∗M)
[
Ik + LM(θ∗M)−1

(
L̂N(θ̌)− LM(θ∗M)

)]
, (C.6)

it suffices to show ∥∥∥LM(θ∗M)−1
(
L̂N(θ̌)− LM(θ∗M)

)∥∥∥ p→ 0. (C.7)

We can write

L̂N(θ) =
MρUMρGMρHM

N

1

M

M∑
i=1

RiM

ρUMρGMρHM

∇θmiM(WiM , θ)

=
(
1 + op(1)

) 1

M

M∑
i=1

RiM

ρUMρGMρHM

∇θmiM(WiM , θ).

(C.8)

Since ∀ θ ∈ Θ

sup
i,M

E

[∥∥∥∥ RiM

ρUMρGMρHM

∇θmiM(WiM , θ)

∥∥∥∥2
]

≤ 1

(ρUMρGMρHM)3
sup
i,M

E
[
sup
θ∈Θ

∥∇θmiM(WiM , θ)∥2
]
<∞,

(C.9)

∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGMρHM

∇θmiM(WiM , θ)− LM(θ)

∥∥∥∥∥ p→ 0 (C.10)

by Lemma C.1 under Assumption 4 and condition (ix) in Assumption A.3. By Corol-
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lary 2.2 in Newey (1991) and Lemma C.3 above,∥∥∥LM(θ∗M)−1
(
L̂N(θ̌)− LM(θ∗M)

)∥∥∥
≤C

(
sup
θ∈Θ

∥∥∥L̂N(θ)− LM(θ)
∥∥∥+ ∥∥LM(θ̌)− LM(θ∗M)

∥∥) p→ 0
(C.11)

under conditions (x) and (xi) in Assumption A.3.

(C.5) implies

L̂N(θ̌)
−1 = LM(θ∗M)−1(Ik + op(1)). (C.12)

Using (C.12), (C.4) can be written as

V
−1/2
TWM

√
N(θ̂N − θ∗M) =− V

−1/2
TWMLM(θ∗M)−1 1√

N

M∑
i=1

RiM ·miM(WiM , θ
∗
M)

− V
−1/2
TWMLM(θ∗M)−1op(1)

1√
N

M∑
i=1

RiM ·miM(WiM , θ
∗
M) + op(1).

(C.13)

We can write

1√
N

M∑
i=1

RiM ·miM(WiM , θ
∗
M) =

√
MρUMρGMρHM

N

1√
M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M)

=
(
1 + op(1)

) 1√
M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M).

(C.14)

Plug (C.14) into (C.13), we have

V
−1/2
TWM

√
N(θ̂N − θ∗M)

=− V
−1/2
TWMLM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M)

− V
−1/2
TWMLM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M) · op(1) + op(1). (C.15)
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Define:

V∆TWM := V

(
1√
M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M)

)
. (C.16)

Since

VTWM = LM(θ∗M)−1V∆TWMLM(θ∗M)−1, (C.17)

we have

V

(
V

−1/2
TWMLM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M)

)
= Ik. (C.18)

Given that, ∀ θ ∈ Θ,

sup
i,M

E

[∥∥∥∥ RiM√
ρUMρGMρHM

miM(WiM , θ)

∥∥∥∥4
]
≤ 1

ρUMρGMρHM

sup
i,M

E
[
sup
θ∈Θ

∥miM(WiM , θ)∥4
]
<∞,

(C.19)

V
−1/2
TWMLM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M)

d→ N (0, Ik) (C.20)

by Theorem 1 in Yap (2025) under Assumption 5.

Due to (C.20),

V
−1/2
TWM

√
N(θ̂N − θ∗M) =− V

−1/2
TWMLM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGMρHM

miM(WiM , θ
∗
M)

+ op(1)Op(1) + op(1)
d→ N (0, Ik).

(C.21)
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D Supplement to “Clustering with Potential Mul-

tidimensionality: Inference and Practice”

D.1 Further Examples of Clustering

D.1.1 Application to Difference-in-Means

To make a direct comparison with Abadie et al. (2023), we consider a difference-in-

means estimator for a binary assignment variable without covariates with multiway

clustering. For treatment variable X ∈ {0, 1}, we denote the nonstochastic potential

outcome as yiM(x). We are interested in the population average treatment effect

(ATE):

τM =
1

M

M∑
i=1

(yiM(1)− yiM(0)) (D.1)

Multiway assignment is treated in the following way. Data is generated by inde-

pendently drawingAg ∈ [0, 1], Bh ∈ [0, 1] and ei ∼ U [0, 1], withXiM = 1
{
ei < Ag(i)Bh(i)

}
.

The random variables Ag and Bh have means µA, µB > 0 and variances σ2
A, σ

2
B respec-

tively. This process nests several cases. If assignment is one-way clustered, then we

can simply set Ag = 1. Another case is where assignment occurs at the intersection

level, and we need both dimensions G and H to be assigned treatment for the unit

to be treated. Then, Ag, Bh ∈ {0, 1}. If µA and µB are both non-zero, then even

though XiM = Ag(i)Bh(i) is an interaction model, we do not need to be concerned

about non-normality.21

With αM := (1/M)
∑M

i=1 yiM(0) and error UiM := YiM−αM−τMXiM , the potential

errors are denoted:

uiM(1) = yiM(1)− (αM + τM)

uiM(0) = yiM(0)− αM

For RiM = 1, we observe {YiM , XiM}, with YiM = XiMyiM(1) + (1−XiM)yiM(0).

Let b1 = E [RiMXiM ], b0 = E [RiM(1−XiM)]. b1 is the probability that an individual

is observed and treated; b0 is the probability that an individual is observed and

21Let Ag = µA + ϵAg and Bh = µB + ϵBh where E[ϵg] = E[ϵh] = 0. Then,
∑M

i=1 XiM =
∑M

i=1(µA +

ϵAg(i))(µB + ϵBh(i)) =
∑M

i=1(µAµB + ϵAg(i)µB + µAϵ
B
h(i) + ϵAg(i)ϵ

B
h(i)) so the dominant stochastic terms

are ϵAg(i)µB and µAϵ
B
h(i) instead of ϵAg(i)ϵ

B
h(i).
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untreated. N1 :=
∑M

i=1RiMXiM and N0 :=
∑M

i=1RiM(1 − XiM). The least squares

estimator is:

τ̂M =
1

N1

M∑
i=1

RiMXiMYiM − 1

N0

M∑
i=1

RiM(1−XiM)YiM . (D.2)

To state the main result, we first define a few terms. Let Ni denote the neighbor-

hood of i, which is the set of observations that are plausibly correlated with i. The

score is

ηiM := RiM

(
XiM

b1
− 1−XiM

b0

)
UiM . (D.3)

In this context, E[ηiM ] = uiM(1) − uiM(0) =: τiM − τM is not zero in general, but∑
i E[ηiM ] = 0. Hence, we define ξiM as the demeaned residual for individual i that

features in the variance of τ̂M :

ξiM :=
1

b1
(RiMXiM − b1)uiM(1)− 1

b0
(RiM (1−XiM)− b0)uiM(0). (D.4)

Corollary D.1. Under Assumptions 1 to 5,

√
N(τ̂M − τM)

√
vM

d−→ N(0, 1), (D.5)

where

vM :=
N

M2

M∑
i=1

∑
j∈Ni

E[ξiMξjM ]. (D.6)

This result is a corollary of the existing normality results and law of large numbers.

Comparing this context to our framework, ηiM = miM , ξiM = miM − E[miM ], and

vM = VTWM . Using our framework, we can answer questions on whether multiway

clustering matters and whether multiway clustering is appropriate. Using the one-way

CRVE on dimension G (without loss of generality) yields the following estimand:

VGM = LM (θ∗M)−1 (∆ehw,M (θ∗M) + ρUM∆(G∩H),M (θ∗M) + ρUMρHM∆G,M (θ∗M)
)
LM (θ∗M)−1

(D.7)

Then, answering the question on whether two-way clustering matters involves com-

paring VGM with VTWSM and answering the question on whether two-way clustering
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is appropriate involves comparing VGM with VTWM . The comparisons yield:

VTWM − VGM

=LM (θ∗M)−1
(
ρUMρGM∆H,M (θ∗M)

− ρUMρGMρHM

(
∆E,M +∆E(G∩H),M +∆EG,M +∆EH,M

) )
LM (θ∗M)−1

(D.8)

VTWSM − VGM = LM (θ∗M)−1 (ρUMρGM∆H,M (θ∗M))LM (θ∗M)−1 (D.9)

Consider the environment with constant treatment effects. Then, uiM(1)−uiM(0) =

0 and hence E[miM ] = 0 and all the ∆E terms in the equation above are 0, so the two

comparisons become identical. If there is multi-way clustered assignment only or if

there is clustered assignment on H and clustered sampling on G, then (D.9) cannot

be simplified further. However, if there is multiway clustered sampling only or if there

is clustered assignment on G and clustered sampling on H, then ∆H,M(θ∗M) = 0 in

(D.9) so VTWSM = VTWM = VGM . This result implies that, under constant treatment

effects, it suffices to cluster on the assignment dimension and the usual CRVE is no

longer conservative.22

D.1.2 Fixed Effects Estimand under Clustered Assignment

With clustered data, empirical papers often include fixed effects (FE) in a regression.

A first-order question is: What are these FE estimators approaching to in the limit

within our finite population framework? In particular, when can FE estimands be

interpreted as the ATE? We focus on an environment where assignment XiM is binary

and two-way clustered with Ag, Bh ∈ {0, 1} as described in Section D.1.1, and we

observe the entire population, i.e., RiM = 1 for all i.23 Nonetheless, since we allow

for two-way clustered assignment and study estimands for both one-way and two-way

fixed effects, the results in this section are new relative to Abadie et al. (2023) and

Athey and Imbens (2022): Abadie et al. (2023) study one-way fixed effects with one-

way clustering, and Athey and Imbens (2022) require a random adoption date in the

22This result complements Corollary 1 of Abadie, Athey, Imbens, and Wooldridge (2017): they find
that one-way clustering is unnecessary if there is both constant treatment effects and no clustering
in the assignment.

23Due to how fixed effects estimators transform variables using within-cluster means, any form
of sampling leads to random sample sizes within each cluster which introduces additional technical
complications that is beyond the immediate scope of our theory, so it is left for future research.
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two-way fixed effects environment with one-way clustered assignment.

We start with one-way fixed effects. Let the ATE be defined in the following way.

τM :=
1

M

M∑
i=1

(yiM(1)− yiM(0)) (D.10)

In a one-way FE estimator, let

X̄gM :=

∑
i∈NG

g
XiM

MG
g(i)

, and

τ̂OWFE :=

∑M
i=1 YiM

(
XiM − X̄g(i)M

)∑M
i=1XiM

(
XiM − X̄g(i)M

) . (D.11)

Proposition D.1. Under Assumptions 1 to 4, τ̂OWFE
p−→ τOWFE, where

τOWFE :=
∑
i

ωi∑
j ωj

(yiM(1)− yiM(0)) , and

ωi = µAµB

1−
MG∩H

(g(i),h(i)) +
(
MG

g(i) −MG∩H
(g(i),h(i))

)
µB

MG
g(i)

 .

Since µB ∈ [0, 1], all weights ωi are positive, so the estimand is a weighted average

of treatment effects. In the special case where we have perfectly balanced clusters

MG∩H
(g(i),h(i)) = k and hence MG

g(i) = Hk, then τOWFE = τM . This result suggests that,

unlike the difference-in-means example where clustered dependence only affects the

variance, clustered dependence here also affects the interpretation of the estimand.

Mechanically, the difference is that the estimator here contains products XiMXjM for

i ̸= j that is not present in Section D.1.1, so correlation in X affects the estimand.

Moving on to two-way fixed effect (TWFE), we focus on the case with multiway

assignment where a unit is treated if and only if both its clusters are treated. This

setup is different from one-way assignment at the intersection level (see Remark 1).

With a linear model

Yi = τXi + ηg(i) + γh(i) + εi, (D.12)

the TWFE estimator is

τ̂TWFE :=

∑M
i=1 X̃iMYiM∑M
i=1 X̃iMXiM

, (D.13)
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where X̃iM is the residual when regressing X on the fixed effects. Due to Baltagi

(2008) Chapter 3,

X̃iM = XiM −
∑

j∈NG
g
RjMXjM

MG
g(i)

−
∑

j∈NH
h
RjMXjM

MH
h(i)

+

∑M
i=1XiM

M
(D.14)

Proposition D.2. Under Assumptions 1 to 4, if MG∩H
(g,h) = k,MG

g = Hk,MH
h = Gk

(i.e., all cluster intersections are balanced), then τ̂TWFE
p−→ τTWFE, where

τTWFE =

∑M
i=1 E

[
X̃iMYiM

]
∑M

i=1 E
[
X̃iMXiM

] = τM .

This result is fairly weak in that it requires balanced clusters, but in this ideal-

ized situation, the TWFE estimand is the ATE. Unlike Proposition D.1, we cannot

interpret the estimand as a weighted average of treatment effects in general, but this

result is not surprising considering the large difference-in-differences literature on how

TWFE cannot be interpreted as a weighted average of treatment effects, even with

parallel trends. The difficulty with unbalanced clusters is attributed to how TWFE

takes a particular linear combination of outcomes that is not necessarily a convex

combination.

D.2 Proofs for Section 2

Proof of Theorem 2.1: (Proof of Theorem 2.3 follows the same structure.)

Let ρHM = 1. We first show that θ̂N − θ∗M
p→ 0.

Denote QN(θ) :=
1
N

∑M
i=1RiMqiM(WiM , θ). Note that

QN(θ) =
MρUMρGM

N

1

M

M∑
i=1

RiM

ρUMρGM

qiM(WiM , θ). (D.15)

By Lemma C.2 and the continuous mapping theorem, MρUMρGM

N

p→ 1. Hence, it is

sufficient to show that for each θ ∈ Θ∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGM

qiM(WiM , θ)−
1

M

M∑
i=1

E
[
qiM(WiM , θ)

]∥∥∥∥∥ p→ 0. (D.16)
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Condition (v) in Assumption A.1 implies ∀ θ ∈ Θ

sup
i,M

E

[∣∣∣∣ RiM

ρUMρGM

qiM(WiM , θ)

∣∣∣∣r
]
≤ 1

(ρUMρGM)r−1
sup
i,M

E
[
sup
θ∈Θ

|qiM(WiM , θ)|r
]
<∞

(D.17)

for some r > 1, which further implies

lim
C→∞

sup
i,M

{
E
[∣∣∣∣ RiM

ρUMρGM

qiM(WiM , θ)

∣∣∣∣ · 1(∣∣∣∣ RiM

ρUMρGM

qiM(WiM , θ)

∣∣∣∣ > C

)]}
= 0.

(D.18)

(D.16) thus follows by Theorem 1 in Hansen and Lee (2019) under Assumption 4′.

Next,

sup
θ∈Θ

|QN(θ)−QM(θ)| = op(1) (D.19)

follows from Lemma C.3 above and Corollary 2.2 in Newey (1991) under condition

(vi) in Assumption A.1. As a result, consistency follows, e.g., from Theorem 3.3 in

Gallant and White (1988).

To prove asymptotic normality, we start by verifying that

M∑
i=1

E
[
miM(WiM , θ

∗
M)
]
= 0, (D.20)

which holds by Lemma 3.6 in Newey and McFadden (1994) and Jensen’s inequality

under conditions (iv) and (vii) in Assumption A.1.

By the element-by-element mean value expansion around θ∗M ,

op(N
−1/2) = V

−1/2
M

1

N

M∑
i=1

RiM ·miM(WiM , θ̂N)

=V
−1/2
M

1

N

M∑
i=1

RiM ·miM(WiM , θ
∗
M) + V

−1/2
M

1

N

M∑
i=1

RiM∇θmiM(WiM , θ̌)(θ̂N − θ∗M),

(D.21)

where θ̌ lies on the line segment connecting θ∗M and θ̂N .

We first show

L̂N(θ̌) = LM(θ∗M)
(
Ik + op(1)

)
. (D.22)
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Since we can write

L̂N(θ̌) = LM(θ∗M)
[
Ik + LM(θ∗M)−1

(
L̂N(θ̌)− LM(θ∗M)

)]
, (D.23)

it suffices to show ∥∥∥LM(θ∗M)−1
(
L̂N(θ̌)− LM(θ∗M)

)∥∥∥ p→ 0. (D.24)

We can write

L̂N(θ) =
MρUMρGM

N

1

M

M∑
i=1

RiM

ρUMρGM

∇θmiM(WiM , θ)

=
(
1 + op(1)

) 1

M

M∑
i=1

RiM

ρUMρGM

∇θmiM(WiM , θ).

(D.25)

Since ∀ θ ∈ Θ

sup
i,M

E

[∥∥∥∥ RiM

ρUMρGM

∇θmiM(WiM , θ)

∥∥∥∥r
]

≤ 1

(ρUMρGM)r−1
sup
i,M

E
[
sup
θ∈Θ

∥∇θmiM(WiM , θ)∥r
]
<∞

(D.26)

for some r > 1, ∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGM

∇θmiM(WiM , θ)− LM(θ)

∥∥∥∥∥ p→ 0 (D.27)

by Theorem 1 in Hansen and Lee (2019) under Assumption 4′ and condition (ix) in

Assumption A.1. By Corollary 2.2 in Newey (1991) and Lemma C.3 above,∥∥∥LM(θ∗M)−1
(
L̂N(θ̌)− LM(θ∗M)

)∥∥∥ (D.28)

≤C

(
sup
θ∈Θ

∥∥∥L̂N(θ)− LM(θ)
∥∥∥+ ∥∥LM(θ̌)− LM(θ∗M)

∥∥) p→ 0 (D.29)

under conditions (x) and (xi) in Assumption A.1.

(D.22) implies

L̂N(θ̌)
−1 = LM(θ∗M)−1(Ik + op(1)). (D.30)
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Using (D.30), (D.21) can be written as

V
−1/2
M

√
N(θ̂N − θ∗M) =− V

−1/2
M LM(θ∗M)−1 1√

N

M∑
i=1

RiM ·miM(WiM , θ
∗
M)

− V
−1/2
M LM(θ∗M)−1op(1)

1√
N

M∑
i=1

RiM ·miM(WiM , θ
∗
M) + op(1).

(D.31)

We can write

1√
N

M∑
i=1

RiM ·miM(WiM , θ
∗
M) =

√
MρUMρGM

N

1√
M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M)

=
(
1 + op(1)

) 1√
M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M).

(D.32)

Plug (D.32) into (D.31), we have

V
−1/2
M

√
N(θ̂N − θ∗M)

=− V
−1/2
M LM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M)

− V
−1/2
M LM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M) · op(1) + op(1). (D.33)

Since

V

(
1√
M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M)

)

=
1

MρUMρGM

{ M∑
i=1

V
[
RiM ·miM(WiM , θ

∗
M)
]

+
G∑

g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

COV
[
RiM ·miM(WiM , θ

∗
M), RjM ·mjM(WjM , θ

∗
M)
]}

=
1

MρUMρGM

{ M∑
i=1

[
E
(
RiM ·miM(WiM , θ

∗
M)miM(WiM , θ

∗
M)′
)

− E
(
RiM ·miM(WiM , θ

∗
M)
)
E
(
RiM ·miM(WiM , θ

∗
M)
)′]
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+
G∑

g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

[
E
(
RiMRjM ·miM(WiM , θ

∗
M)mjM(WjM , θ

∗
M)′
)

− E
(
RiM ·miM(WiM , θ

∗
M)
)
E
(
RjM ·mjM(WjM , θ

∗
M)
)′]}

=
1

M

{ M∑
i=1

[
E
(
miM(WiM , θ

∗
M)miM(WiM , θ

∗
M)′
)

− ρUMρGME
(
miM(WiM , θ

∗
M)
)
E
(
miM(WiM , θ

∗
M)
)′]

+
G∑

g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

[
ρUME

(
miM(WiM , θ

∗
M)mjM(WjM , θ

∗
M)′
)

− ρUMρGME
(
miM(WiM , θ

∗
M)
)
E
(
mjM(WjM , θ

∗
M)
)′]}

= ∆ehw,M(θ∗M)− ρUMρGM∆E,M + ρUM∆cluster,M(θ∗M)− ρUMρGM∆EC,M , (D.34)

we have

V

(
V

−1/2
M LM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M)

)
= Ik. (D.35)

Given ∀ θ ∈ Θ

sup
i,M

E

[∥∥∥∥ RiM√
ρUMρGM

miM(WiM , θ)

∥∥∥∥r
]
≤ 1

(ρUMρGM)r/2−1
sup
i,M

E
[
sup
θ∈Θ

∥miM(WiM , θ)∥r
]
<∞

(D.36)

for some r > 2 under condition (vii) in Assumption A.1,

V
−1/2
M LM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M)

d→ N (0, Ik) (D.37)

by Theorem 2 in Hansen and Lee (2019) under Assumption 4′ and condition (viii) in

Assumption A.1.
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Because of (D.37),

V
−1/2
M

√
N(θ̂N − θ∗M) =− V

−1/2
M LM(θ∗M)−1 1√

M

M∑
i=1

RiM√
ρUMρGM

miM(WiM , θ
∗
M)

+ op(1)Op(1) + op(1)
d→ N (0, Ik).

(D.38)

As for Theorem 2.1(2), it is equivalent to show
∥∥∥V −1/2

SM V̂SNV
−1/2
SM − Ik

∥∥∥ p→ 0.

Since (D.30) holds by replacing θ̌ with θ̂N ,

L̂N(θ̂N)
−1 = LM(θ∗M)−1

(
Ik + op(1)

)
. (D.39)

We can write

∆̂ehw,N(θ) + ∆̂cluster,N(θ)

=
1

N

G∑
g=1

[ ∑
i∈NG

g

RiM ·miM(WiM , θ)

][ ∑
i∈NG

g

RiM ·miM(WiM , θ)

]′

=
MρUMρGM

N

1

M

G∑
g=1

[ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

][ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

]′

=
(
1 + op(1)

) 1

M

G∑
g=1

[ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

][ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

]′
.

(D.40)

Note that

E

{
1

M

G∑
g=1

[ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

][ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

]′}

=E
[
1

M

M∑
i=1

RiM

ρUMρGM

miM(WiM , θ)miM(WiM , θ)
′
]

+ E
[
1

M

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

RiMRjM

ρUMρGM

miM(WiM , θ)mjM(WjM , θ)
′
]

=
1

M

M∑
i=1

E
[
miM(WiM , θ)miM(WiM , θ)

′]
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+
1

M

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g \{i}

ρUME
[
miM(WiM , θ)mjM(WjM , θ)

′]
=∆ehw,M(θ) + ρUM∆cluster,M(θ). (D.41)

Hence, ∀ θ ∈ Θ∥∥∥∥∥ 1

M

G∑
g=1

[ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

][ ∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

]′

−
(
∆ehw,M(θ) + ρUM∆cluster,M(θ)

)∥∥∥∥∥ p→ 0 (D.42)

follows by (D.36) and the same proof of (62) in Hansen and Lee (2019) under As-

sumption 4′. Also, ∆ehw,M(θ) + ρUM∆cluster,M(θ) is continuous in θ for all M by the

dominated convergence theorem (DCT), Jensen’s inequality, and Cauchy-Schwarz In-

equality under conditions (iv) and (vii) in Assumption A.1.

In addition,∥∥∥∆̂ehw,N(θ̃) + ∆̂cluster,N(θ̃)−
(
∆̂ehw,N(θ) + ∆̂cluster,N(θ)

)∥∥∥
≤ 1

N

G∑
g=1

∥∥∥∥∥
[ ∑

i∈NG
g

RiM ·miM(WiM , θ̃)

][ ∑
i∈NG

g

RiM ·miM(WiM , θ̃)

]′

−
[ ∑

i∈NG
g

RiM ·miM(WiM , θ)

][ ∑
i∈NG

g

RiM ·miM(WiM , θ)

]′∥∥∥∥∥
≤ 1

N

G∑
g=1

2 sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM ·miM(WiM , θ)

∥∥∥∥∥∥ ·∥∥∥∥∥∥
∑
i∈NG

g

RiM ·miM(WiM , θ̃)−
∑
i∈NG

g

RiM ·miM(WiM , θ)

∥∥∥∥∥∥
≤ 2

N

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM ·miM(WiM , θ)

∥∥∥∥∥∥
∑
i∈NG

g

RiMb1,iM(WiM)h(∥θ̃ − θ∥). (D.43)
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under condition (xii) in Assumption A.1. Let

B1
N :=

2

N

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM ·miM(WiM , θ)

∥∥∥∥∥∥
∑
i∈NG

g

RiMb1,iM(WiM)

=2
MρUMρGM

N

1

M

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

b1,iM(WiM)

=
(
1 + op(1)

) 2

M

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

b1,iM(WiM).

(D.44)

Since

E

[
sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

∥∥∥∥∥∥
2 ]

< C
(
MG

g

)2
(D.45)

by Cr inequality and Jensen’s inequality under condition (vii) in Assumption A.1,

E

[
2

M

G∑
g=1

sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

b1,iM(WiM)

]

≤ 2

M

G∑
g=1

∑
i∈NG

g

{
E

[
sup
θ∈Θ

∥∥∥∥∥∥
∑
i∈NG

g

RiM√
ρUMρGM

miM(WiM , θ)

∥∥∥∥∥∥
2 ]}1/2

·

{
E
[

RiM

ρUMρGM

b1,iM(WiM)2
]}1/2

≤C 1

M

G∑
g=1

(
MG

g

)2
<∞ (D.46)

by Cauchy-Schwarz inequality under Assumption 4′ and condition (xii) in Assumption

A.1. As a result, B1
N = Op(1) by Markov’s inequality. Therefore, given condition (viii)

in Assumption A.1,∥∥∥[∆ehw,M(θ∗M) + ρUM∆cluster,M(θ∗M)
]−1

[
∆̂ehw,N(θ̂N) + ∆̂cluster,N(θ̂N)−∆ehw,M(θ∗M)− ρUM∆cluster,M(θ∗M)

]∥∥∥
≤C
(
sup
θ∈Θ

∥∆̂ehw,N(θ) + ∆̂cluster,N(θ)−∆ehw,M(θ)− ρUM∆cluster,M(θ)∥
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+
∥∥∥∆ehw,M(θ̂N) + ρUM∆cluster,M(θ̂N)−∆ehw,M(θ∗M)− ρUM∆cluster,M(θ∗M)

∥∥∥) = op(1)

(D.47)

by Corollary 2.2 in Newey (1991) under θ̂N − θ∗M
p→ 0. Hence,

∆̂ehw,N(θ̂N) + ∆̂cluster,N(θ̂N)

=
(
∆ehw,M(θ∗M) + ρUM∆cluster,M(θ∗M)

)[
Ik +

(
∆ehw,M(θ∗M) + ρUM∆cluster,M(θ∗M)

)−1

(
∆̂ehw,N(θ̂N) + ∆̂cluster,N(θ̂N)−∆ehw,M(θ∗M)− ρUM∆cluster,M(θ∗M)

)]
=
(
∆ehw,M(θ∗M) + ρUM∆cluster,M(θ∗M)

)(
Ik + op(1)

)
.

(D.48)

Using (D.39) and (D.48),∥∥∥V −1/2
SM V̂SNV

−1/2
SM − Ik

∥∥∥
=
∥∥∥V −1/2

SM L̂N(θ̂N)
−1
(
∆̂ehw,N(θ̂N) + ∆̂cluster,N(θ̂N)

)
L̂N(θ̂N)

−1V
−1/2
SM − Ik

∥∥∥
=
∥∥∥V −1/2

SM LM(θ∗M)−1
(
Ik + op(1)

)(
∆ehw,M(θ∗M) + ρUM∆cluster,M(θ∗M)

)(
Ik + op(1)

)
·

LM(θ∗M)−1
(
Ik + op(1)

)
V

−1/2
SM − Ik

∥∥∥
≤
∥∥∥V −1/2

SM VSMV
−1/2
SM − Ik

∥∥∥+ ∥∥∥V −1/2
SM VSMV

−1/2
SM

∥∥∥ op(1)
=op(1). (D.49)

Proof of Proposition 2.1: We define:

V∆TWSM(θ) := ∆ehw,M(θ)+ρUM∆(G∩H),M(θ)+ρUMρHM∆G,M(θ)+ρUMρGM∆H,M(θ).

(D.50)

We first show pointwise convergence for a given θ in that V∆TWSM(θ)−1(V̂∆TWSM(θ)−
V∆TWSM(θ)) = op(1)Ik. By applying Lemma C.4,

(∆ehw,M(θ∗M) + ρUM∆G∩H,M(θ∗M) + ρUMρHM∆G,M(θ∗M))−1
(
∆̂ehw,N(θ̂N) + ∆̂G,N(θ̂N)

)
p−→ Ik

(∆ehw,M(θ∗M) + ρUM∆G∩H,M(θ∗M) + ρUMρGM∆H,M(θ∗M))−1
(
∆̂ehw,N(θ̂N) + ∆̂H,N(θ̂N)

)
p−→ Ik

63



It remains to consider the intersection terms. Consider the following condition

λG∩H
M

λGM
= o(1). (D.51)

We show that when (D.51) fails, the intersection variance can be consistently esti-

mated, i.e.,

(ρUM∆G∩H,M+∆ehw,M)−1
(
∆̂G∩H,N + ∆̂ehw,N(θ)− ρUM∆G∩H,M(θ)−∆ehw,M(θ)

)
= op(1)Ik,

(D.52)

but when it holds, the intersection term is negligible:

(ρUMρHM∆G,M + ρUM∆G∩H,M +∆ehw,M)−1
(
∆̂G∩H,N(θ̂) + ∆̂ehw,N(θ̂)

)
= op(1)Ik.

(D.53)

If (D.51) fails, then C
λG∩H
M

λG
M

̸= o(1), so λG∩H
M ≥ CλGM . Due to Lemma C.1,

∆̂G∩H,N+∆̂ehw,N =
1 + op(1)

MρUMρGMρHM

∑
g,h

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g,h)

RiMRjM ·miM(WiM , θ)mjM(WjM , θ)
′.

(D.54)
Hence,∥∥∥(ρUM∆G∩H,M +∆ehw,M )−1

(
∆̂G∩H,N + ∆̂ehw,N (θ)− ρUM∆G∩H,M (θ)−∆ehw,M (θ)

)∥∥∥
≤ C(1 + op(1))

λG
M

∥∥∥∥∥∥∥
∑
g,h

∑
i,j∈NG∩H

(g,h)

(RiMRjMmiM (WiM , θ)mjM (WjM , θ)′ − E [RiMRjMmiM (WiM , θ)mjM (WjM , θ)′])

∥∥∥∥∥∥∥
(D.55)
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The term then converges in probability as

P

 1

λG
M

∥∥∥∥∥∥∥
∑
g,h

∑
i,j∈NG∩H

(g,h)

(RiMRjMmiM (WiM , θ)mjM (WjM , θ)′ − E [RiMRjMmiM (WiM , θ)mjM (WjM , θ)′])

∥∥∥∥∥∥∥ > ϵ



≤ 1

ϵ(λG
M )2

E

∥∥∥∥∥∥∥
∑
i

∑
j∈NG∩H

(g(i),h(i))

(RiMRjMmiM (WiM , θ)mjM (WjM , θ)′ − E [RiMRjMmiM (WiM , θ)mjM (WjM , θ)′])

∥∥∥∥∥∥∥
2

≤ 1

ϵ(λG
M )2

∑
g,h

∑
g′,h′

∑
i,j∈NG∩H

(g,h)

∑
k,l∈NG∩H

(g′,h′)

(Aik +Ail +Ajk +Ajl)

≤ 1

ϵ(λG
M )2

∑
g

∑
g′

∑
i,j∈NG

g

∑
k,l∈NG

g′

(Aik +Ail +Ajk +Ajl) = o(1)

(D.56)

due to the same argument as Lemma C.4.
If (D.51) holds, then, due to Assumption 6, pointwise convergence holds as∥∥∥(ρUMρHM∆G,M + ρUM∆G∩H,M +∆ehw,M )−1

(
∆̂G∩H,N (θ̂) + ∆̂ehw,N (θ̂)

)∥∥∥
≤C(1 + op(1))

λG
M

∥∥∥∥∥∥∥
∑
g

∑
h

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g,h)

RiMRjMmiM (WiM , θ)mjM (WjM , θ)′

∥∥∥∥∥∥∥
≤C(1 + op(1))

λG
M

∥∥∥∥∥∥∥
∑
g,h

∑
i,j∈NG∩H

(g,h)

(RiMRjMmiM (WiM , θ)mjM (WjM , θ)′ − E [RiMRjMmiM (WiM , θ)mjM (WjM , θ)′])

∥∥∥∥∥∥∥
+

C(1 + op(1))

λG
M

∥∥∥∥∥∥∥
∑
g

∑
h

∑
i∈NG∩H

(g,h)

∑
j∈NG∩H

(g,h)

E [RiMRjMmiM (WiM , θ)mjM (WjM , θ)′]

∥∥∥∥∥∥∥
=op(1) + C(1 + op(1))

λG∩H
M

λG
M

= op(1). (D.57)

To obtain the convergence in the final line, apply the convergence in probability

from (D.56) and condition (D.51). By applying the continuous mapping theorem,

V̂∆TWSM(θ) converges in probability. Next, we proceed with uniform convergence.

Here, M
λM

(
∆ehw,M(θ) + ρUM∆(G∩H),M(θ) + ρUMρHM∆G,M(θ) + ρUMρGM∆H,M(θ)

)
is

continuous in θ for all M by the dominated convergence theorem (DCT), Jensen’s

inequality, and Cauchy-Schwarz inequality under conditions (iv) and (vii) in Assump-

tion A.3. In addition,

N

λGM

∥∥∥V̂∆TWSM(θ̃)− V̂∆TWSM(θ)
∥∥∥
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≤ 1

λGM

G∑
g=1

∥∥∥∥∥
[ ∑

i∈NG
g

RiM ·miM(WiM , θ̃)

][ ∑
i∈NG

g

RiM ·miM(WiM , θ̃)

]′

−
[ ∑

i∈NG
g

RiM ·miM(WiM , θ)

][ ∑
i∈NG

g

RiM ·miM(WiM , θ)

]′∥∥∥∥∥
+

1

λGM

H∑
h=1

∥∥∥∥∥
[ ∑

i∈NH
h

RiM ·miM(WiM , θ̃)

][ ∑
i∈NH

h

RiM ·miM(WiM , θ̃)

]′

−
[ ∑

i∈NH
h

RiM ·miM(WiM , θ)

][ ∑
i∈NH

h

RiM ·miM(WiM , θ)

]′∥∥∥∥∥
+

1

λGM

G∑
g=1

H∑
h=1

∥∥∥∥∥
[ ∑

i∈NG∩H
(g,h)

RiM ·miM(WiM , θ̃)

][ ∑
i∈NG∩H

(g,h)

RiM ·miM(WiM , θ̃)

]′

−
[ ∑

i∈NG∩H
(g,h)

RiM ·miM(WiM , θ)

][ ∑
i∈NG∩H

(g,h)

RiM ·miM(WiM , θ)

]′∥∥∥∥∥. (D.58)

By applying the same expansion steps as (D.43)-(D.46) for each of the three terms,

we conclude that

N

λGM

∥∥∥V̂∆TWSM(θ̃)− V̂∆TWSM(θ)
∥∥∥ ≤ B2

Nh(∥θ̃ − θ∥), (D.59)

where B2
N = Op(1).

Since the smallest eigenvalue is bounded below from (viii) in Assumption A.3,∥∥∥V∆TWSM(θ∗M)−1
[
V̂∆TWSM(θ̂N)− V∆TWSM(θ∗M)

]∥∥∥
≤C
(
sup
θ∈Θ

∥V̂∆TWSM(θ)− V∆TWSM(θ)∥ N
λGM

+ ∥V∆TWSM(θ̂N)− V∆TWSM(θ∗M)∥ N
λGM

)
= op(1)

(D.60)

by Corollary 2.2 in Newey (1991) under θ̂N − θ∗M
p→ 0. Hence,

V̂∆TWSM(θ̂N) = V∆TWSM(θ∗M)
[
Ik + V∆TWSM(θ∗M)−1

(
V̂∆TWSM(θ̂N)− V∆TWSM(θ∗M)

)]
= V∆TWSM(θ∗M)(Ik + op(1))

Given the convergence of L̂N(θ̂N) from (C.11), the entire object converges using the
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same argument as in Theorem 2.1.

Since V̂CGM is consistent for VTWSM , it remains to compare VTWSM with VTWM .

VTWSM − VTWM =LM(θ∗M)−1

(
ρUMρGMρHM∆E,M + ρUMρGMρHM∆E(G∩H),M

+ ρUMρGMρHM∆EG,M + ρUMρGMρHM∆EH,M

)
LM(θ∗M)−1

=ρUMρGMρHMLM(θ∗M)−1

(
∆E,M +∆E(G∩H),M +∆EG,M +∆EH,M

)
LM(θ∗M)−1

(D.61)

It is possible to construct a data generating process where ∆E,M + ∆E(G∩H),M +

∆EG,M +∆EH,M < 0, as seen in Example B.1.

Proof of Proposition 2.2: Pointwise convergence of the ∆ objects is immediate

from applying Lemma C.4 under Assumption 6 since the estimator and estimand

can be written as an additive combination of one-way cluster-robust objects. The

argument for uniform convergence is similar to that of the previous proposition.

VTWSM2 − VTWM =LM(θ∗M)−1

(
∆ehw,M(θ∗M) + ρUM∆(G∩H),M(θ∗M)

+ ρUMρGMρHM∆E,M + ρUMρGMρHM∆E(G∩H),M

+ ρUMρGMρHM∆EG,M + ρUMρGMρHM∆EH,M

)
LM(θ∗M)−1

(D.62)

Given

∆ehw,M(θ∗M) + ρUM∆(G∩H),M(θ∗M) ≥ ρUMρGMρHM∆E,M + ρUMρGMρHM∆E(G∩H),M ,

(D.63)

VTWSM2 − VTWM ≥ρUMρGMρHMLM(θ∗M)−1

(
2∆E,M + 2∆E(G∩H),M +∆EG,M +∆EH,M

)
LM(θ∗M)−1.

(D.64)

Since ∆E,M +∆E(G∩H),M +∆EG,M ≥ 0 and ∆E,M +∆E(G∩H),M +∆EH,M ≥ 0, we have
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a conservative estimand.

Proof of Lemma C.4:

The strategy follows Hansen and Lee (2019) (62) in the proof of their Theorem 6.

We can suppress dependence on θ for notational convenience. Fix any θ and δ > 0.

Set ε = (δ/C)2. Define

r̃g = f̃g1
(
||f̃g|| ≤

√
Mε
)
. (D.65)

Let λGM denote the rate such that 1
λG
M
∥EΩ̃M(θ)∥ is O(1) but not o(1). Then,

∥∥∥[EΩ̃M(θ)]−1[Ω̃M(θ)− EΩ̃M(θ)]
∥∥∥ ≤

∥∥∥[EΩ̃M(θ)]−1
∥∥∥∥∥∥[Ω̃M(θ)− EΩ̃M(θ)]

∥∥∥
≤ C(λGM)−1

∥∥∥[Ω̃M(θ)− EΩ̃M(θ)]
∥∥∥

(λGM)−1
∥∥∥Ω̃M(θ)− EΩ̃M(θ)

∥∥∥
≤(λGM)−1E

∥∥∥∥∥
G∑

g=1

(
r̃gr̃

′
g − Er̃gr̃′g

)∥∥∥∥∥+ 2(λGM)−1

G∑
g=1

E
(∥∥∥f̃g∥∥∥2 1(∥∥∥f̃g∥∥∥ > √

Mε
))

.

(D.66)

Since we have finite moments, for some C < ∞, E
∥∥∥f̃g∥∥∥2 ≤ C

(
MG

g

)2
by the Cr

inequality. Using Jensen’s inequality,

(λGM)−1E

∥∥∥∥∥
G∑

g=1

(
r̃gr̃

′
g − Er̃gr̃′g

)∥∥∥∥∥ ≤

(λGM)−2E

∥∥∥∥∥
G∑

g=1

(
r̃gr̃

′
g − Er̃gr̃′g

)∥∥∥∥∥
2
1/2

. (D.67)

The argument that (λGM)−2E
∥∥∥∑G

g=1

(
r̃gr̃

′
g − Er̃gr̃′g

)∥∥∥2 ≤ 4δ is similar to the proof

strategy of variance consistency in Yap (2025) Lemma 7. To be precise, due to

finite moments, and using Aij to denote an adjacency indicator of whether i, j are

dependent,

E

∥∥∥∥∥
G∑

g=1

(
r̃gr̃

′
g − Er̃gr̃′g

)∥∥∥∥∥
2

≤ C

G∑
g=1

∑
g′

∑
i,j∈NG

g

∑
k,l∈NG

g′

(Aik + Ail + Ajk + Ajl) (D.68)

There are only four adjacency terms: if (i, j) are independent of (k, l), then the

demeaning would have removed the relevant terms. Hence, an additional correlation

can only exist if units are correlated across the g clusters. We make the argument for
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the Aik term as the other terms are analogous.

G∑
g=1

∑
g′

∑
i,j∈NG

g

∑
k,l∈NG

g′

Aik =
M∑
i=1

∑
k

∑
j∈NG

g(i)

∑
l∈NG

g(k)

Aik

≤ max
g

(
MG

g

)2 M∑
i=1

∑
k∈Ni

Aik

≤ max
g

(
MG

g

)2 M∑
i=1

 ∑
k∈NG

g(i)

+
∑

k∈NH
h(i)

Aik

≤ max
g

(
MG

g

)2( G∑
g=1

(
MG

g

)2
+

H∑
h=1

(
MH

h

)2)
(D.69)

Then,

(λGM)−2

G∑
g=1

∑
g′

∑
i,j∈NG

g

∑
k,l∈NG

g′

Aik ≤ (λGM)−2max
g

(
MG

g

)2( G∑
g=1

(
MG

g

)2
+

H∑
h=1

(
MH

h

)2)
.

(D.70)

By assumption in the lemma, (λGM)−1maxg
(
MG

g

)2
= o(1), (λGM)−1

∑G
g=1

(
MG

g

)2
=

O(1), and (λGM)−1
∑H

h=1

(
MH

h

)2
= O(1). Hence, we can pick M large enough so that

(λGM)−2maxg
(
MG

g

)2
(2C) ≤ δ.

Next, consider 2
(
λGM
)−1∑G

g=1 E
(∥∥∥f̃g∥∥∥2 1(∥∥∥f̃g∥∥∥ > √

Mε
))

. Lemma 1 of Hansen

and Lee (2019) implies that
∥∥∥(MG

g

)−1
f̃g

∥∥∥2 is uniformly integrable. Their lemma can

be applied because it holds regardless of the covariance structure. This means we can

pick B sufficiently large so that:

sup
g

E
(∥∥∥(MG

g

)−1
f̃g

∥∥∥2 1(∥∥∥(MG
g

)−1
f̃g

∥∥∥ > B
))

≤ δ

C
(D.71)

Pick M large enough so that∥∥∥∥(λGM)−1/2max
g
MG

g

∥∥∥∥ ≤
√
ε

B
. (D.72)
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Then

2
(
λGM
)−1

G∑
g=1

E
(∥∥∥f̃g∥∥∥2 1(∥∥∥f̃g∥∥∥ > √

Mε
))

≤ 2
(
λGM
)−1

G∑
g=1

E
(∥∥∥f̃g∥∥∥2 1(∥∥∥(MG

g

)−1
f̃g

∥∥∥ > B
))

≤ 2
(
λGM
)−1

G∑
g=1

(
MG

g

)2 δ
C

≤ 2δ. (D.73)

We have shown that E
∥∥∥Ω̃M(θ)− EΩ̃M(θ)

∥∥∥ ≤ 6δ. Since δ is arbitrary, by Markov’s

inequality, we obtain the result.

D.3 Proof of Theorem 3.3

(The proof of Theorem 3.2 is almost the same as that of Theorem 3.3 with sampling

indicators and is hence omitted here.)

Recall that

P̂G,N =

( G∑
g=1

z̃′gM z̃gM

)−1( G∑
g=1

z̃′gMm̃gM(θ̂N)
′
)
. (D.74)

Let

PG,M :=

[
G∑

g=1

z̃′gM z̃gM

]−1 G∑
g=1

z̃′gME
[
m̃gM(θ∗M)

]′
. (D.75)

We derive convergence results for the G dimension as the H dimension is analogous.

To show convergence of these objects, we require the order of variances for z to be

similar to that of m. Namely, for C ∈ {G,H} and arbitrary constants a > 0, A <∞,

a ≤ 1

λGM
λmin

 M∑
i=1

∑
j∈NC

c(i)

E[ziMmjM(WjM , θ
∗
M)′]

 ≤ A

a ≤ 1

λGM
λmin

 M∑
i=1

∑
j∈NC

c(i)

E[ziMz′jM ]

 ≤ A

(D.76)

λGM is the scaling factor such that 1
λG
M

∑G
g=1 z̃

′
gM z̃gM = O(1) but not o(1). To show
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∥∥∥P̂G,N − PG,M

∥∥∥ p→ 0, we show

1

λGM

∥∥∥∥∥
G∑

g=1

m̃gM(θ̂N)z̃gM −
G∑

g=1

E
[
m̃gM(θ∗M)

]
z̃gM

∥∥∥∥∥ p→ 0. (D.77)

As a first step, we show ∀ θ ∈ Θ

1

λGM

∥∥∥∥∥
G∑

g=1

m̃gM(θ)z̃gM −
G∑

g=1

E
[
m̃gM(θ)

]
z̃gM

∥∥∥∥∥ p→ 0. (D.78)

Fix δ > 0. Set ϵ = (δ/C)2. Let

l̃gM := m̃gM(θ)z̃gM1

(
∥m̃gM(θ)z̃gM∥ ≤Mϵ

)
. (D.79)

Then

E

[
1

λGM

∥∥∥∥∥
G∑

g=1

m̃gM(θ)z̃gM −
G∑

g=1

E
[
m̃gM(θ)

]
z̃gM

∥∥∥∥∥
]

≤ 1

λGM
E

{∥∥∥∥∥
G∑

g=1

[
l̃gM − E

(
l̃gM
)]∥∥∥∥∥

}

+
2

λGM

G∑
g=1

E

[
∥m̃gM(θ)z̃gM∥1

(
∥m̃gM(θ)z̃gM∥ > Mϵ

)]
.

(D.80)

Observe that
1

λGM
E

[∥∥∥∥∥
G∑

g=1

(
l̃gM − E

(
l̃gM
))∥∥∥∥∥

]

≤ 1

λGM

{
E

[∥∥∥∥∥
G∑

g=1

(
l̃gM − E

(
l̃gM
))∥∥∥∥∥

2 ]}1/2

≤ 1

λGM

{
G∑

g=1

E
[ ∥∥∥l̃gM∥∥∥2 ]}1/2

≤4δ

(D.81)
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follows by an argument similar to the proof of Lemma C.4. Also,

sup
g,M

E
[ ∥∥∥m̃gM(θ)z̃gM

/(
MG

g

)2∥∥∥2 ]
≤
{
sup
g,M

E
[
sup
θ∈Θ

∥∥m̃gM(θ)/
(
MG

g

)∥∥4 ]}1/2{
sup
g,M

E
[ ∥∥z̃gM/ (MG

g

)∥∥4 ]}1/2

≤
{
sup
g,M

∑
i∈NG

g

(
E
[
sup
θ∈Θ

∥∥miM(WiM , θ)/
(
MG

g

)∥∥4 ])1/4}2

·
{
sup
g,M

∑
i∈NG

g

(
E
[ ∥∥ziM/ (MG

g

)∥∥4 ])1/4}2

≤ sup
i,M

E
[
sup
θ∈Θ

∥miM(WiM , θ)∥4
]1/2

sup
i,M

∥ziM∥2 <∞

(D.82)

by Jensen’s inequality under condition (vii) in Assumption A.3 and condition (ii) in

Theorem 3.3. Hence, we can pick B sufficiently large so that

sup
g,M

E

[∥∥∥m̃gM(θ)z̃gM

/(
MG

g

)2∥∥∥1(∥∥∥m̃gM(θ)z̃gM

/(
MG

g

)2∥∥∥ > B

)]
≤ δ

C
. (D.83)

Pick M large enough so that

max
g≤G

(
MG

g

)2
λGM

≤ ϵ

B
, (D.84)

which is feasible under Assumption 6. Then

2

λGM

G∑
g=1

E

[
∥m̃gM(θ)z̃gM∥1

(
∥m̃gM(θ)z̃gM∥ > Mϵ

)]
≤ 2

λGM

G∑
g=1

(
MG

g

)2 δ
C

≤ 2δ.

(D.85)

Combining (D.81) and (D.85), (D.78) holds by Markov’s inequality.

Next, ∥∥∥∥∥ 1

λGM

G∑
g=1

[
m̃gM(θ̃)z̃gM − m̃gM(θ)z̃gM

]∥∥∥∥∥
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=
1

λGM

G∑
g=1

∥∥∥∥∥∥
∑
i∈NG

g

∑
j∈NG

g

miM(WiM , θ̃)zjM −
∑
i∈NG

g

∑
j∈NG

g

miM(WiM , θ)zjM

∥∥∥∥∥∥
≤ 1

λGM

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g

∥∥∥miM(WiM , θ̃)−miM(WiM , θ)
∥∥∥ · ∥zjM∥

≤ 1

λGM

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g

b1,iM(WiM) · ∥zjM∥ · h(∥θ̃ − θ∥) (D.86)

Let

B3
N :=

1

λGM

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g

b1,iM(WiM) · ∥zjM∥ . (D.87)

Since

E(B3
N) =

1

λGM

G∑
g=1

∑
i∈NG

g

∑
j∈NG

g

E
[
b1,iM(WiM)

]
∥ziM∥

≤ 1

λGM

G∑
g=1

(
MG

g

)2
sup
i,M

{
E
[
b1,iM(WiM)2

]}1/2

sup
i,M

∥ziM∥ <∞

(D.88)

by Jensen’s inequality under condition (xii) in Assumption A.3, condition (ii) in Theo-

rem 3.3, and Assumption 6, B3
N = Op(1) by Markov’s inequality. Also, 1

λG
M

∑G
g=1 E

[
m̃gM(θ)

]
z̃gM

is continuous in θ for all M by the DCT and Jensen’s inequality under Assumption

6 and conditions (iv) and (vii) in Assumption A.3. As a result,

1

λGM

∥∥∥∥∥
G∑

g=1

m̃gM(θ̂N)z̃gM −
G∑

g=1

E
[
m̃gM(θ∗M)

]
z̃gM

∥∥∥∥∥
≤ 1

λGM
sup
θ∈Θ

∥∥∥∥∥
G∑

g=1

m̃gM(θ)z̃gM −
G∑

g=1

E
[
m̃gM(θ)

]
z̃gM

∥∥∥∥∥
+

1

λGM

∥∥∥∥∥
G∑

g=1

E
[
m̃gM(θ̂N)

]
z̃gM −

G∑
g=1

E
[
m̃gM(θ∗M)

]
z̃gM

∥∥∥∥∥ p→ 0. (D.89)

follows by Corollary 2.2 in Newey (1991) under θ̂N − θ∗M
p→ 0.

The result
∥∥∥P̂G,N − PG,M

∥∥∥ p→ 0 follows immediately under the continuity of inver-
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sion and multiplication.

Denote ∆Z
GE,M := 1

M

G∑
g=1

P ′
G,M z̃

′
gM z̃gMPG,M . We can write

∆̂Z
GE,N =

1

M

G∑
g=1

P̂ ′
G,N z̃

′
gM z̃gM P̂G,N

=
1

M

G∑
g=1

(
P ′
G,M + op(1)

)
z̃′gM z̃gM

(
PG,M + op(1)

)
. (D.90)

Then, ∥∥∥(∆Z
GE,M)−1

(
∆̂Z

GE,N −∆Z
GE,M

)∥∥∥ = op(1). (D.91)

To show the ordering of the variance-covariance matrices in Theorem 3.3, notice

that

∆E,M +∆EG,M −∆Z
GE,M

=
1

M

G∑
g=1

E
[
m̃gM(θ∗M)

]
E
[
m̃gM(θ∗M)

]′
− 1

M

G∑
g=1

E
[
m̃gM(θ∗M)

]
z̃gM

[
1

M

G∑
g=1

z̃′gM z̃gM

]−1
1

M

G∑
g=1

z̃′gME
[
m̃gM(θ∗M)

]′
. (D.92)

Let AG and DG be the matrices with g-th rows equal to E
[
m̃gM(θ∗M)

]′
/
√
M and

z̃gM/
√
M respectively. Let IG be the identity matrix of size G. Then,

∆E,M +∆EG,M −∆Z
GE,M = A′

G

(
IG −DG(D

′
GDG)

−1D′
G

)
AG, (D.93)

which is PSD. Hence, the result.

The final part of the theorem follows from previous derivation in (D.52) and

(D.53).
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E Online Appendix

E.1 Derivation for Shrinkage Variance Expressions

Derivation for Table 1:

It suffices to work with the estimand, because subsequent theorems show con-

sistency. The superpopulation cluster variance (V∆SM = ∆ehw,M + ρUM∆cluster,M)

over-estimates the true variance by:

V∆SM − V∆M = ρUMρGM∆E,M + ρUMρGM∆EC,M (E.1)

First, consider Case 1. Without cluster assignment, ∆EC,M = ∆cluster,M . Since

∆̂cluster,N consistently estimates ρUM∆cluster,M , ρUMρGM can be estimated by N/M ,

and ρGM can be estimated by GN/G, the proposed adjustment is:(
GN

G
∆̂cluster,N +

N

M
∆̂Z

N

)
(E.2)

Then, the proposed estimator is:

∆̂ehw,N + ∆̂cluster,N −
(
GN

G
∆̂cluster,N +

N

M
∆̂Z

N

)
(E.3)

which is of the form required.

In Case 2 and Case 3, since ∆EC,M ̸= ∆cluster,M in general, we can correct for both

term simultaneously. The proposed adjustment is hence (N/M)∆̂Z
CE,N .

In Case 4, ρGM = 1 without clustered sampling and ∆EC,M = ∆cluster,M without

clustered assignment so that V∆M = ∆ehw,M − ρUM∆EC,M . Hence, the proposed

variance is as stated.

Derivation for Table 2:

In this derivation, we retain the notation with ρUM , ρGM , ρHM to accommodate

both the case where we observe the entire population and the case where sampling is

allowed with unbounded cluster sizes.

Taking the meat of the VTWSM2 expression, the estimand of 2∆̂ehw,N+∆̂G,N+∆̂H,N
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is

V∆,CGM2 = 2∆ehw,M(θ∗M)+2ρUM∆(G∩H),M(θ∗M)+ρUMρHM∆G,M(θ∗M)+ρUMρGM∆H,M(θ∗M).

(E.4)

Hence, the CGM2 estimand over-estimates the true variance by:

V∆,CGM2 − V∆TWM = ∆ehw,M + ρUM∆(G∩H),M

+ ρUMρGMρHM∆E,M + ρUMρGMρHM∆E(G∩H),M

+ ρUMρGMρHM∆EG,M + ρUMρGMρHM∆EH,M

(E.5)

As before, ρUMρGMρHM can be estimated using N/M . Since ρGM and ρHM can be

estimated using GN/G and HN/H respectively, ρUM can be estimated using N
M

G
GN

H
HN

.

Consider Case 1. With only clustered sampling on both dimensions, ∆̂G,N con-

sistently estimates ρUMρHM∆G,M + ρUM∆(G∩H),M and ∆̂H,N consistently estimates

ρUMρGM∆H,M +ρUM∆(G∩H),M . For the terms to appear, the estimation for ∆ehw,M +

ρUM∆(G∩H),M uses ∆̂ehw,N + ∆̂(G∩H),N . We estimate ρUMρGMρHM∆E(G∩H),M using
GN

G
HN

H
∆̂(G∩H),N . We estimate ρUMρGMρHM∆EG,M using GN

G
(∆̂G,N − ∆̂(G∩H),N) and

ρUMρGMρHM∆EH,M using HN

H
(∆̂H,N − ∆̂(G∩H),N). We adjust for ρUMρGMρHM∆E,M

using N/M∆̂Z
N . Hence, the estimator is:

2∆̂ehw,N + ∆̂G,N + ∆̂H,N − ∆̂ehw,N − ∆̂(G∩H),N −N/M∆̂Z
N

−GN

G

HN

H
∆̂(G∩H),N − GN

G
(∆̂G,N − ∆̂(G∩H),N)−

HN

H
(∆̂H,N − ∆̂(G∩H),N),

(E.6)

which simplifies to the expression in Table 2.

Consider Case 2. We use ∆Z
HE,M to correct for ∆E,M +∆E(G∩H),M +∆EH,M . We

can use N/M ·∆Z
GE,M to correct for ∆ehw,M + ρUM∆(G∩H),M + ρUMρGMρHM∆EG,M .

Since ∆ehw,M + ρUM∆(G∩H),M ≥ ρUMρGMρHM∆E,M + ρUMρGMρHM∆E(G∩H),M ,

∆ehw,M + ρUM∆(G∩H),M + ρUMρGMρHM∆EG,M − ρUMρGMρHM∆Z
GE,M

≥ρUMρGMρHM(∆E,M +∆E(G∩H),M +∆EG,M −∆Z
GE,M) ≥ 0,

(E.7)

so our adjustment of N/M · (∆̂Z
GE,N + ∆̂Z

HE,N) still makes the variance estimator

conservative.
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E.2 Proofs for Sections 2 and 3

Proof of Theorem 2.2:

First, using similar arguments in the proof of Theorem 2.1,

γ̂N − γ∗M
p→ 0 (E.8)

under conditions (i), (ii), and (vi) in Assumption A.2.

By the mean value expansion around θ∗M ,

V
−1/2
f,M

1√
N

M∑
i=1

RiMfiM(WiM , θ̂N)

=V
−1/2
f,M

1√
N

M∑
i=1

RiMfiM(WiM , θ
∗
M)

+ V
−1/2
f,M

1

N

M∑
i=1

RiM∇θfiM(WiM , θ̌)
√
N(θ̂N − θ∗M),

(E.9)

where θ̌ lies on the line segment connecting θ∗M and θ̂N .

Given Theorem 2.1, V
−1/2
M

√
N(θ̂N − θ∗M) = Op(1). Further,

F̂N(θ̌) = FM(θ∗M) + op(1) (E.10)

under conditions (i), (iv), and (v) in Assumption A.2. Therefore,

V
−1/2
f,M

1

N

M∑
i=1

RiM∇θfiM(WiM , θ̌)
√
N(θ̂N − θ∗M) = V

−1/2
f,M FM(θ∗M)

√
N(θ̂N − θ∗M)+ op(1).

(E.11)

According to the mean value expansion in the proof of the asymptotic normality of

V
−1/2
M

√
N(θ̂N − θ∗M),

V
−1/2
M

√
N(θ̂N −θ∗M) = −V −1/2

M

1√
N

M∑
i=1

RiMLM(θ∗M)−1miM(WiM , θ
∗
M)+op(1). (E.12)
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Combining (E.9), (E.11), and (E.12),

V
−1/2
f,M

1√
N

M∑
i=1

RiMfiM(WiM , θ̂N)

=V
−1/2
f,M

1√
N

M∑
i=1

RiM

[
fiM(WiM , θ

∗
M)− FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]
+ op(1).

(E.13)

Subtract V
−1/2
f,M

√
Nγ∗M from both sides of (E.13).

V
−1/2
f,M

√
N
(
γ̂ − γ∗M

)
=V

−1/2
f,M

1√
N

M∑
i=1

RiM

[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]
+ op(1)

=V
−1/2
f,M

√
MρUMρGM

N

1√
M

M∑
i=1

RiM√
ρUMρGM

[
fiM(WiM , θ

∗
M)− γ∗M

− FM(θ∗M)LM(θ∗M)−1miM(WiM , θ
∗
M)
]
+ op(1)

=
(
1 + op(1)

)
V

−1/2
f,M

1√
M

M∑
i=1

RiM√
ρUMρGM

[
fiM(WiM , θ

∗
M)− γ∗M

− FM(θ∗M)LM(θ∗M)−1miM(WiM , θ
∗
M)
]
+ op(1) (E.14)

Observe that ∀ θ ∈ Θ

sup
i,M

E

{∥∥∥∥ RiM√
ρUMρGM

[
fiM(WiM , θ)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ)

]∥∥∥∥r
}

≤ 1

(ρUMρGM)r/2−1

{[
sup
i,M

E
(
sup
θ∈Θ

∥fiM(WiM , θ)∥r
)]1/r

+ ∥γ∗M∥

+ C ∥FM(θ∗M)∥
[
sup
i,M

E
(
sup
θ∈Θ

∥miM(WiM , θ)∥r
)]1/r}r

<∞ (E.15)

for some r > 2 by Minkowski’s inequality and Jensen’s inequality under conditions
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(ii) and (iv) in Assumption A.2, and condition (vii) in Assumption A.1. Also,

V

{
1√
M

M∑
i=1

RiM√
ρUMρGM

[
fiM(WiM , θ

∗
M)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
]}

=∆f
ehw,M − ρUMρGM∆f

E,M + ρUM∆f
cluster,M − ρUMρGM∆f

EC,M .

(E.16)

By Theorem 2 in Hansen and Lee (2019)

V
−1/2
f,M

1√
M

M∑
i=1

RiM√
ρUMρGM

[
fiM(WiM , θ

∗
M)−γ∗M−FM(θ∗M)LM(θ∗M)−1miM(WiM , θ

∗
M)
] d→ N (0, Iq)

(E.17)

under Assumption 4′ and condition (iii) in Assumption A.2.

To show Theorem 2.2(2), observe that

∆̂f
ehw,N + ∆̂f

cluster,N

=
MρUMρGM

N

1

M

G∑
g=1

{ ∑
i∈NG

g

RiM√
ρUMρGM

[
fiM(WiM , θ̂N)− γ̂N

− F̂N(θ̂N)L̂N(θ̂N)
−1miM(WiM , θ̂N)

]}
·{ ∑

i∈NG
g

RiM√
ρUMρGM

[
fiM(WiM , θ̂N)− γ̂N − F̂N(θ̂N)L̂N(θ̂N)

−1miM(WiM , θ̂N)
]}′

=
(
1 + op(1)

) 1

M

G∑
g=1

{ ∑
i∈NG

g

RiM√
ρUMρGM

[
fiM(WiM , θ̂N)− γ∗M + op(1)

−
(
FM(θ∗M) + op(1)

)
LM(θ∗M)−1

(
Ik + op(1)

)
miM(WiM , θ̂N)

]}
·{ ∑

i∈NG
g

RiM√
ρUMρGM

[
fiM(WiM , θ̂N)− γ∗M + op(1)

−
(
FM(θ∗M) + op(1)

)
LM(θ∗M)−1

(
Ik + op(1)

)
miM(WiM , θ̂N)

]}′

=
(
1 + op(1)

) 1

M

G∑
g=1

{ ∑
i∈NG

g

RiM√
ρUMρGM

[
fiM(WiM , θ̂N)− γ∗M
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− FM(θ∗M)LM(θ∗M)−1miM(WiM , θ̂N)
]}

·{ ∑
i∈NG

g

RiM√
ρUMρGM

[
figM(WiM , θ̂N)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ̂N)

]}′

+ op(1)

(E.18)

under condition (ii) in Assumption A.2, condition (vii) in Assumption A.1, and As-

sumption 4′. Denote

∆̃(θ) =
1

M

G∑
g=1

{ ∑
i∈NG

g

RiM√
ρUMρGM

[
fiM(WiM , θ)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ)

]}
·

{ ∑
i∈NG

g

RiM√
ρUMρGM

[
fiM(WiM , θ)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ)

]}′

.

(E.19)

It suffices to show∥∥∥(∆f
ehw,M + ρUM∆f

cluster,M)−1/2∆̃(θ̂N)(∆
f
ehw,M + ρUM∆f

cluster,M)−1/2 − Iq

∥∥∥ = op(1).

(E.20)

Note that∥∥∥∥ RiM√
ρUMρGM

{[
fiM(WiM , θ̃)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ̃)

]
−
[
fiM(WiM , θ)− γ∗M − FM(θ∗M)LM(θ∗M)−1miM(WiM , θ)

]}∥∥∥∥
≤ RiM√

ρUMρGM

[ ∥∥∥fiM(WiM , θ̃)− fiM(WiM , θ)
∥∥∥

+ C
∥∥∥miM(WiM , θ̃)−miM(WiM , θ)

∥∥∥ ]
≤ RiM√

ρUMρGM

[
b2,iM(WiM)h(∥θ̃ − θ∥) + Cb1,iM(WiM)h(∥θ̃ − θ∥)

]
.

(E.21)

Let

b3,iM(WiM) =
RiM√
ρUMρGM

[
b2,iM(WiM) + Cb1,iM(WiM)

]
. (E.22)
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Observe that

sup
i,M

E
[
b3,iM(WiM)2

]
≤ sup

i,M
E
[
b2,iM(WiM)2

]
+ C sup

i,M
E
[
b1,iM(WiM)2

]
+ C

{
sup
i,M

E
[
b2,iM(WiM)2

]
sup
i,M

E
[
b1,iM(WiM)2

]}1/2

<∞

(E.23)

by Cauchy-Schwarz inequality under condition (xii) in Assumption A.1 and condition

(vi) in Assumption A.2. Therefore, (E.20) follows from similar arguments in the proof

of Theorem 2.1(2).

Proof of Theorem 3.1: Let

KM =

( M∑
i=1

z′iMziM

)−1{ M∑
i=1

z′iME
[
miM(WiM , θ

∗
M)
]′}

. (E.24)

To show
∥∥∥K̂N −KM

∥∥∥ p→ 0, we first show

∥∥∥∥∥ 1

N

M∑
i=1

RiMz
′
iMziM − 1

M

M∑
i=1

z′iMziM

∥∥∥∥∥ p→ 0. (E.25)

We can write

1

N

M∑
i=1

RiMz
′
iMziM =

MρUMρGMρHM

N

1

M

M∑
i=1

RiM

ρUMρGMρHM

z′iMziM . (E.26)

Since MρUMρGMρHM

N

p→ 1, it suffices to show∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGMρHM

z′iMziM − 1

M

M∑
i=1

z′iMziM

∥∥∥∥∥ p→ 0. (E.27)

Given

sup
i,M

E

[∥∥∥∥ RiM

ρUMρGMρHM

z′iMziM

∥∥∥∥2
]
=

1

ρUMρGMρHM

sup
i,M

∥ziM∥4 <∞ (E.28)

under condition (ii) in Theorem 3.1, (E.27) is implied by Lemma C.1.
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Next, we show∥∥∥∥∥ 1

N

M∑
i=1

RiM ·miM(WiM , θ̂N)ziM − 1

M

M∑
i=1

E
[
miM(WiM , θ

∗
M)
]
ziM

∥∥∥∥∥ p→ 0. (E.29)

Again, we can write

1

N

M∑
i=1

RiM ·miM(WiM , θ̂N)ziM =
MρUMρGMρHM

N

1

M

M∑
i=1

RiM

ρUMρGMρHM

miM(WiM , θ̂N)ziM

=
(
1 + op(1)

) 1

M

M∑
i=1

RiM

ρUMρGMρHM

miM(WiM , θ̂N)ziM .

(E.30)

We first show ∀ θ ∈ Θ∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGMρHM

miM(WiM , θ)ziM − 1

M

M∑
i=1

E
[
miM(WiM , θ)

]
ziM

∥∥∥∥∥ p→ 0. (E.31)

Since ∀ θ ∈ Θ

sup
i,M

E

[∥∥∥∥ RiM

ρUMρGMρHM

miM(WiM , θ)ziM

∥∥∥∥2
]

≤ 1

ρUMρGMρHM

{
sup
i,M

E
[
sup
θ∈Θ

∥miM(WiM , θ)∥4
]}1/2

sup
i,M

∥ziM∥2 <∞,

(E.32)

(E.31) holds Lemma C.1. Next, we show the Lipschitz condition. ∀ θ̃, θ ∈ Θ∥∥∥miM(WiM , θ̃)ziM −miM(WiM , θ)ziM

∥∥∥ ≤∥ziM∥ ·
∥∥∥miM(WiM , θ̃)−miM(WiM , θ)

∥∥∥
≤∥ziM∥ b1,iM(WiM)h(∥θ̃ − θ∥)

(E.33)

and

sup
i,M

E
[
∥ziM∥ b1,iM(WiM)

]
≤ sup

i,M
∥ziM∥ sup

i,M

{
E
[
b1,iM(WiM)2

]}1/2

<∞ (E.34)
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by Jensen’s inequality. As a result,∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGMρHM

miM(WiM , θ̂N)ziM − 1

M

M∑
i=1

E
[
miM(WiM , θ

∗
M)
]
ziM

∥∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥∥ 1

M

M∑
i=1

RiM

ρUMρGMρHM

miM(WiM , θ)ziM − 1

M

M∑
i=1

E
[
miM(WiM , θ)

]
ziM

∥∥∥∥∥
+

∥∥∥∥∥ 1

M

M∑
i=1

E
[
miM(WiM , θ̂N)

]
ziM − 1

M

M∑
i=1

E
[
miM(WiM , θ

∗
M)
]
ziM

∥∥∥∥∥ p→ 0 (E.35)

by Lemma C.3 above and Corollary 2.2 in Newey (1991) under θ̂N − θ∗M
p→ 0. Com-

bining (E.25) and (E.29), we conclude that
∥∥∥K̂N −KM

∥∥∥ p→ 0.

Hence,

∆̂Z
N =

1

N

M∑
i=1

RiM

(
K ′

M + op(1)
)
z′iMziM

(
KM + op(1)

)
. (E.36)

Let

∆Z
M =

1

M

M∑
i=1

E
[
miM(WiM , θ

∗
M)
]
ziM

(
1

M

M∑
i=1

z′iMziM

)−1
1

M

M∑
i=1

z′iME
[
miM(WiM , θ

∗
M)
]′
.

(E.37)∥∥∥∆̂Z
N −∆Z

M

∥∥∥ = op(1) (E.38)

given (E.25).

Let AM and DM be the matrices with i-th rows equal to E
[
miM(WiM , θ

∗
M)
]′
/
√
M

and ziM/
√
M respectively. Let IM be the identity matrix of size M . Then,

∆E,M −∆Z
M = A′

M

(
IM −DM(D′

MDM)−1D′
M

)
AM , (E.39)

which is PSD. Hence, the result.
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E.3 Proofs for Appendix C

Proof of Lemma C.1: By Chebyshev’s inequality, for any ϵ > 0,

P

(∑M
i=1 ViM
M

)2

> ϵ

 ≤ 1

ϵ2M2
E

( M∑
i=1

ViM

)2


≤ C

∑
g(M

G
g )

2 +
∑

h(M
H
h )2

M2
= o(1).

(E.40)

The second inequality follows from bounded variances and the final o(1) equality

follows from Assumption 4.

Proof of Lemma C.2: Observe that:

N

MρUMρGMρHM

− 1 =

∑M
i=1 (RiM − E[RiM ])

MρUMρGMρHM

. (E.41)

Since ρUM , ρGM , ρHM are nonzero by Assumption 2, Lemma C.1 yields the result.

Proof of Lemma C.3: We first show result (1).∥∥∥AN(θ̃)− AN(θ)
∥∥∥

=

∥∥∥∥∥ 1

N

M∑
i=1

RiM

[
aiM(WiM , θ̃)− aiM(WiM , θ)

]∥∥∥∥∥
≤ 1

N

M∑
i=1

RiM

∥∥∥aiM(WiM , θ̃)− aiM(WiM , θ)
∥∥∥

≤ 1

N

M∑
i=1

RiM · biM(WiM)h(∥θ̃ − θ∥)

=BNh(∥θ̃ − θ∥) (E.42)

BN :=
1

N

M∑
i=1

RiM · biM(WiM) =
MρUMρGMρHM

N

1

M

M∑
i=1

RiM

ρUMρGMρHM

biM(WiM)

(E.43)

Because of Lemma C.2 and the continuous mapping theorem, MρUMρGMρHM

N

p→ 1. As

a result, it is sufficient to prove 1
M

M∑
i=1

RiM

ρUMρGMρHM
biM(WiM) = Op(1). For all ϵ > 0,
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let bϵ = C/ϵ for some C <∞,

P
(∣∣∣∣ 1M

M∑
i=1

RiM

ρUMρGMρHM

biM(WiM)

∣∣∣∣ ≥ bϵ

)

≤E
(∣∣∣∣ 1M

M∑
i=1

RiM

ρUMρGMρHM

biM(WiM)

∣∣∣∣)/bϵ
≤ 1

M

M∑
i=1

E
( RiM

ρUMρGMρHM

)
E
[∣∣biM(WiM)

∣∣]/bϵ
≤ sup

i,M
E
[∣∣biM(WiM)

∣∣]/bϵ < C/bϵ = ϵ.

(E.44)

Hence, BN = Op(1).

Next, we show {AM(θ)} is uniformly equicontinuous. The proof is based on slight

modification of the proof of Theorem 2 in Jenish and Prucha (2009).

sup
θ∈Θ

sup
θ̃∈B(θ,δ)

∥∥∥AM(θ̃)− AM(θ)
∥∥∥

≤ 1

M

M∑
i=1

sup
θ∈Θ

sup
θ̃∈B(θ,δ)

∥∥∥E[aiM(WiM , θ̃)− aiM(WiM , θ)
]∥∥∥

≤ 1

M

M∑
i=1

E
[
sup
θ∈Θ

sup
θ̃∈B(θ,δ)

∥∥∥aiM(WiM , θ̃)− aiM(WiM , θ)
∥∥∥ ]

=
1

M

M∑
i=1

E(YiM(δ)), (E.45)

where YiM(δ) := supθ∈Θ supθ̃∈B(θ,δ) ∥aiM(WiM , θ̃)− aiM(WiM , θ)∥.
Define liM = supθ∈Θ ∥aiM(WiM , θ)∥. Given condition (ii), there exists k = k(ϵ) < ∞
for some ϵ > 0 such that

lim sup
M→∞

1

M

M∑
i=1

E
[
liM1(liM > k)

]
<
ϵ

6
. (E.46)

Under condition (i), aiM(WiM , θ) is L0 stochastically equicontinuous on Θ by Propo-
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sition 1 in Jenish and Prucha (2009). Hence, we can find some δ = δ(ϵ) such that

lim sup
M→∞

1

M

M∑
i=1

P (YiM(δ) > ϵ/3) ≤ ϵ

6k
. (E.47)

lim sup
M→∞

1

M

M∑
i=1

E(YiM(δ))

≤ϵ/3 + lim sup
M→∞

1

M

M∑
i=1

E
[
YiM(δ)1(YiM(δ) > ϵ/3, liM > k)

]
+ lim sup

M→∞

1

M

M∑
i=1

E
[
YiM(δ)1(YiM(δ) > ϵ/3, liM ≤ k)

]
≤ϵ/3 + 2 lim sup

M→∞

1

M

M∑
i=1

E
[
liM1(liM > k)

]
+ 2k

1

M

M∑
i=1

lim sup
M→∞

P (YiM(δ) > ϵ/3) = ϵ

(E.48)

As a result, lim supM→∞ supθ∈Θ supθ̃∈B(θ,δ)

∥∥∥AM(θ̃)− AM(θ)
∥∥∥→ 0 as δ → 0.

E.4 Proofs for Further Examples in Appendix D.1

Lemma E.1. Suppose there is multiway clustering in a binary assignment described

in Section D.1.1. Then, if c(i) = c(j), then E [XiMXjM ] = (µ2
A + σ2

A) (µ
2
B + σ2

B).

If g(i) = g(j), h(i) ̸= h(j), then E [XiMXjM ] = (µ2
A + σ2

A)µ
2
B. If g(i) ̸= g(j) and

h(i) ̸= h(j), then E [XiMXjM ] = µ2
Aµ

2
B.

Proof:

E [XiMXjM ] = E [E [XiMXjM |Ag, Bh]]

= E
[
A2

gB
2
h

]
= E

[
A2

g

]
E
[
B2

h

]
=
(
µ2
A + σ2

A

) (
µ2
B + σ2

B

)
(E.49)

Further,

E [XiMXjM ] = E [E [XiMXjM |Ag, Bh, Bh′ , g(i) = g(j) = g, h(i) = h, h(j) = h′]]

= E
[
A2

gBhBh′
]
= E

[
A2

g

]
E [Bh]

2 =
(
µ2
A + σ2

A

)
µ2
B (E.50)
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Lemma E.2. Let ViM and SiM be two-way clustered scalar random variables that are

potentially correlated that have bounded second moments. Under Assumptions 1 to 4,

1

M

M∑
i=1

SiM
1

MG
g(i)

∑
j∈NG

g(i)

VjM − 1

M

M∑
i=1

∑
j∈NG

g(i)

1

MG
g(i)

E [SiMVjM ]
P−→ 0 (E.51)

Proof: Using Chebyshev’s inequality,

P


 1

M
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
2

=
1
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V ar
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∑
j∈NG
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1
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 =
1

M2ϵ2
V ar

∑
g

∑
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g

1

MG
g

SiMVjM


≤ C

1

M2ϵ2

∑
g

∑
g′

∑
i,j∈NG

g

∑
k,l∈NG

g′

(Aik + Ail + Ajk + Ajl) = o(1)

Proof of Proposition D.1: Define the (infeasible) terms in the following way:

αgM :=
1

MG
g

∑
i∈NG

g

yiM(0)

eiM(0) := yiM(0)− αg(i)M

eiM(1) := yiM(1)− αg(i)M − τg(i)M (E.52)

Since YiM := XiMyiM(1) + (1−XiM) yiM(0),

YiM = eiM(1)XiM + eiM(0) (1−XiM) + αg(i)M + τg(i)MXiM (E.53)

Substituting this expression into τ̂FE,

τ̂OWFE =

∑M
i=1

(
eiM(1)XiM + eiM(0) (1−XiM) + αg(i)M + τg(i)MXiM

) (
XiM − X̄g(i)M

)∑M
i=1XiM

(
XiM − X̄g(i)M

)
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=

∑M
i=1

((
eiM(1) + τg(i)M

)
XiM + eiM(0) (1−XiM)

) (
XiM − X̄g(i)M

)∑M
i=1XiM

(
XiM − X̄g(i)M

) (E.54)

by noticing that:

M∑
i=1

αg(i)M

(
XiM − X̄g(i)M

)
=

G∑
g=1

∑
i∈NG

g

αg(i)M

XiM − 1

N̄gM

∑
i∈NG

g

XiM


=

G∑
g=1

αgM

∑
i∈NG

g

XiM −
∑
j∈NG

g

RjMXjM

 = 0. (E.55)

Convergence of τ̂OWFE is immediate from applying Lemma E.2. Every cluster has

independent assignment probability of AgM . To evaluate the denominator, observe

that, due to Lemma E.1:

E
[
XiMX̄g(i)M

]
= E

XiM
1

MG
gM

 ∑
j∈NG

g(i)

XjM




=
1

MG
g

∑
i∈NG

g(i)

E [XiMXjM ]

=
1

MG
g

E
[
X2

iM

]
+

1

MG
g

∑
i∈NG∩H

(g(i),h(i))
\{i}

E [XiMXjM ] +
1

MG
g

∑
i∈NG

g(i)
\NG∩H

(g(i),h(i))

E [XiMXjM ]

=
1

MG
g

µAµB +
1

MG
g

∑
i∈NG∩H

(g(i),h(i))
\{i}

(
µ2
A + σ2

A

) (
µ2
B + σ2

B

)
+

1

MG
g

∑
i∈NG

g(i)
\NG∩H

(g(i),h(i))

(
µ2
A + σ2

A

)
µ2
B

=
1

MG
g(i)

µAµB +
MG∩H

(g(i),h(i)) − 1

MG
g(i)

(
µ2
A + σ2

A

) (
µ2
B + σ2

B

)
+
MG

g(i) −MG∩H
(g(i),h(i))

MG
g(i)

(
µ2
A + σ2

A

)
µ2
B

=
1

MG
g(i)

(
µAµB +

(
MG∩H

(g(i),h(i)) − 1
) (
µ2
A + σ2

A

) (
µ2
B + σ2

B

)
+
(
MG

g(i) −MG∩H
(g(i),h(i))

) (
µ2
A + σ2

A

)
µ2
B

)
.

By imposing Ag, Bh ∈ {0, 1} so that µ2
A + σ2

A = µA as σ2
A = µA (1− µA),

E
[
XiM

(
XiM − X̄g(i)M

)]
= µAµB − 1

MG
g(i)

(
µAµB +

(
MG∩H

(g(i),h(i)) − 1
)
µAµB +

(
MG

g(i) −MG∩H
(g(i),h(i))

)
µAµ

2
B

)
= µAµB − µAµB

MG
g(i)

(
MG∩H

(g(i),h(i)) +
(
MG

g(i) −MG∩H
(g(i),h(i))

)
µB

)
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= µAµB

1−
MG∩H

(g(i),h(i)) +
(
MG

g(i) −MG∩H
(g(i),h(i))

)
µB

MG
g(i)

 .

Next, we proceed to the numerator:

M∑
i=1

((
eiM(1) + τg(i)M

)
XiM + eiM(0) (1−XiM)

) (
XiM − X̄g(i)M

)
=

M∑
i=1

τg(i)MXiM

(
XiM − X̄g(i)M

)
+

M∑
i=1

(eiM(1)− eiM(0))XiM

(
XiM − X̄g(i)M

)
+

M∑
i=1

eiM(0)
(
XiM − X̄g(i)M

)
. (E.56)

Taking expectations of the final term,
∑M

i=1 E
[
eiM(0)

(
XiM − X̄g(i)M

)]
= 0 is

immediate. Using previous results on the first expectation,

M∑
i=1

(τg(i)M + eiM(1)− eiM(0))E
[
XiM

(
XiM − X̄g(i)M

)]
=

M∑
i=1

(yiM(1)− yiM(0))E
[
XiM

(
XiM − X̄g(i)M

)]
. (E.57)

The following lemma is used to derive the two-way fixed effects estimand.

Lemma E.3.

M∑
i=1

E
[
X̃iMYiM

]
= µAµB

∑
c

MG∩H
c τcM −

G∑
g=1

∑
c∈MG

g

τcM

(
MG∩H

c

)2
MG

g

−
H∑

h=1

∑
c∈MH

h

τcM

(
MG∩H

c

)2
MH

h

+
1

M

∑
c

τcM
(
MG∩H

c

)2
+

1

M
µ2
Aµ

2
B

M
∑
c

MG∩H
c τcM −

G∑
g=1

MG
g

∑
c∈MG

g

MG∩H
c τcM −

H∑
h=1

MH
h

∑
c∈MH

h

MG∩H
c τcM +

∑
c

(
MG∩H

c

)2
τcM


+ µAµ

2
B

 1

M

G∑
g=1

∑
c∈MG

g

τcM

(
MG

g MG∩H
c −

(
MG∩H

c

)2)− G∑
g=1

∑
c∈MG

g

τcM

(
MG∩H

c −
(
MG∩H

c

)2
MG

g

)
+ µ2

AµB

 1

M

H∑
h=1

∑
c∈MH

h

τcM

(
MH

h MG∩H
c −

(
MG∩H

c

)2)− H∑
h=1

∑
c∈MH

h

τcM

(
MG∩H

c −
(
MG∩H

c

)2
MH

h

)
(E.58)
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M∑
i=1

E
[
X̃iMXiM

]
= µAµB

M −
G∑

g=1

∑
c∈MG

g

(
MG∩H

c

)2
MG

g

−
H∑

h=1

∑
c∈MH

h

(
MG∩H

c

)2
MH

h

+
1

M

∑
c

(
MG∩H

c

)2
− µAµ

2
B

M −
G∑

g=1

∑
c∈MG

g

(
MG∩H

c

)2
MG

g

− 1

M

(
G∑

g=1

(
MG

g

)2 −∑
c

(
MG∩H

c

)2)
− µ2

AµB

M −
H∑

h=1

∑
c∈MH

h

(
MG∩H

c

)2
MH

h

− 1

M

(
H∑

h=1

(
MH

h

)2 −∑
c

(
MG∩H

c

)2)
+ µ2

Aµ
2
B

(
M − 1

M

G∑
g=1

(
MG

g

)2 − 1

M

H∑
h=1

(
MH

h

)2
+

1

M

∑
c

(
MG∩H

c

)2)
(E.59)

Convergence occurs by applying Lemma E.2 to the numerator and denominator of

τ̂TWFE separately.

Proof: Let c := (g, h) denote the intersection of clusters g and h. Previously, we

defined the residuals eiM(d) with respect to the cluster. Now, we define it with respect

to the cluster intersection c. To further ease notation, we use c ∈ MG
g to denote that

intersection c has the G index of g. Then,
∑

c∈MG
g
MG∩H

c =MG
g . As before, we have:

αcM :=
1

MG∩H
c

∑
i∈NG∩H

c

yiM(0)

τcM :=
1

MG∩H
c

∑
i∈NG∩H

c

(yiM(1)− yiM(0))

eiM(0) := yiM(0)− αc(i)M

eiM(1) := yiM(1)− αc(i)M − τc(i)M

YiM = eiM(1)XiM + eiM(0) (1−XiM) + αg(i)M + τg(i)MXiM (E.60)

The estimator in TWFE is slightly different, because the residualization is dif-

ferent. First consider the expectation of the denominator
∑M

i=1 E
[
X̃iMXiM

]
. The

assignment mechanism is where XiM = Ag(i)MBh(i)M , where A,B are independent
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with means µA, µB respectively. This means that E [XiM ] = µAµB.

M∑
i=1

E
[
X̃iMXiM

]
=

M∑
i=1

E

XiM

XiM − 1

MG
g

∑
j∈NG

g

XjM − 1

MH
h

∑
j∈Nh

XjM +
1

M

M∑
i=1

XiM


=

M∑
i=1

E

XiM − 1

MG
g

∑
j∈NG

g

XiMXjM − 1

MH
h

∑
j∈Nh

XiMXjM +
1

M

∑
j

XiMXjM


(E.61)

For a given i, let g = g(i):∑
j∈NG

g

E [XiMXjM ] =
∑
j∈NG

g

E [AgM ]E
[
Bh(i)MBh(j)M

]

= µA

 ∑
j∈NG∩H

c(i)

E
[
Bh(i)MBh(j)M

]
+

∑
j∈NG

g \NG∩H
c(i)

E
[
Bh(i)MBh(j)M

]
= µA

 ∑
j∈NG∩H

c(i)

E
[
Bh(i)M

]
+

∑
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g \NG∩H
c(i)

E
[
Bh(i)M

]
E
[
Bh(j)M

]
=MG∩H

c(i) µAµB +
(
MG

g −MG∩H
c(i)

)
µAµ

2
B (E.62)

Using this in the larger sum,

M∑
i=1

1

MG
g

∑
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E [XiMXjM ] =
G∑

g=1

∑
i∈NG

g

1

MG
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MG∩H
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(
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g −MG∩H
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µAµ

2
B

)
=

G∑
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∑
i∈NG

g

MG∩H
c(i)

MG
g
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∑
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g

(
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MG∩H
c(i)

MG
g

)
µAµ

2
B

=
G∑

g=1

∑
c∈MG

g

(
MG∩H

c

)2
MG

g

µAµB +
G∑
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∑
c∈MG

g

MG∩H
c µAµ

2
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∑
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g

(
MG∩H

c

)2
MG

g

µAµ
2
B

=
G∑
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∑
c∈MG

g

(
MG∩H

c

)2
MG

g

µAµB (1− µB) +MµAµ
2
B

= µAµ
2
B

M −
G∑

g=1

∑
c∈MG

g

(
MG∩H

c

)2
MG

g

+ µAµB

 G∑
g=1

∑
c∈MG

g

(
MG∩H

c

)2
MG

g

 (E.63)
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Similarly,

M∑
i=1

1

MH
h

∑
j∈NH

h

E [XiMXjM ] =
H∑

h=1

∑
c∈MH

c

(
MG∩H

c

)2
MH

h

µAµB (1− µA) +Mµ2
AµB (E.64)

Finally,∑
j

E [XiMXjM ] =
∑
j∈NG

g

E [XiMXjM ] +
∑
j∈NH

h

E [XiMXjM ]

−
∑

j∈NG∩H
c

E [XiMXjM ] +
∑

j /∈NG
g ∪NH

h

E [XiMXjM ] (E.65)

Observe that:

∑
j∈NG∩H

c(i)

E [XiMXjM ] =MG∩H
c(i) µAµB

M∑
i=1

∑
j∈NG∩H

c(i)

E [XiMXjM ] =
∑
c

MG∩H
c µAµB (E.66)

Since
∑

j /∈NG
g ∪NH

h
E [XiMXjM ] =

(
M −MG

g(i) −MH
h(i) +MG∩H

c(i)

)
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Aµ

2
B,
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∑
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B
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M −MG
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h(i) +MG∩H
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G∑
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(
MG

g
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(
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h
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∑
c

(
MG∩H

c

)2)
(E.67)

Evaluate the first few terms:

M∑
i=1

∑
j∈NG

g(i)

E [XiMXjM ] =
G∑
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∑
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g

(
MG∩H
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(
ng −MG∩H
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2
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c∈MG

g

(
MG∩H

c
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g
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c

(
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g −MG∩H
c

)
µAµ

2
B
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=
G∑
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g

(
MG∩H
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(E.68)

Hence,
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∑
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(E.69)

Putting these results together,
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(E.70)
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which simplifies to the expression in the lemma.

Proceeding with the numerator,

M∑
i=1

E
[
X̃iMYiM

]
=

M∑
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YiMXiM − 1
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
(E.71)

Let’s look at the first term, using YiM = eiM(1)XiM + eiM(0) (1−XiM)+αg(i)M +

τg(i)MXiM :

M∑
i=1

E [YiMXiM ] =
M∑
i=1

(
eiM(1) + τc(i)M + αc(i)M

)
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=
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For a given i, let g = g(i):∑
j∈NG

g
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E
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∑
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) ∑
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(E.73)

where
∑

j∈NG
g
E [XiMXjM ] = MG∩H

c(i) µAµB +
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g −MG∩H
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)
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B was derived from

before. Using the notation ēcM(w) = 1
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c
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c
eiM(w) in the larger sum,
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)
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=
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Similarly,

M∑
i=1

1

MH
h

∑
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h

E [YiMXjM ]

=
H∑

h=1

∑
c∈MH

h

(ēcM(1)− ēcM(0) + τcM)

((
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c

)2
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h

µAµB +MG∩H
c µAµ

2
B −

(
MG∩H

c

)2
MH

h

µAµ
2
B

)

+
H∑

h=1

∑
c∈MH

h

MG∩H
c αcMµAµB (E.75)

Finally,

∑
j

E [YiMXjM ] =
∑
j∈NG

g

E [YiMXjM ] +
∑
j∈NH

h

E [YiMXjM ]−
∑

j∈NG∩H
c

E [YiMXjM ] +
∑

j /∈NG
g ∪NH

h

E [YiMXjM ]

(E.76)

Using
∑

j∈NG∩H
c(i)

E [XiMXjM ] = MG∩H
c(i) µAµB and

∑M
i=1

∑
j∈NG∩H

c(i)
E [XiMXjM ] =∑

c

(
MG∩H

c(i)

)2
µAµB, observe that:

∑
j∈NG∩H

c(i)

E [YiMXjM ] =
∑

j∈NG∩H
c(i)

E
[(
eiM(1)XiM + eiM(0) (1−XiM) + αc(i)M + τc(i)MXiM

)
XjM

]
=

∑
j∈NG∩H

c(i)

((
eiM(1) + τc(i)M − eiM(0)

)
E [WiWj] +

(
eiM(0) + αc(i)M

)
µAµB

)
=
(
ēc(i)M(1)− ēc(i)M(0) + τc(i)M

)
MG∩H

c(i) µAµB +MG∩H
c(i)

(
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)
µAµB

=
(
ēc(i)M(1) + αc(i)M + τc(i)M

)
MG∩H

c(i) µAµB (E.77)
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M∑
i=1

∑
j∈NG∩H

c(i)

E [YiMXjM ] =
∑
c

(ēcM(1) + αcM + τcM)
(
MG∩H

cM

)2
µAµB (E.78)

Let’s focus on the last term:∑
j /∈NG

g ∪NH
h

E [YiMXjM ] =
(
M −MG

g(i) −MH
h(i) +MG∩H

c(i)

)
E [YiM ]E [XjM ]

=
(
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(E.79)

Hence,
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∑
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g(i) −MH
h(i) +MG∩H

c(i)

)
(yiM(0) + µAµB (yiM(1)− yiM(0)))

(E.80)

To simplify this expression, observe that:
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MG∩H
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∑
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M
∑
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MG∩H
c αcM
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(E.82)
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(ēcM(1)− ēcM(0) + τcM)
((
MG∩H

c

)2
µAµB +MG

g M
G∩H
c µAµ

2
B −

(
MG∩H

c

)2
µAµ

2
B

)

+
G∑

g=1

∑
c∈MG

g

MG
g M

G∩H
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Hence, by using ēcM(w) = 0 as before,
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. (E.84)

Combine the expressions to obtain the result.
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Proof of Proposition D.2:

Under the hypothesis of the lemma, M = MGMHk, so by applying Lemma E.3

and simplifying terms,

M∑
i=1

E
[
X̃iMXiM

]
= µAµB (1− µB − µA + µAµB) (M −Gk −Hk + k) (E.85)

M∑
i=1

E
[
X̃iMYiM

]
= τMµAµB (1− µB − µA + µAµB) (M −Gk −Hk + k) (E.86)

Then, the estimand reduces to:

∑M
i=1 E

[
X̃iMYiM

]
∑M

i=1 E
[
X̃iMXiM

] =
τMµAµB (1− µB − µA + µAµB) (M −Gk −Hk + k)

µAµB (1− µB − µA + µAµB) (M −Gk −Hk + k)
= τM

(E.87)

Convergence occurs by decomposing (D.13) with (D.14) then applying Lemma

E.2 to the respective terms.
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