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Abstract

This dissertation consists of three chapters in econometrics. In each chapter, I investigate

problems and solutions when assumptions used for valid inference in standard econometric

procedures fail.

Chapter 1 considers inference in a linear instrumental variable regression model with

many potentially weak instruments and heterogeneous treatment effects. I first show that

existing test procedures, including those that are robust to only either weak instruments or

heterogeneous treatment effects, can be arbitrarily oversized in this setup. Then, I propose

a novel valid inference procedure based on a score statistic and a leave-three-out variance

estimator. Within the class of tests that are functions of the leave-one-out analog of a

maximal invariant, the score test is asymptotically the uniformly most powerful unbiased

test when heterogeneity is imposed. The proposed test also yields a bounded confidence set

in empirical applications where existing methods yield unbounded or empty confidence sets.

Chapter 2 proves a new central limit theorem for a sample that exhibits two-way de-

pendence and heterogeneity across clusters. Statistical inference for situations with both

two-way dependence and cluster heterogeneity has thus far been an open issue. The ex-

isting theory for two-way clustering inference requires identical distributions across clusters

(implied by the so-called separate exchangeability assumption). Yet no such homogeneity

requirement is needed in the existing theory for one-way clustering. The new result therefore

theoretically justifies the view that two-way clustering is a more robust version of one-way

clustering, consistent with applied practice. In an application to linear regression, I show

that a standard plug-in variance estimator is valid for inference.

Chapter 3 proposes a method to bound policy relevant treatment parameters when the

monotonicity assumption that the instrumental variable affects individuals’ treatment re-

sponse in the same direction is weakened. The bounding framework uses the proportion of

defiers relative to compliers as a sensitivity parameter, and yields an identified set that is an

3



interval. The method is illustrated in an empirical application where the same-sex instru-

ment was used to calculate the effect of having a third child on labor force participation. I

find that bounds are informative only for small violations in monotonicity.
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Chapter 1

Inference with Many Weak

Instruments and Heterogeneity

1.1 Introduction

Many empirical studies in economics involve instrumental variable (IV) models with many

instruments. A prominent example is the judge design: several studies argue that judges or

case workers are as good as randomly assigned and can affect the treatment status, so they

are used as instruments to study the effects of foster care (Doyle, 2007), incarceration (Aizer

and Doyle Jr, 2015), detention (Dobbie et al., 2018), disability benefits (Autor et al., 2019),

and misdemeanor prosecution (Agan et al., 2023), among others. When the IV is a vector

of indicators for judges, the number of instruments can be large relative to the sample size.

Another example of many IV is a single instrument interacted with discrete covariates. For

instance, when Angrist and Krueger (1991) used the quarter of birth as an instrument to

study the returns to education, interacting the quarter of birth with the state of birth can

generate 150 instruments.

Despite the pervasiveness and importance of this setting, there does not yet exist an

inference procedure that is robust to both heterogeneous treatment effects and weak instru-
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ments, which is a gap this paper aims to fill. Weak IV refers to a setting where the first-stage

coefficients converge to zero at a rate such that no consistent estimator for the object of in-

terest exists (following from the definition in Mikusheva and Sun (2022) rather than Chao

et al. (2012)); and heterogeneous treatment effects refers to a setting where different subsets

of the many IV may estimate different local average treatment effects (LATE). There are

several recent proposals (Crudu et al., 2021; Mikusheva and Sun, 2022; Matsushita and Otsu,

2022) that are robust to weak IV, but they assume constant treatment effects. A separate

literature (Evdokimov and Kolesár, 2018) proposed variance estimators for the Jackknife IV

Estimator (JIVE) that are robust to heterogeneous treatment effects, but their t-statistic

test is still not robust to many weak IV. While it is clear that weak IV can lead to substantial

distortions in inference (e.g., Dufour (1997); Staiger and Stock (1997)), it is less obvious if

procedures developed under constant treatment effects that are robust to weak IV are still

valid with heterogeneous treatment effects.

In this paper, I first show that neglecting either heterogeneity or weak instruments can

result in substantial distortions in inference. Section 1.2 presents a simple simulation that has

both weak instruments and heterogeneous treatment effects. For a nominal 5% test, using

the procedure from Mikusheva and Sun (2022) (MS22), which is robust to weak instruments

but not heterogeneity, can result in 100% rejection under the null, because their test statistic

is not centered correctly when there is heterogeneity. This result is attributed to how their

test is a joint test of both the parameter value and the null of no heterogeneity. Similarly,

the procedure from Evdokimov and Kolesár (2018) (EK18), which is robust to heterogeneity

but not weak instruments, can be severely oversized. Additionally, this section documents

how an empirically common practice of constructing a “leniency measure” that combines

the many instruments and then using weak IV robust procedures from the just-identified IV

literature is invalid.
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Given the stark simulation results, Section 1.3 proposes a procedure for valid inference.

Following the many instruments literature, the JIVE estimand is the object of interest —

this estimand can be interpreted as a weighted average of treatment effects when there is

heterogeneity (e.g., EK18). Using weak identification asymptotics, I show that the Lagrange

Multiplier (LM) (i.e., score) statistic, earlier proposed by Matsushita and Otsu (2022) under

constant treatment effects, is mean zero and asymptotically normal even with treatment ef-

fect heterogeneity. In fact, I prove a stronger normality result that a set of jackknife statistics

that includes the LM is jointly normal, which is the first technical challenge of this paper.

This normality result uses an asymptotic environment that nests the asymptotic environ-

ments of EK18 and MS22 in that normality holds if either the number of instruments is large

or the instruments are strong. This normality implies that, as long as the variance of LM is

consistently estimable, a t-statistic can be calculated and critical values from the standard

normal distribution are valid for inference. Obtaining a consistent variance estimator is the

second technical challenge of the paper, since reduced-form coefficients are not consistently

estimable when there are few observations per instrument. Motivated by Anatolyev and

Sølvsten (2023) who proposed a method to jointly test the significance of many covariates in

OLS, I construct a leave-three-out (L3O) variance estimator for the LM variance and show

that it is consistent, even when reduced-form coefficients are not consistently estimable. Due

to the generality of the setting considered, beyond its robustness to weak IV and heterogene-

ity, the procedure proposed in this paper is also robust to heteroskedasticity, and potentially

many covariates, so it retains the advantages of existing procedures in the literature.

Section 1.4 argues that the proposed LM procedure is powerful. In the over-identified

IV environment with normal homoskedastic errors, Moreira (2009a) showed that, if we are

willing to restrict our attention to tests that are invariant to rotations of the instruments,

it suffices to consider tests that are functions of three statistics. These three statistics are

known as a “maximal invariant”. To be robust to non-normality and heteroskedasticity in the
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many IV environment, I focus on the leave-one-out (L1O) analog of this maximal invariant.

The proposed LM statistic is one of the three statistics in the L1O analog, and I show that

the two-sided LM test is asymptotically uniformly most powerful unbiased (UMPU) within

the class of tests that are functions of this L1O analog, for the interior of the alternative

space (i.e., where heterogeneity is imposed).

Simulation results in Section 1.5 show how the procedure is robust even with a small

number of instruments, and it is reasonably powerful even with constant treatment effects.

Section 1.6 contains two empirical applications that show how being robust to many weak

IV and heterogeneity can change conclusions.1 In the Angrist and Krueger (1991) quarter

of birth application, the Matsushita and Otsu (2022) procedure that are robust to many

weak IV but not heterogeneity have unbounded confidence sets while L3O has a bounded

confidence set. In the Agan et al. (2023) judge application, MS22 has an empty confidence

set, and the length of the L3O confidence interval is more than twice that of EK18 that is

not robust to many weak IV.

This paper contributes to the following strands of literature. First, this paper contributes

to a growing literature on many weak instruments. There is a strand of literature dealing with

many instruments (e.g., Chao et al. (2012)) and another separate strand dealing with weak

instruments (e.g., Staiger and Stock (1997); Lee et al. (2023)). While recent procedures

accommodate both simultaneously (e.g., Crudu et al. (2021); Mikusheva and Sun (2022);

Matsushita and Otsu (2022); Lim et al. (2024)), their focus has been on the linear IV

model with constant treatment effects. This paper augments their setup by allowing for

heterogeneity in treatment effects, and contributes new results on the limitations of their

procedures under heterogeneity. Further, I show how heterogeneity can be understood in a

framework analogous to weak instruments.

1Implementation code can be found at: https://github.com/lutheryap/mwivhet.
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Second, this paper contributes to the literature on heterogeneous treatment effects (e.g.,

Kolesár (2013); Evdokimov and Kolesár (2018); Blandhol et al. (2022)). The previous papers

exploit consistent estimation of the object of interest to conduct inference. In contrast, this

paper uses the (more general) weak IV environment where the object of interest may not

be consistently estimated. Two recent papers allow weak IV and heterogeneity. Boot and

Nibbering (2024) study a single discrete instrument interacted and saturated with many

covariates. Their setup is a special case of the environment considered in this paper, so it is

unclear if their procedure generalizes to many instruments without covariates (e.g., judges).

Kleibergen and Zhan (2025) target a continuous updating (CU) GMM estimator with a fixed

number of instruments rather than many instruments.2

Third, this paper contributes to a literature on inference when coefficients cannot be

consistently estimated. The difficulty in having such a general robust inference procedure

lies in consistent variance estimation when the number of coefficients is large. Recent liter-

ature that has made substantial progress in a different context. In doing inference in OLS

with many covariates, Cattaneo et al. (2018) and Anatolyev and Sølvsten (2023) proposed

consistent variance estimators that are robust to heteroskedasticity, which involve inverting

a large (n by n, where n is the sample size) matrix and a L3O approach respectively. Boot

and Nibbering (2024) adapt the Cattaneo et al. (2018) variance estimator for inference. In

contrast, this paper adapts the approach from Anatolyev and Sølvsten (2023) that does not

require an inversion of an n by n matrix, and whose L3O implementation is fast when using

matrix operations.

Fourth, this paper contributes to a literature on optimal tests. While the UMPU test for

just-identified IV has been established since Moreira (2009b), obtaining a UMPU test in the

over-identified IV environment has thus far been more challenging. In the over-identified IV

2They show that their CU-GMM estimator corresponds to the limited information maximum likelihood
(LIML) estimator. However, it is also known that the LIML estimand may not be interpretable as a weighted
average of LATE’s. (Kolesár, 2013) I am unaware of any paper that allows both weak IV and heterogeneity
with a fixed number of instruments and targets a parameter that is a weighted average of LATE’s.
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environment with constant treatment effects, several statistics are informative of the object

of interest. Consequently, there is a large literature that numerically compares various valid

tests and characterizes various forms of optimality (e.g., Moreira (2003); Andrews (2016);

Andrews et al. (2019); Van de Sijpe and Windmeijer (2023); Lim et al. (2024)). By imposing

heterogeneity in the environment, the problem is (somewhat surprisingly) simplified. Since

only one statistic in the asymptotic distribution is directly informative of the object of

interest, I can obtain a UMPU result.

1.2 Challenges in Conventional Practice

This section explains the challenges faced in conventional practice by considering a simple

potential outcomes model without covariates that exhibits weak instruments and hetero-

geneity in treatment effects. This model is a special case of the general model in Section

1.3. A simulation from the model shows how weak instruments and heterogeneity can lead

to substantial distortions in inference for procedures recently proposed in the econometric

literature. A common empirical practice of constructing a leave-one-out instrument and

then applying inference methods for the instrument as if it is not constructed also has high

rejection rates. In contrast, the method proposed in this paper has a rejection rate that is

close to the nominal rate.

1.2.1 Setting for Simple Example

The simple example uses the canonical latent variable framework of Heckman and Vytlacil

(2005). We are interested in the effect of Xi ∈ {0, 1} (e.g., incarceration) on some outcome

Yi, for i = 1, · · ·n that indexes individuals. To instrument for Xi, we use a vector of

judges indicators: Zi is a (K + 1)-dimensional vector of indicators for judges, indexed k =

1, · · · , K + 1, each with c = 5 individual cases, so the vector takes value 1 for the kth
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component when individual i is matched to judge k, and 0 elsewhere. Then, n = (K + 1)c.

The problem of many instruments arises when c is fixed while K increases. Let Yi(0) and

Yi(1) denote the untreated and treated potential outcomes respectively, and we observe

Yi = Yi(Xi). The treatment status given some instrument value z is Xi(z), and we observe

Xi(Zi). The model is:

Xi(z) = 1{z′λ > vi}, and Yi(x) = xf(vi) + εi, (1.1)

where 1{·} is an indicator function that takes the value 1 if the argument is true and 0

otherwise. Here, Z ′
iλ = λk(i), where k(i) is the judge that individual i is matched to. With

individual unobservable vi ∼ U [0, 1], the probability of treatment (i.e., Xi = 1) given judge k

is λk. I set λk = 1/2 for the base judge, and evenly split all other K judges to take 4 different

values of λk. Potential outcomes are Yi(0) = εi and Yi(1) = f(vi)+εi so Yi(1)−Yi(0) = f(vi)

is the treatment effect. The individual-specific residuals vi and εi are allowed to be arbitrarily

correlated. Let βk denote the local average treatment effect (LATE) when comparing judge k

to the base judge: for instance, when λk > 1/2, βk = 1
λk−1/2

∫ λk

1/2
f(v)dv. The values of (λk, βk)

for the 4 groups of judges are (1/2−s, β−h/s), (1/2(1−s), β+2h/s), (1/2(1+s), β−2h/s),

and (1/2 + s, β + h/s). The function f(v) that delivers these parameters and further details

of this example are in Section 1.A.2.

The λk and βk values are parameterized by objects s and h, which control the IV strength

and heterogeneity in the model respectively. The impact of these parameters are illustrated

in Figure 1.1 that plots the point masses for the four groups of judges in reduced-form.

Parameter s controls how far E[X | Z] are spread across judges, which then affects the

instrument strength. Parameter h controls the distance between the mass points and a line

with slope β — this slope is the object of interest. If the impact of X on Y is homogeneous,

then h = 0, and all mass points must lie on a line — this implication is falsifiable by the

data.
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Figure 1.1: IV Strength and Heterogeneity in Reduced Form
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Table 1.1: Rejection rates under the null for nominal size 0.05 test
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2
√
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2
√
K 2 0.978 0.040 NaN 0.282 0.114 0.303 0.052 0.049 1.000

0 0.983 0.025 NaN 0.260 0.054 0.282 0.047 0.055 1.000

2
√
K 0.984 0.076 1.000 0.039 0.046 0.049 0.044 0.050 1.000

2 2 1.000 0.096 1.000 0.085 0.155 0.149 0.048 0.049 1.000
0 1.000 0.128 1.000 0.103 0.225 0.177 0.060 0.051 1.000

2
√
K 0.994 0.097 0.064 0.064 0.071 0.067 0.059 0.055 0.057

0 2 1.000 0.231 0.059 0.047 0.179 0.106 0.049 0.051 0.055
0 1.000 0.359 0.063 0.041 0.350 0.107 0.048 0.046 0.059

Notes: The table displays rejection rates of various procedures (in columns) for various designs
(in rows). Details of the data generating process are in Section 1.A.2. I use K = 400, c = 5, β = 0
with 1000 simulations. TSLS implements the standard two-stage-least-squares t-test for an
over-identified IV system. EK implements the procedure in Evdokimov and Kolesár (2018). MS
uses TAR with the cross-fit procedure in Mikusheva and Sun (2022). MO uses the TLM statistic
with the variance estimator proposed in Matsushita and Otsu (2022). X̃-t uses a constructed
instrument and runs TSLS for a just-identified IV system. X̃-AR uses the Anderson and Rubin
(1949) (AR) procedure for a just-identified system using a constructed instrument. L3O uses the
variance estimator proposed in this paper. LMorc is the infeasible theoretical benchmark that uses
an LM statistic with an oracle variance. ARorc uses the AR statistic with an oracle variance.
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The simulation designs vary the values of s and h through the following parameters:

E[TFS] =
5

8

√
K(c− 1)s2, and E[TAR] =

5

8

√
K(c− 1)h2. (1.2)

The statistic TFS is the leave-one-out (L1O) analog of the first-stage “F” statistic in this

model, and TAR is similarly the L1O analog of the Anderson-Rubin statistic under the null.

These objects are explained in detail in Section 1.3, but it suffices to mention here that, for

the given c and K, there is a one-to-one mapping between (E[TFS], E[TAR]) and (s, h). Using

Staiger and Stock (1997) asymptotics, E[TFS] is the parameter that determines whether there

is strong or weak identification. Where C is some positive arbitrary constant, E[TFS] → ∞

is an environment with strong identification where the object of interest can be estimated

consistently, and E[TFS] → C < ∞ is an environment with weak identification where no

consistent estimator exists.

For every design, I generate data under the null and calculate the frequency that each

inference procedure rejects the null of β0 = 0. These procedures include the standard TSLS

t-test, procedures that are robust to either weak instruments (MO, MS) or heterogeneity

(EK), and procedures that use a constructed instrument (X̃). The results are presented in

Table 1.1, which I will refer to in the remainder of this section as I explain them.

1.2.2 Issue with Many Weak Instruments

Many IV and weak IV are different but related issues. The many IV problem arises when

the number of cases per judge c does not diverge to infinity, so that K is large relative

to n. When c is small, the judge-specific λk and βk cannot be consistently estimated and

hence inference procedures like the TSLS t-test can be oversized. In Figure 1.1, a small c is

attributed to the sample uncertainty surrounding each black circle. The weak IV problem
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arises from E[TFS] not diverging: since E[TFS] is a function of K, c, and s, the weak IV issue

is related to the many IV issue.

If we simply run the TSLS t-test for an over-identified model, then the estimator can

be asymptotically biased and inference is invalid, a fact already known in the literature.

This fact is also evident in Table 1.1, where TSLS has 100% rejection in many designs.

In TSLS, the first stage regresses X on Z to get a predicted X̂ = Zπ̂, where π̂ is the

estimated coefficient; the second stage regresses Y on X̂. With constant treatment effects,

the asymptotic bias of the TSLS estimator depends on
∑

i εiX̂i/
∑

i X̂
2
i . When every judge

only has c = 5 cases, the influence of vi on π̂k(i) and hence X̂i is non-negligible. Since εi and

vi can be arbitrarily correlated, the numerator is biased. If the instruments are weak such

that the denominator
∑

i X̂
2
i does not diverge sufficiently quickly, then the asymptotic bias

can be large. Due to the asymptotic bias, the t-statistic is not centered around β0 when data

is generated under the null, so we observe over-rejection in Table 1.1.

Since the bias in the TSLS estimator arises from using Xi to estimate π̂, a natural

solution to address that bias is to use the JIVE to estimate β. Instead of using X̂i = Z ′
iπ̂

in the second stage, we instead use X̃i = Z ′
iπ̂−i, where π̂−i is the coefficient from the first-

stage regression that leaves out observation i. I call π̂−i the leave-one-out (L1O) coefficient.

With P = Z (Z ′Z)−1 Z ′ denoting the projection matrix, X̃i = Z ′
iπ̂−i can be written as

X̃i =
∑

j ̸=i PijXj. Then, the JIVE is:

β̂ =

∑
i Yi

(∑
j ̸=i PijXj

)
∑

iXi

(∑
j ̸=i PijXj

) . (1.3)

In the many IV context with constant treatment effects, the asymptotic distribution of the

t-statistic of the JIVE is the same as the distribution of the t-statistic of the TSLS estimator

in the just-identified environment (Mikusheva and Sun, 2022) — it is a ratio of two normally

distributed random variables. It is well-known that, in the just-identified IV context with
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weak IV, the rejection rate of the standard t-statistic can be up to 100% for a nominal 5%

test (e.g., Dufour (1997)). Hence, like the just-identified IV context, by using a structural

model that has sufficiently weak instruments and high covariance, the simulation can deliver

high rejection rates.

EK18 have a procedure that is robust to heterogeneity, but not weak instruments, so

even if we use their variance estimator for the t-statistic, this problem is not alleviated. This

fact is evident in the EK column of Table 1.1, where, with a sufficiently large correlation

in the individual unobservables, rejection rates can be large.3 Hence, ignoring the issue

of weak instruments can lead to substantial distortions in inference. In fact, even with

strong instruments, there is no guarantee that EK18 achieves the nominal rate, because

their variance estimation method requires consistent estimation of the first-stage coefficients

π̂. A condition for consistent variance estimation is that the number of cases per judge is

large, which is not c = 5.

Remark 1.1. In the literature, there have been several definitions of weak instruments,

which I clarify in this remark. Using Equation (1.2), there are three asymptotic regimes,

ordered from the strongest to the weakest: (i) 1√
K
E[TFS] → ∞, (ii) E[TFS] → ∞, and

(iii) E[TFS] → C < ∞. Regime (i) is a necessary condition for the TSLS estimator to be

consistent, so 1√
K
E[TFS] → C < ∞ is what Stock and Yogo (2005) would refer to as weak

instruments. Regime (ii) is a necessary condition for the JIVE to be consistent (e.g., Chao

et al. (2012), EK18). Regime (iii) is where no estimator is consistent (e.g., Mikusheva and

Sun (2022)). If K is fixed, then (i) and (ii) are the same asymptotically, and (iii) is the

relevant weak identification asymptotic regime. If K → ∞, then there is more ambiguity

in what weakness means: Chao et al. (2012) and EK18 who assume (ii) are robust to weak

instruments when defined in the Stock and Yogo (2005) sense, because s can converge to 0,

albeit at a slower rate than
√
K. In this paper, I follow the Staiger and Stock (1997) standard

3The rejection rate of EK can be 100% under the null in some simulations: one example is given in
Table 1.C.1 in Section 1.C.2.
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of weak identification where no consistent estimator exists, which corresponds to (iii) that

EK18 is not robust to.

1.2.3 Issue with Heterogeneity

Next, consider proposals for inference that are developed for contexts with many weak IV.

MS22 (and Crudu et al. (2021)) propose using an Anderson-Rubin (AR) statistic TAR =

1√
K

∑
i

∑
j ̸=i Pijei (β0) ej (β0), for ei (β0) := Yi−Xiβ0 where β0 is the hypothesized null value.

With constant treatment effects, ei := Yi − Xiβ is the residual. Hence, if the instrument

is orthogonal to the residual, then E[Ziei] = 0.4 Then, TAR is the L1O analog for the

quadratic form that tests the moment E[Ziei] = 0 . Since observations are independent, the

critical value for the test is obtained from a mean-zero normal distribution. In this model,

E [TAR] =
√
K(c − 1)h2 under the null.5 Hence, when there are constant treatment effects

such that h = 0 for all k, the statistic is unbiased. However, in the setup with heterogeneity,

the TAR can be biased: in fact, when h does not converge to zero, E[TAR] diverges, resulting

in a 100% rejection rate under the null, even if the oracle variance were used. Further,

there does not exist any estimand β such that E [TAR] = 0, as shown in Lemma 1.1 of

Section 1.A.2.

A further problem with the feasible MS procedure is that when there is strong hetero-

geneity (E[TAR] = 2
√
K) in this simulation, their cross-fit variance estimate is negative

for all simulation draws, as the negative heterogeneity terms are larger in magnitude than

the positive variances of the residuals. The formal analysis requires more notation from

Section 1.3, so details are deferred to Section 1.A.2.

4An equivalent way to see how heterogeneity affects inference is through the framework of Hall and Inoue
(2003) and Lee (2018): E[Ziei] = 0 is a special case of a misspecified over-identified GMM problem. The
instruments are individually valid, but every component of theK moments in E[Ziei] = 0 identifies a different
treatment effect, so there is no parameter that satisfies all moments simultaneously under heterogeneity.
Then, while the estimand is still interpretable as a combination of these treatment effects due to how GMM
weights these moments, there are additional components in the variance that affect inference.

5This result can be obtained as a special case of Theorem 1.1 in Section 1.3 and using the fact that∑
i

∑
j ̸=i P

2
ij =

∑
i

∑
j ̸=i

(
1/c2

)
=
∑

i
c−1
c2 =

∑
k

c−1
c .
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Another proposal in the literature that is robust to many weak instruments is Mat-

sushita and Otsu (2022) (MO22) who use the statistic TLM = 1√
K

∑
i

∑
j ̸=i Pijei (β0)Xj =

1√
K

∑
i ei (β0) X̃i. This statistic can be interpreted as the LM (or score) statistic that uses

the moment E[eX̃] = 0. They propose the following variance estimator Ψ̂MO:

Ψ̂MO :=
1

K

∑
i

(∑
j ̸=i

PijXj

)2

ei (β0)
2 +

1

K

∑
i

∑
j ̸=i

P 2
ijXiei (β0)Xjej (β0) . (1.4)

While TLM has zero mean under the null even with heterogeneity, a result shown later in

Section 1.3, the MO22 variance estimator was constructed under constant treatment effects,

so the variance estimand differs from the true variance. It can be shown that E
[
Ψ̂MO

]
̸=

Var (TLM), and Ψ̂MO is inconsistent in general, so when it is used to construct the t-statistic

of TLM , the normalized statistic is not distributed N(0, 1) asymptotically. Consequently,

by constructing a DGP where Ψ̂MO underestimates the variance, it is possible to get over-

rejection of the MO22 procedure, as in the cases of Table 1.1 where E[TAR] diverges. As

expected, when there is no heterogeneity such that h = 0, the rejection rate of MO22 and

MS22 are close to the nominal rate.

1.2.4 Issue with a Constructed Instrument

In light of problems with weak identification and heterogeneity, there is a large applied liter-

ature that transforms a many IV environment into a just-identified single-IV environment.

With a single IV, the Anderson and Rubin (1949) (AR) procedure (among others) is robust

to both weak identification and heterogeneity. However, this subsection will argue that such

an approach is invalid.

Due to how the JIVE is written, there are several empirical papers that treat X̃i =∑
j ̸=i PijXj as the “instrument” so that β̂ =

∑
i YiX̃i/

∑
i XiX̃i, and proceed with inference

as if X̃i is not constructed, but is an observed scalar instrument, usually referred to as a
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leniency measure. While the resulting estimator is numerically identical to JIVE, there are

distortions in inference because the variance estimators do not account for the variability in

constructing X̃i.

If the TSLS t-statistic inference is used as if X̃i is the instrument, then its rejection

rates in designs with heterogeneity are usually higher than rejection rates of EK18 that

accounts for the variance accurately, by comparing the X̃-t and EK columns in Table 1.1.

Consequently, in the cases where EK under-rejects, X̃-t can have close to nominal rejection

rates by coincidence.

Even if the weak IV robust AR procedure for just-identified IV were used, there

can still be distortion in inference (see X̃-AR in Table 1.1). The AR t-statistic

is tX̃AR :=
∑

i ei (β0) X̃i/
√

V̂ , where V̂ =
∑

i X̃
2
i ε̂

2
i /
(∑

i X̃
2
i

)2
and ε̂i = ei (β0) −

X̃i

(∑
i ei (β0) X̃i

)
/
(∑

i X̃
2
i

)
. Even though tX̃AR is mean zero and asymptotically normal,

the variance estimand is inaccurate, much like MO22. In particular, when β0 = β = 0, the

leading term of the variance estimand is E
[∑

i X̃
2
i e

2
i

]
, and it does not converge to the true

variance derived in Section 1.3 in general. Hence, using the just-identified AR procedure

with a constructed instrument results in over-rejection. There are several papers that cluster

standard errors by judges, but this approach faces a similar issue.6

As a preview, the L3O procedure proposed in this paper has rejection rates close to the

nominal rate while the other procedures can over-reject.

1.3 Valid Inference

In light of how existing procedures are invalid in an environment with many weak instruments

and heterogeneity as documented in the previous section, this section describes a novel

inference procedure and shows that it is valid. I set up a general model, then show that an

6Details of this discussion are relegated to Section 1.C.1.
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LM statistic is asymptotically normal and a feasible variance estimator is consistent, which

suffices for inference.

1.3.1 Setting: Model and Asymptotic Distribution

The general setup mimics Evdokimov and Kolesár (2018). With an independently drawn

sample of individuals i = 1, . . . , n, we observe each individual’s scalar outcome Yi, scalar

endogenous variable Xi, instrument Zi, and covariates Wi, with dim (Zi) = K.7 For every

instrument value z, there is an associated potential treatment Xi (z), and we observe Xi =

Xi (Zi). Similarly, potential outcomes are denoted Yi (x), with Yi = Yi (Xi). Let Ri :=

E [Xi | Zi,Wi] and RY i := E [Yi | Zi,Wi] be linear in Zi and Wi. The model, written in the

reduced-form and first-stage equations, is:

Yi = RY i + ζi, where RY i = Z ′
iπY + W ′

iγY , E [ζi | Zi,Wi] = 0, and

Xi = Ri + ηi, where Ri = Z ′
iπ + W ′

iγ, E [ηi | Zi,Wi] = 0.

The setup implicitly conditions on Zi,Wi, so Ri, RY i are nonrandom.8 Linearity in Z and

W is not necessarily restrictive when there is full saturation or when K is large.9

Define ei := Yi −Xiβ, where β is some estimand of interest, and ei is a linear transfor-

mation. Let ei (β0) := Yi −Xiβ0 denote the feasible null-imposed linear transformation. Let

R∆i := RY i − Riβ and νi := ζi − ηiβ. These definitions imply ei = R∆i + νi and R∆i =

Z ′
i(πY − πβ) + W ′

i (γY − γβ). Since E [νi|Zi,Wi] = 0 from the model, E [ei|Zi,Wi] = R∆i,

7The endogenous variable Xi can be extended to a vector with some technical modifications and without
conceptual complications.

8If we are interested in a superpopulation where Z is random, then the estimands would be defined as
the probability limit of the conditional objects. Then, it suffices to have regularity conditions to ensure that
the conditional object converges to the unconditional object.

9Any nonlinear function of the instruments can be arbitrarily well-approximated by a spline with a large
number of pieces or a high-order polynomial. Moreover, the arguments in this paper could presumably be
extended to a linear approximation of nonlinear functions as long as there are regularity conditions to ensure
that higher-order terms are asymptotically negligible.
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which need not be zero. For data matrix A, let HA = A (A′A)−1A′ denote the hat (i.e.,

projection) matrix and MA = I − HA its corresponding annihilator matrix. With Z,W

denoting the corresponding data matrices of the instrument and covariates, let Q = (Z,W ),

P = HQ, and M = I − P . C denotes arbitrary constants.

Remark 1.2. While E [ei|Zi,Wi] = R∆i need not be zero under heterogeneous treatment

effects, E [ei|Zi,Wi] = R∆i = 0 under constant treatment effects. Since R∆i = Z ′
i(πY −

πβ) + W ′
i (γY − γβ) for all i, constant treatment effects with E[Yi − Xiβ | Zi,Wi] = 0 also

implies πY = πβ and γY = γβ outside of edge cases (e.g., when Zi,Wi are always 0). These

R∆ objects hence capture the impact of having heterogeneous treatment effects in the many

instruments model.

The (conditional) object of interest and its corresponding estimator are:

βJIV E :=

∑
i

∑
j ̸=i GijRY iRj∑

i

∑
j ̸=i GijRiRj

, and β̂JIV E =

∑
i

∑
j ̸=i GijYiXj∑

i

∑
j ̸=iGijXiXj

,

where G is an n × n matrix that can take several forms. As the leading cases, if there

are no covariates, using the projection matrix G = HZ = P is the standard JIVE, and

when there are covariates, I use the unbiased JIVE “UJIVE” (Kolesár, 2013) with G =

(I − diag (HQ))−1HQ − (I − diag (HW ))−1HW . In an environment with a binary instru-

ment and many covariates interacted with the instrument, the saturated estimand “SIVE”

(Chao et al., 2023; Boot and Nibbering, 2024) uses G = PBN −MQDBNMQ, where PBN =

MWZ (Z ′MWZ)−1 Z ′MW and DBN is defined as a diagonal matrix with elements such that

PBN,ii = [MQDBNMQ]ii. With constant treatment effects, the estimand is the same for all

the estimators: RY i = Riβ so βJIV E = β. Depending on the application, the estimand is

usually interpretable as some weighted average of treatment effects when using JIVE without
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covariates or UJIVE with covariates with a saturated regression.10 (Evdokimov and Kolesár,

2018) The focus of this paper is on inference, so I will not discuss the estimand in detail.

The results for valid inference in the paper are established for any G that satisfies properties

that will be formally stated in the theorem.

This paper restricts its attention to the following statistics:

(TAR, TLM , TFS)′ :=
1√
K

∑
i

∑
j ̸=i

Gij (ei (β0) ej (β0) , ei (β0)Xj, XiXj)
′ . (1.5)

It suffices to focus on (TAR, TLM , TFS) for inference as they correspond to a linear transfor-

mation of the leave-one-out analog of a maximal invariant — details are in Section 1.4.1.

TAR is the (unnormalized) AR statistic used by MS22 for inference, and TLM is the LM

(score) statistic used by MO22. TFS corresponds to a first-stage F statistic that can be used

as a diagnostic for weak instruments.

The asymptotic behavior depends on the following object:

rn :=
∑
i

(∑
j ̸=i

GijRj

)2

+
∑
i

(∑
j ̸=i

GijR∆j

)2

+
∑
i

∑
j ̸=i

G2
ij. (1.6)

Asymptotic theory in this paper uses rn/
√
K → ∞, which nests the environments of EK18,

MS22, and MO22: as long as one of the three objects in Equation (1.6) diverges at a rate

above
√
K, we obtain rn/

√
K → ∞. EK18 assume

∑
i

(∑
j ̸=iGijRj

)2
/
√
K → ∞, which

implies strong identification, but rn/
√
K → ∞ can also be achieved if either of the latter

terms in rn diverges. MS22 and MO22 assume K → ∞. Without covariates, G = P , so∑
i

∑
j ̸=i G

2
ij = O(K), and hence rn/

√
K → ∞. Hence, to apply the asymptotic theory in

this paper, it suffices to have either strong identification, or K → ∞. The only case ruled

10In the judge example without covariates above, we have G = P and πY k = βkπk where βk is the local

average treatment effect (LATE) between judge k and the base judge, so βJIV E =
∑

k πY kπk∑
k π2

k
=

∑
k π2

kβk∑
k π2

k
is a

weighted average of LATE’s.
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out is where K is fixed, and there is weak identifcation in that
∑

i

(∑
j ̸=i GijRj

)2
/
√
K does

not diverge.

The following assumption states sufficient conditions for joint asymptotic normality.

Assumption 1.1. (a) There exists C < ∞ such that E[η4i ] + E[ν4
i ] ≤ C for all i.

(b) E [ν2
i ] and E [η2i ] are bounded away from 0 and |corr (νi, ηi) | is bounded away from 1.

(c) There exists c > 0 such that for any c1, c2, c3 that are not all 0,

1
rn

∑
i

(
c3
∑

j ̸=i (Gij + Gji)Rj + c2
∑

j ̸=i GjiR∆j

)2
+ 1

rn

∑
i

(
c1
∑

j ̸=i (Gij + Gji)R∆j + c2
∑

j ̸=i GijRj

)2
+ 1

rn
Var

(∑
i

∑
j ̸=iGij (c1νiνj + c2νiηj + c3ηiηj)

)
≥ c.

(d) 1
r2n

∑
i

((∑
j ̸=i GijRj

)4
+
(∑

j ̸=i GijR∆j

)4
+
(∑

j ̸=i GjiRj

)4
+
(∑

j ̸=i GjiR∆j

)4)
→

0.

(e) || 1
rn
GLG

′
L||F + || 1

rn
GUG

′
U ||F → 0, where GL is a lower-triangular matrix with elements

GL,ij = Gij1 {i > j} and GU is an upper-triangular matrix with elements GU,ij =

Gij1 {i < j}.

Assumption 1.1 states high-level conditions that mimic EK18 so that a central limit

theorem (CLT) can be applied. These conditions hence accommodate the G that EK18

consider with covariates. Having bounded moments in (a) is standard. Conditions (b) and

(c) are sufficient to ensure that the variance is non-zero asymptotically. In particular, (b)

rules out perfect correlation: in the simulation, corr(ηi, νi) = −1 is the pathological case that

makes the variance zero, but corr(ηi, νi) = 1 still allows non-zero variance. Conditions (d)

and (e) ensure that the weights placed on the individual stochastic terms are not too large.

The condition that rn/
√
K → ∞ is implied by (e) when G = P : due to Lemma B3 of Chao

et al. (2012), under weak IV asymptotics where Pii ≤ C < 1, we obtain ||GLG
′
L||F ≤ C

√
K.
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Mechanically, if there is weak IV and fixed K, then || 1
rn
GLG

′
L||F = 1

K
O(

√
K) ̸= o(1), so

(e) fails when rn/
√
K does not diverge. Notably, the conditions do not require Pii → 0 so

the π, πY coefficients need not be consistently estimated.

Theorem 1.1. If Assumption 1.1 holds and β = β0, then β̂JIV E − βJIV E = TLM/TFS, and

for V = V ar(TAR, TLM , TFS),

V −1/2


TAR − 1√

K

∑
i

∑
j ̸=iGijR∆iR∆j

TLM

TFS − 1√
K

∑
i

∑
j ̸=i GijRiRj

 d−→ N




0

0

0

 , I3

 . (1.7)

In Theorem 1.1, E[TFS] = 1√
K

∑
i

∑
j ̸=i GijRiRj is the concentration parameter corre-

sponding to the instrument strength. In the model of Section 1.2, the mapping to the

reduced-form π can be found in Section 1.A.2, so the concentration parameter is given

by E[TFS] = 1√
K

∑
k(c − 1)π2

k = 5
8

√
K(c − 1)s2.11 If the instruments are strong, then

E[TFS] → ∞, so β̂JIV E − βJIV E
d−→ 0. With weak IV, E[TFS] converges to some constant

C < ∞, so comparing the JIVE t-statistic with the standard normal distribution leads to

invalid inference even in large samples.

The asymptotic distribution follows from establishing a quadratic CLT that may be

of independent interest: it is proven by rewriting the leave-one-out sums as a martingale

difference array, and then applying the martingale CLT. While there are existing quadratic

CLT available, they do not fit the context exactly. Chao et al. (2012) Lemma A2 requires

G to be symmetric, which works for G = P , but G for UJIVE is not symmetric in general.

EK18 Lemma D2 is established for scalar random variables, so I extend it to random vectors.

11This concentration parameter is comparable to the concentration parameter in just-identified IV. With
slight abuse of notation, suppose the just-identified IV model has a first stage equation with X = Zπ + v
where π = s. Then, omitting variance normalizations, using the notation from Lee et al. (2023), the
concentration parameter is f0 =

√
ns, which determines if the TSLS estimator is consistent. In the L1O

asymptotics,
√
K(c − 1)s2 ≈ ns2/

√
K by using n = (K + 1)c and approximations

√
K/(K + 1) ≈ 1 and

(c − 1)/
√
c ≈

√
c. By comparing the L1O concentration parameter ns2/

√
K with the just-identified IV

concentration parameter f0 =
√
ns, I obtain the notions of weak identification in Remark 1.1.
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Theorem 1.1 states that TLM is mean zero and asymptotically normal. Hence, if we have

access to the oracle variance of TLM , we can simply use the statistic TLM/
√

Var(TLM) for

testing because it has a standard normal distribution under the null. Obtaining a consistent

estimator is an issue addressed in the next subsection.

1.3.2 Variance Estimation

To test the null that H0 : β = β0, we can calculate TLM using the null-imposed β0 and an

estimator for the variance of
√
KTLM , V̂LM , defined later in this section. Then, reject if

KT 2
LM/V̂LM ≥ Φ (1 − α/2)2 for a size α test where Φ(.) is the standard normal CDF. This

procedure is valid when TLM is asymptotically normal with mean zero as we have established

in the previous section, and when V̂LM is consistent.

Before stating the variance estimator, I first decompose the variance expression in the

equation below, which follows from substituting ei = R∆i + νi and Xi = Ri + ηi into the

variance. For VLM := Var
(∑

i

∑
j ̸=iGijeiXj

)
,

VLM =
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
ν2
i

]
GijGikRjRk +

∑
i

∑
j ̸=i

G2
ijE
[
ν2
i

]
E
[
η2j
]

+
∑
i

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj]

+ 2
∑
i

∑
j ̸=i

∑
k ̸=i

E [νiηi]GijGkiRjR∆k +
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
η2i
]
GjiGkiR∆jR∆k.

(1.8)

With constant treatment effects, only the first line appears in the variance as R∆ = 0.

With G = P , the expression for Var
(∑

i

∑
j ̸=i PijeiXj

)
matches the expression in EK18

Theorem 5.3, but their variance estimator cannot be used directly as they required consistent

estimation of reduced-form coefficients. By adapting the leave-three-out (L3O) approach of

Anatolyev and Sølvsten (2023) (AS23), an unbiased and consistent variance estimator can

be obtained. Intuitively, just as the own-observation bias in TSLS that involves a single sum

can be addressed with L1O, an unbiased estimator for the variance expression that involves
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a triple sum can be obtained with L3O. Let τ := (π′, γ′)′ and τ∆ := ((πY −πβ)′, (γY − γβ)′)′

denote the coefficients on Q when running the regression of X and e respectively. The

variance estimator is:

V̂LM := A1 + A2 + A3 + A4 + A5, (1.9)

with

A1 :=
∑
i

∑
j ̸=i

∑
k ̸=i

GijXjGikXkei (β0) (ei (β0) −Q′
iτ̂∆,−ijk) ,

A2 := 2
∑
i

∑
j ̸=i

∑
k ̸=i

GijXjGkiek (β0) ei (β0) (Xi −Q′
iτ̂−ijk) ,

A3 :=
∑
i

∑
j ̸=i

∑
k ̸=i

Gjiej (β0)Gkiek (β0)Xi (Xi −Q′
iτ̂−ijk) ,

A4 := −
∑
i

∑
j ̸=i

∑
k ̸=j

G2
jiXiM̌ik,−ijXkej (β0)

(
ej (β0) −Q′

j τ̂∆,−ijk

)
,

A5 := −
∑
i

∑
j ̸=i

∑
k ̸=j

GijGjiei (β0) M̌ik,−ijXkej (β0)
(
Xj −Q′

j τ̂−ijk

)
,

where

τ̂−ijk :=

(∑
l ̸=i,j,k

QlQ
′
l

)−1 ∑
l ̸=i,j,k

QlXl,

τ̂∆,−ijk :=

(∑
l ̸=i,j,k

QlQ
′
l

)−1 ∑
l ̸=i,j,k

Qlel (β0) ,

Dij := MiiMjj −M2
ij, and

M̌ik,−ij :=
MjjMik −MijMjk

Dij

= −Q′
i

(∑
l ̸=i,j

QlQ
′
l

)−1

Qk.

Following AS23, I make an assumption to ensure that the L3O estimator is well-defined.12

12If these conditions are not satisfied, then we can follow the modification in AS23 so that the variance
estimator is conservative.
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Assumption 1.2. (a)
∑

l ̸=i,j,k QlQ
′
l is invertible for every i, j, k ∈ {1, · · · , n}.

(b) maxi ̸=j ̸=k ̸=i D
−1
ijk = OP (1), where Dijk := MiiDjk−

(
MjjM

2
ik + MkkM

2
ij − 2MjkMijMik

)
.

Assumption 1.2(a) corresponds to AS23 Assumption 1 and Assumption 1.2(b) corre-

sponds to AS23 Assumption 4. For consistent variance estimation, we additionally require

regularity conditions that are stated in Assumption 1.3 of Section 1.A.1. These conditions

are satisfied when G is a projection matrix. With these conditions, Theorem 1.2 below claims

that the variance estimator is consistent.

Theorem 1.2. If β = β0, Assumptions 1.1-1.2 hold, and Assumption 1.3 in Section 1.A.1

holds, then E
[
V̂LM

]
= VLM and V̂LM/VLM

p−→ 1.

With many instruments and potentially many covariates, the reduced-form coefficients

π, πY , γ, γY are not consistently estimable. The usual approach to constructing variance

estimators calculates residuals by using the estimated coefficients, but this approach no

longer works when these estimated coefficients are inconsistent. To be precise, applying

Chebyshev’s inequality for any ϵ > 0 yields:

Pr

(∣∣∣∣∣ V̂LM − VLM

VLM

∣∣∣∣∣ > ϵ

)
≤ 1

ϵ2

V ar
(
V̂LM

)
V 2
LM

+
1

ϵ2

(
E
[
V̂LM

]
− VLM

)2
V 2
LM

. (1.10)

Without an unbiased estimator and when reduced-form coefficients cannot be consistently

estimated, the second term in (1.10) is not necessarily asymptotically negligible. To overcome

this problem, I use an unbiased variance estimator so that the second term is exactly zero.

Then, it suffices to show that the variance of individual components of the variance are

asymptotically small compared to V 2
LM , so that the first term in (1.10) is o(1) by applying

the Cauchy-Schwarz inequality.

To obtain an unbiased estimator, I use estimators for the reduced-form coefficients

π, πY , γ, γY that are unbiased and independent of objects that they are multiplied with.
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The leave-three-out (L3O) approach has this unbiasedness property for linear regressions:

when leaving three observations out in the inner-most sum of the A expressions, the esti-

mated coefficient τ̂−ijk is independent of i, j, k and is unbiased for τ . Then, when taking the

expectation through a product of random variables of i, j, k and τ̂−ijk, τ can be used in place

of the τ̂−ijk component, and the expectations of individual components can be isolated. For

instance,

E

[∑
i

∑
j ̸=i

∑
k ̸=i,j

GijXjGikXkei (ei −Q′
iτ̂∆,−ijk)

]

=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijE [Xj]GikE [Xk]E [ei (ei −Q′
iτ̂∆,−ijk)]

=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijRjGikRkE
[
ν2
i

]
,

(1.11)

which recovers the triple sums in the VLM expression of (1.8). Without leaving out observa-

tions j and k, we would not be able to isolate E[Xj] and E[Xk] in the first equality. Without

leaving out observation i, we would not be able to isolate τ∆ on expectation to obtain E[ν2
i ]

in the second equality. An analogous argument applies to other components of V in (1.7).

Assuming that the residuals have zero mean conditional on Q is crucial: if we merely have

E[Qζ] = 0, this argument can no longer be applied.

Remark 1.3. While the proposed V̂LM is motivated by AS23, the contexts and estimators

are different. First, the statistic that we are estimating the variance for is different: AS23

demeaned their F statistic using ÊF , where ÊF is estimated using L1O, so they are interested

in the variance of F − ÊF that is mean zero; I use a mean-zero L1O statistic directly in

TLM . Second, the expectation of their variance estimator takes the form of their (9), which

is analogous to the sum of A1 and A4 using the notation above, so repeated applications

of their estimator is insufficient to recover all five terms exactly. Hence, to adjust for the
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A4 and A5 terms here, I additionally require another estimator, and its form is similarly

motivated by a L3O reasoning.

Inverting the test to obtain a confidence set is straightforward, as the test statistic T 2
LM

and variance estimator V̂LM = B0 + B1β0 + B2β
2
0 are quadratic in β0 (for some B0, B1, B2

that are functions of the data), so the confidence set is obtained by solving a quadratic

inequality.13

1.4 Power Properties

This section characterizes power properties of the valid LM procedure. I first argue that

we can restrict our attention to three statistics that are jointly normal by extending the

argument from Moreira (2009a). Since the covariance matrix can be consistently estimated,

the remainder of the section focuses on the 3-variable normal distribution with a known

covariance matrix. With this asymptotic distribution, I show that the two-sided LM test is

the uniformly most powerful unbiased test within the interior of the parameter space.

1.4.1 Sufficient Statistics and Maximal Invariant

As is standard in the literature, I consider the canonical model without covariates where

the reduced-form errors are normal and homoskedastic (e.g., Andrews et al. (2006); Moreira

(2009a)). Suppose (η, ζ) in the model of Section 1.3.1 are jointly normal with known variance:

 ζi

ηi

 ∼ N (0,Ω) = N

0,

 ωζζ ωζη

ωζη ωηη


 . (1.12)

13Details are relegated to the appendix.
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Define:  s1

s2

 :=

 (Z ′Z)−1/2 Z ′Y

(Z ′Z)−1/2 Z ′X

 .

I restrict attention to tests that are invariant to rotations of Z, i.e., transformations of the

form Z → ZF ′ where F is a K × K orthogonal matrix. In particular, an invariant test

ϕ(s1, s2) is one for which ϕ(Fs1, Fs2) = ϕ(s1, s2) for all K×K orthogonal matrices F . If we

focus on invariant tests, then the maximal invariant contains all relevant information from

the data for inference.

Due to Moreira (2009a) Proposition 4.1, (s′1, s
′
2)

′ are sufficient statistics for (π′
Y , π

′)′.

Further, (s′1s1, s
′
1s2, s

′
2s2) is a maximal invariant, and

 s1

s2

 ∼ N


 (Z ′Z)1/2 πY

(Z ′Z)1/2 π

 ,Ω ⊗ IK

 .

The maximal invariant (s′1s1, s
′
1s2, s

′
2s2) is jointly normal with a mean that depends on Ω

when K → ∞.14 Extending the argument to allow for heterogeneous treatment effects, the

object of interest is β = π′Z′ZπY

π′Z′Zπ
(following EK18), which is invariant to rotations of the

instrument.15

To be robust to many instruments, heteroskedasticity, and non-normality, I use the leave-

one-out (L1O) analog of the maximal invariant (following MS22; Lim et al. (2024)).16 With-

out covariates such that G = P , the L1O analog is 1√
K

∑
i

∑
j ̸=i Pij(YiYj, YiXj, XiXj), which

is a linear transformation of (TAR, TLM , TFS).17 In the remainder of this section, I focus on

14This result is stated in Section 1.C.2.
15With rotation matrix F ′ such that F ′F = I, observe that X = ZF ′Fπ + η, so if we were to run

the regression on ZF ′ instead of Z, we would obtain coefficients Fπ instead of π. Then, the estimand is
π′F ′FZ′ZF ′FπY

π′F ′FZ′ZF ′Fπ = π′Z′ZπY

π′Z′Zπ as before.
16With heteroskedasticity, the variances are not consistently estimable, so we cannot correct for the

variances directly. These variances no longer feature in the L1O analog of the maximal invariant.
17To see that 1√

K

∑
i

∑
j ̸=i Pij(YiYj , YiXj , XiXj) is a linear transformation, use the fact that e = Y +

Xβ. Then, 1√
K

∑
i

∑
j ̸=i Pij((ei +Xiβ)(ej +Xjβ), (ei +Xiβ)Xj , XiXj) = (TAR + 2TLMβ + TFSβ

2, TLM −
TFSβ, TFS).
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testing the null that β0 = 0 so e (β0) = Y and the L1O of the maximal invariant is exactly

(TAR, TLM , TFS). The results are generalized in the appendix.

The asymptotic problem involving (TAR, TLM , TFS) is:


TAR

TLM

TFS

 ∼ N (µ,Σ) , µ =


1√
K

∑
i

∑
j ̸=i PijR∆iR∆j

1√
K

∑
i

∑
j ̸=i PijR∆iRj

1√
K

∑
i

∑
j ̸=i PijRiRj

 ,Σ =


σ11 σ12 σ13

· σ22 σ23

· · σ33

 .

(1.13)

While µ2 = 0 under the null, µ2 may not be zero under the alternative. There are several

restrictions in the µ vector, which is assumed to be finite. Since P is a projection matrix,∑
i

∑
j ̸=i PijRiRj =

∑
i Ri(

∑
j PijRj − PiiRi) =

∑
i MiiR

2
i . Since the annihilator matrix

M has positive entries on its diagonal, we obtain µ3 ≥ 0 and a similar argument yields

µ1 ≥ 0. With µ2 =
∑

i

∑
j ̸=i PijR∆iRj =

∑
i MiiR∆iRi, the Cauchy-Schwarz inequality

implies µ2
2 ≤ µ1µ3. Constant treatment effects implies µ2

2 = µ1µ3, which is a special case of

the environment here. Even with covariates, if the regression is fully saturated with G given

by UJIVE, the same inequality restrictions hold.18 These properties do not contradict the

joint normality: even though µ3 ≥ 0, TFS can still be negative when using the L1O statistic.

The inequalities µ1, µ3 ≥ 0 and µ2
2 ≤ µ1µ3 are also the only restrictions on µ, as it can be

shown that there exists a structural model where there are no further restrictions.19

1.4.2 Optimality Result

With a size α test, the two-sided LM test against the alternative that µ2 ̸= 0 rejects when

T 2
LM/Var(TLM) > Φ(1 − α/2)2. I consider the benchmark of a uniformly most powerful

unbiased test (e.g., Lehmann and Romano (2005); Moreira (2009b)).

18See Proposition 1.3 in Section 1.C.2.
19Section 1.C.2 establishes that there exists a structural model where Σ is uninformative about µ, and

µ1, µ3 ≥ 0. Since the model in Section 1.2 is binary, it is insufficient for such a general result, and a
continuous X is required. While the result establishes that there exists a structural model where there are
no further restrictions, for any given structural model, there can still be further restrictions.
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Proposition 1.1. Consider a restriction of the alternative µ space to the interior i.e.,

µ1, µ3 > 0 and µ2
2 < µ1µ3. Then, within the class of tests that are functions of

(TAR, TLM , TFS), the two-sided LM test is the uniformly most powerful unbiased test

for testing H0 : µ2 = 0 against H1 : µ2 ̸= 0 in the asymptotic problem of (1.13).

The argument for optimality applies a standard optimality result from Lehmann and

Romano (2005) on the exponential family, which includes the normal distribution. To apply

the Lehmann and Romano (2005) result, we require a convex parameter space and the the

existence of alternative values above and below the null value. It can be verified that the

restricted parameter space is still convex, and the restriction to the interior ensures the latter

condition is satisfied. The proposition claims optimality within the class of unbiased tests,

and makes no statement about tests that are biased (i.e., where the power somewhere in the

alternative space can be lower than the size).

Remark 1.4. With the characterized asymptotic distribution, there are several other tests

that are valid. (1) We can implement a Bonferroni-type correction that constructs a 99%

confidence set for both µ1 and µ3, then a 97% test for LM. (2) VtF from Lee et al. (2023)

can be adapted, because the asymptotic distribution does not rely on homogeneous treatment

effects and the JIVE t statistic has the same distribution as the just-identified TSLS t statis-

tic. (3) With a given structural model, the algorithm from Elliott et al. (2015) can also be

applied by using a grid on structural parameters.

Remark 1.5. Beyond the two-sided UMPU result, we may also consider other power prop-

erties. The one-sided LM test is shown to be the most powerful test against a particular

subset of the alternative space. Numerically, using a covariance matrix calibrated from an

empirical application, the power of the two-sided LM test is also close to that of the nearly

optimal test against a weighted average over a grid of alternative values, constructed using

the algorithm from Elliott et al. (2015). Details are in Section 1.C.2.

37



Studying optimality in the over-identified IV environment has thus far been complicated.

With constant treatment effects, both s′1s1 and s′1s2 are informative of the object of interest

β, because constant treatment effects implies µ1 = β2µ3 in addition to µ2 = βµ3. However,

once we impose µ1 > 0 under the null that β = 0, we rule out constant treatment effects by

focusing on the interior of the alternative space. Then, the statistic associated with µ1 is no

longer directly informative of β. Imposing heterogeneity is hence the key to obtaining this

UMPU result.

1.5 Simulations

This section focuses on the simple example from Section 1.2. I report two sets of simulations

that assess the size and one that assesses power. One set of size simulations uses a large K

while the other a small K. Robustness checks that involve different data generating processes

are relegated to the appendix.20

Table 1.1 in Section 1.2 reports rejection rates under the null for a relatively large number

of judges with K = 400, each with a small number of cases at c = 5. L3O performs well

across various designs, while existing procedures can substantially over-reject in at least one

design. The LMorc column is included as an infeasible theoretical benchmark that uses an

oracle variance: this should have nominal size when normality holds because the variance

is not estimated. The difference between LMorc and L3O is attributed to the variance

estimation procedure.

Table 1.2 reports rejection rates under the null for a small number of judges with K = 4

and a large number of cases at c = 200. Based on the theory in Section 1.3, L3O should

be valid when the instrument is strong, i.e., in the cases with E[TFS] = .5c, which is what

we observe. Notably, even when E[TFS] = 2 or E[TFS] = 0, the over-rejection for L3O is

20There are more simulation results using several different structural models in Section 1.C.4, including
settings with continuous treatment X, and with covariates. The results are qualitatively similar in those
simulations, suggesting that the numerical findings are not unique to the data-generating process chosen.
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Table 1.2: Rejection rates under the null for nominal size 0.05 test

Designs Procedures

E[TAR] E[TFS] TSLS EK MS MO X̃-t X̃-AR L3O LMorc ARorc

.5c 0.210 0.049 1.000 0.212 0.217 0.217 0.048 0.052 1.000
.5c 2 0.642 0.018 1.000 0.806 0.269 0.816 0.043 0.049 1.000

0 0.498 0.005 1.000 0.881 0.330 0.893 0.062 0.051 1.000

.5c 0.075 0.064 1.000 0.075 0.073 0.077 0.063 0.061 0.913
2 2 0.462 0.013 0.999 0.436 0.296 0.516 0.095 0.049 0.931

0 0.440 0.008 1.000 0.448 0.337 0.576 0.088 0.052 0.934

.5c 0.052 0.048 0.061 0.045 0.050 0.046 0.046 0.048 0.069
0 2 0.376 0.088 0.075 0.044 0.238 0.123 0.101 0.045 0.071

0 0.590 0.181 0.076 0.029 0.431 0.163 0.075 0.045 0.080

Notes: K = 4, c = 200. Designs and procedures are otherwise identical to Table 1.1.

not too severe. EK performs very well in the cases with E[TFS] = .5c as expected in their

theory. In contrast, MS and MO can over-reject severely with strong heterogeneity, even

when instruments are strong.

Table 1.3 reports rejection rates under the alternative. When E[TFS] = 0, the instru-

ment should be completely uninformative about the true parameter, so we should have 0.05

rejection rate for a valid test, which is what we observe for L3O. When E[TFS] = 2
√
K, all

procedures, including L3O, are very informative. Considering the designs with E[TAR] = 0 is

most interesting, because this is an environment where MS and MO are valid, and the theo-

retical optimality result excludes this case. Looking at the case with E[TAR] = 0, E[TFS] = 2,

L3O is less powerful than MS and MO in small samples, but the loss is less than 7 percentage

points.
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Table 1.3: Rejection rates under the alternative for nominal size 0.05 test

Designs Procedures

E[TAR] E[TFS] TSLS EK MS MO X̃-t X̃-AR L3O LMorc ARorc

2
√
K 1.000 1.000 NaN 1.000 1.000 1.000 1.000 1.000 1.000

2
√
K 2 0.310 0.173 NaN 0.539 0.117 0.563 0.240 0.225 1.000

0 0.722 0.029 NaN 0.291 0.055 0.309 0.048 0.055 1.000

2
√
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 2 0.244 0.543 1.000 0.886 0.163 0.907 0.789 0.823 1.000
0 0.998 0.090 1.000 0.157 0.169 0.221 0.073 0.054 1.000

2
√
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 2 0.259 0.662 1.000 0.967 0.230 0.978 0.936 0.961 1.000
0 1.000 0.373 0.059 0.048 0.333 0.117 0.067 0.055 0.054

Notes: K = 100, β = 0.1, c = 5. Designs and procedures are otherwise identical to Table 1.1.

1.6 Empirical Applications

1.6.1 Returns to Education

Angrist and Krueger (1991) were interested in the impact of years of education (X) on log

weekly wages (Y). They instrument for education using the quarter of birth (QOB). I imple-

ment UJIVE using full interaction of QOB with the state of birth and year of birth (resulting

in 1530 instruments) without other controls, which is similar to Table VII(2) of Angrist and

Krueger (1991) that uses the same set of controls but without full saturation. The implemen-

tation here differs from the implementation of MS and MO in that I do not linearly partial

out other covariates, but merely saturate on state and year of birth. This implementation

is motivated by recent econometric research (e.g., Blandhol et al. (2022); S loczyński (2020))

that argue that the standard interpretation of estimands as a weighted average of LATE’s

is only retained with some parametric assumptions or when the specification controls for

covariates richly, which can be achieved with full saturation.21 To ensure that the different

21A further advantage of this implementation is that the code is fast: when G is block-diagonal, it suffices
to loop over blocks.
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procedures are directly comparable, I adapt the MS and MO inference procedures to target

UJIVE, so that the estimand is the same across all procedures and differing results can be

attributed purely to inference. TSLS is consequently not a meaningful comparison as the

estimand is different from the others.

The results are reported in Table 1.4. In addition to the aforementioned procedures, I

include results from implementing the procedure in Crudu et al. (2021) (CMS) that uses the

TAR statistic like MS22, but uses a plug-in variance estimator like MO22.22 Being robust

to weak and many IV results in L3O having a longer confidence interval than EK. With

full saturation, CMS and MO yield unbounded confidence sets, while L3O yields a bounded

confidence set, showing how robustness to heterogeneity changes the shape of the confidence

set in this context. The shape of the confidence set depends on the coefficient on β2
0 . In

particular, for Ψ2 := 1
K

∑
i

(∑
j ̸=iGijXj

)2
X2

i + 1
K

∑n
i ̸=j G

2
ijX

2
i X

2
j , MO is unbounded when

T 2
FS − qΨ2 < 0 and L3O is unbounded when T 2

FS − qB2 < 0, where q is 3.84 for a 5% test

and B2 is the coefficient on β2
0 in the expression of V̂LM . Consequently, in this application,

we can think of T 2
FS/Ψ2 = 0.102 and T 2

FS/B2 = 11.8 as first-stage statistics for MO and L3O

respectively that determine whether the confidence sets are bounded.23 Analogously, when

solving a quartic equation in CMS, an unbounded set occurs as T 2
FS/

(
2
K

∑n
i ̸=j G

2
ijX

2
i X

2
j

)
=

0.0545, where the denominator is their coefficient on β4
0 in their variance estimator. In

contrast, the MS confidence set is bounded with T 2
FS/

(
2
K

∑n
i ̸=j

G2
ij

MiiMjj+M2
ij
X2

i X
2
j

)
= 23.9.

Due to the M̌ terms in the L3O expression, it is difficult to compare the estimates directly.

However, it is possible to compare the estimands of these coefficients in the judge example

22MS22 use a cross-fit variance estimator, while they refer to the CMS variance estimator as the “naive”
variance estimator. MS22 argue that their cross-fit variance is more powerful, which corroborates how MS
has a bounded confidence set while CMS does not.

23These statistics are “F” statistics with different variance estimators, suggesting that the instruments
are meaningfully weak. The MS and MO variance estimators converge to the same object under weak
identification such that 1

K

∑
i

∑
j ̸=i GijRiRj → 0, which is not imposed by the asymptotic regime in this

paper.
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Table 1.4: 95% Confidence Sets for Returns to Education

EK CMS MS MO X̃-t X̃-AR L3O

LB 0.033 -∞ 0.019 -∞ 0.027 0.027 0.022
UB 0.173 ∞ 0.305 ∞ 0.179 0.189 0.210
Estimate 0.103 0.103 0.103 0.103 0.103 0.103 0.103
CIlength 0.140 ∞ 0.286 ∞ 0.152 0.161 0.188

Notes: Estimate reports the UJIVE. CMS implements the procedure from Crudu et al. (2021):
use TAR with a plug-in variance. Procedures are otherwise identical to Table 1.1.

without covariates:

E [KΨ2] − E [B2] =
∑
i

MiiR
2
i

(
R2

i − 3 (1 − 2Pii)E
[
η2i
])

. (1.14)

If R2
i > 3 (1 − 2Pii)E [η2i ], then MO is more likely unbounded. Intuitively, the MO estimator

contains additional products of R that are not present in the true variance, and there are

products of R and the error present in the true variance that MO does not account for,

motivating the aforementioned difference. We can interpret this condition as MO being

more likely unbounded when the signal-to-noise ratio R2
i /E [η2i ] is sufficiently large. In this

application, by observing that the first-stage statistic of L3O is an order of magnitude larger

than that of MO (i.e., B2 is an order of magnitude smaller), and by comparing the CMS

and MO first-stage statistics, there is evidence that R2
i /E [η2i ] is large.24 This result does not

depend on heterogeneity, because the coefficient of β2
0 depends only on how X is combined

in the variance estimator.

24Comparing the statistics between MO and MS implies 1
K

∑
i

(∑
j ̸=i GijXj

)2
X2

i <
1
K

∑
i

∑
j ̸=i G

2
ijX

2
i X

2
j , which can equivalently be written as

∑
i

∑
j ̸=i

∑
k ̸=i,j GijGikXjXkX

2
i <

0. With full saturation, observations i, j have Gij < 0 when they are in the same co-
variate group but have different instrument values. Under the MS and MO asymp-
totic regimes where 1

K

∑
i

∑
j ̸=i GijRiRj → 0 so R2

i /E[η2i ] is negligible, we obtain∑
i

∑
j ̸=i G

2
ijE[X2

i ]E[X2
j ] =

∑
i

∑
j ̸=i G

2
ij

(
R2

i + E[η2i ]
) (

R2
j + E[η2j ]

)
=
∑

i

∑
j ̸=i G

2
ijE[η2i ]E[η2j ] + o(1),

and 1
K

∑
i

∑
j ̸=i

∑
k ̸=i,j GijGikE

[
XjXkX

2
i

]
= 1

K

∑
i

∑
j ̸=i

∑
k ̸=i,j GijGikRjRk

(
R2

i + E[η2i ]
)

= o(1) is
asymptotically negligible. Since the difference between MS and MO is the same magnitude as the
MS statistic, 1

K

∑
i

∑
j ̸=i

∑
k ̸=i,j GijGikE

[
XjXkX

2
i

]
is of similar order as

∑
i

∑
j ̸=i G

2
ijE[X2

i ]E[X2
j ], so

R2
i /E[η2i ] is non-negligible in this application.
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Table 1.5: 95% Confidence Sets for Misdemeanor Prosecution

EK CMS MS MO X̃-t X̃-AR L3O

LB -0.151 ∅ ∅ -0.220 -0.187 -0.188 -0.201
UB -0.076 ∅ ∅ -0.019 -0.039 -0.038 -0.028
Estimate -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113
CIlength 0.075 ∅ ∅ 0.201 0.148 0.150 0.173

Notes: Procedures are identical to Table 1.4.

1.6.2 Misdemeanor Prosecution

Agan et al. (2023) were interested in the effect of misdemeanor prosecution (X) on crim-

inal complaint in two years (Y). They instrument for misdemeanor prosecution using the

assistant district attorneys (ADAs) who decide if a case should be prosecuted in the Suffolk

County District Attorney’s Office in Massachusetts. As Agan et al. (2023) argued that as-if

randomization holds conditional on court-by-time controls and that individual covariates are

not required for relevance or exogeneity to hold in this context, the confidence set is con-

structed using full saturation of court-by-year and court-by-day-of-week fixed effects with no

other controls for individual covariates.

As reported in Table 1.5, with full saturation, the UJIVE is −0.11, so not prosecuting

decreases the probability of criminal involvement by 11 percentage points.25 The L3O con-

fidence interval (CI) is more than twice that of EK: unlike Section 1.6.1 where n/K = 221,

we have n/K = 11.9 here, so a variance estimator that is robust to many IV has a larger

impact on CI. MS has an empty confidence set while L3O has a bounded set, showing how

being robust to heterogeneity can change conclusions.26 Mechanically, the confidence set for

25This result is smaller than −0.36 reported in their Table III(3) that uses TSLS with a leniency measure.
The result is more similar to the UJIVE robustness check in their Table A.1(5) of −0.15 with full saturation
of the instrument, but their specification includes case/ defendant covariates, which results in a different
estimator.

26An empty confidence set using the AR procedure also suggests that the model with constant treatment
effects is rejected, so there is meaningful heterogeneity. Since the variances of MO and L3O converge to the
same object under homogeneity, the difference between MO and L3O confidence sets also suggests that there
is heterogeneity.
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MS solves a quartic equation, so an empty set can occur, but it is difficult to characterize

when this phenomenon occurs in general.

The L3O CI is also shorter than MO, so being robust to heterogeneity decreases the

length of the CI. Considering how the length of the MO confidence set is longer than L3O

while being oversized in simulations, there is a question of when MO is conservative. While

it is difficult to compare the confidence intervals or variance estimators directly, it is possible

to compare the null-imposed variance estimands in the judge example without covariates. It

can be shown that:

E
[
Ψ̂MO

]
− V ar

(∑
i

∑
j ̸=i

PijeiXj

)
=
∑
i

MiiR
2
∆i

(
R2

i − (1 − 2Pii)E
[
η2i
])

− 2
∑
i

Mii(1 − 2Pii)E [ηiνi]RiR∆i.

Then, MO is conservative when: (i) R2
i > (1 − 2Pii)E [η2i ], and (ii) E [ηiνi] is negatively

correlated with RiR∆i, when Pii < 1/2. In (i), R2
∆i only affects the magnitude of the

difference, and not the sign, so this condition can be interpreted as a condition on the signal-

to-noise ratio as before. Condition (ii) results from the
∑

i Mii(1 − 2Pii)E [ηiνi]RiR∆i term

that MO does not account for, and covariances can be positive or negative in general.

1.7 Conclusion

This paper has documented how weak instruments and heterogeneity can interact to invali-

date existing procedures in the environment of many instruments. Addressing both problems

simultaneously, this paper contributes a feasible and robust method for valid inference. The

procedure is shown to be valid as the limiting distribution of commonly used statistics, in-

cluding the LM statistic, in an environment with many weak instruments and heterogeneity,

is normal, and a leave-three-out variance estimator is consistent for obtaining the variance
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of the LM statistic. Beyond its validity, the LM test is also optimal, as it is the uniformly

most powerful unbiased test in the asymptotic distribution for the interior of the alternative

space. In light of the broader econometric literature on the value of saturated regressions

and how many instruments can arise from them, this paper presents a highly applicable,

robust, and powerful inference procedure for IV.
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Appendix

1.A Supplement

1.A.1 High-level Assumptions for Inference

Following AS23, to ease notation in the L3O derivations, I define:

M̌il,−ijk :=
Mil −MijM̌jl,−jk −MikM̌kl,−jk

Dijk/Djk

,

so that Xi −Q′
iτ̂−ijk =

∑
l ̸=k M̌il,−ijkXl, for instance.

Assumption 1.3 below states high-level conditions for consistency of the variance esti-

mator. To ease notation, let Rmi stand for either R∆i or Ri. Denote R̃i :=
∑

j ̸=i GijRj

and R̃∆i :=
∑

j ̸=i GijR∆j. Let h2 (i, j) be a product of any number of Gi1i2 , i1 ̸= i2, and

M̌j1j2 , j1 ̸= j2 with i1, i2, j1, j2 ∈ {i, j}. Similarly, h3 (i, j) denotes a product of any num-

ber of Gi1i2 , i1 ̸= i2, and M̌j1j2 , j1 ̸= j2 with i1, i2, j1, j2 ∈ {i, j, k} such that every index in

{i, j, k} occurs at least once as an index of either Gi1i2 or M̌j1j2 . Let h4 (i, j, k, l) denote a

product of any number of Gi1i2 , i1 ̸= i2 and M̌j1j2 , j1 ̸= j2 with i1, i2, j1, j2 ∈ {i, j, k, l} such

that every index in {i, j, k, l} occurs at least once as an index of either Gi1i2 or M̌j1j2 , and

there is no partition such that h4(i1, i2, j1, j2) = h2(i1, i2)h2(j1, j2), where i1, i2, j1, j2 are all

different indices. For instance, h4(i, j, k, l) could be GijM̌ik,−ilM̌lj,−ijk but not GijM̌lk,−il. Let∑n
i ̸=j =

∑
i

∑
j ̸=i so that sums without the n superscript are still sums of individual indices,
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but sums with an n superscript involves the sum over multiple indices. Objects like
∑n

i ̸=j ̸=k

and
∑n

i ̸=j ̸=k ̸=l are defined similarly. When I refer to the p-sum, I refer to the sum over p

non-overlapping indices. For instance, a 3-sum is
∑n

i ̸=j ̸=k. Let F stand for either G or G′.

1{·} is an indicator function that takes the value 1 if the argument is true and 0 otherwise.

I {·} is a function that takes value 1 if the argument is true and -1 if false.

Assumption 1.3. For some C < ∞,

(a)
∑

j F
2
ij ≤ C,

∑n
j ̸=k

(∑
i ̸=j,k GijFik

)2
≤ C

∑n
j ̸=k G

2
jk,

∑n
j ̸=k

(∑
i ̸=j,k GjiGki

)2
≤

C
∑n

j ̸=k G
2
jk, and |Rmi| ≤ C.

(b)
∑n

i ̸=j ̸=k

(∑
l ̸=i,j,k h4 (i, j, k, l)Rml

)2
≤ C

∑
i R̃

2
mi,
∑n

i ̸=j

(∑
k ̸=i,j

∑
l ̸=i,j,k h4 (i, j, k, l)Rml

)2
≤

C
∑

i R̃
2
mi, and

∑
i

(∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k h4 (i, j, k, l)Rml

)2
≤ C

∑
i R̃

2
mi.

(c)
∑n

i ̸=j

(∑
k ̸=i,j h3 (i, j, k)Rmk

)2
≤ C

∑
i R̃

2
mi and

∑
i

(∑
j ̸=i

∑
k ̸=i,j h3 (i, j, k)Rmk

)2
≤

C
∑

i R̃
2
mi.

(d)
∑

i

(∑
j ̸=i h2 (i, j)Rmj

)2
≤ C

∑
i R̃

2
mi.

The first condition requires the row and column sums of the squares of the G elements to

be bounded. Assumption 1.1(e) is insufficient because it does not rule out having Gii = K

for some i and 0 elsewhere in the G matrix. These remaining conditions can be interpreted as

(approximate) sparsity conditions on M and G as the p-sum of entries of M̌ and G cannot

be too large. The conditions primarily place a restriction on the types of G that can be

used: for instance, a G matrix that contains all 1’s is excluded. Note that other elements

of the covariance matrix can be analogously shown to be consistent using the same strategy

by using the lemmas from Section 1.B by using R̃Y i :=
∑

j ̸=i GijRY j instead of R̃∆i where

required.

The judges example in Section 1.2 satisfies this assumption when there are no covari-

ates, G = P , and R values are bounded. For condition (a),
∑

j P
2
ij = Pii ≤ C and,

since P is idempotent,
∑n

j ̸=k

(∑
i ̸=j,k PijPik

)2
=
∑n

j ̸=k (
∑

i PijPik − PjjPjk − PkkPjk)2 =
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∑n
j ̸=k (Pjk − PjjPjk − PkkPjk)2 =

∑n
j ̸=k (1 − Pjj − Pkk)2 P 2

jk ≤
∑n

j ̸=k P
2
jk. For any M̌ij and

Gij, these elements are nonzero only when i and j share the same judge p. Further,

Rmi = πmp(i), where πmp can denote πp or π∆p in the model. Due to how the h functions are

defined, when every judge has at most c cases,

∑
i

(∑
j ̸=i

h2 (i, j)Rmj

)2

=
∑
i

 ∑
j∈Np(i)\{i}

h2 (i, j)Rmp(i)

2

=
∑
p

∑
i∈Np

 ∑
j∈Np\{i}

h2 (i, j) πmp

2

=
∑
p

∑
i∈Np

 ∑
j∈Np\{i}

h2 (i, j) πmp

2

π2
mp ≤ C

∑
p

∑
i∈Np

(c− 1)2 π2
mp = C

∑
i

R̃2
mi.

The same argument applies to the other components. For instance,

∑
i

(∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

h4 (i, j, k, l)Rml

)2

=
∑
p

π2
mp

∑
i∈Np

 ∑
j∈Np\{i}

∑
k∈Np\{i,j}

∑
l∈Np\{i,j,k}

h4 (i, j, k, l)

2

≤ C
∑
p

∑
i∈Np

π2
mp (c− 1)2 (c− 2)2 (c− 3)2 ≤ C

∑
i

R̃2
mi.

The upper bound is fairly loose because it merely counts the number of nonzero entries in

h4. When every judge has a large number of cases, since h4 contains only entries from the

projection matrix, the inner sum is still bounded and the assumption is satisfied.

1.A.2 Supplement for Section 1.2

Lemma 1.1. Consider the model of Section 1.2. Suppose h ̸= 0 and Ks2 > 0. Then,

E [TAR] ̸= 0 for all real β0.

Data Generating Process. Data is generated from an environment with E[εi] = 0, and∫ 1

0
f(v)dv = β. To run a regression on judge indicators (without an intercept) in the reduced-

form system, I make a transformation X̌ = 2X − 1 so that the reduced-form equations can
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be written as:

X̌i = Z ′
iπ + ηi, and Yi = Z ′

iπY + ζi,

so πk = πY k = 0 for the base judge. The reduced-form errors are: ηi = I
{
λk(i) − vi ≥ 0

}
−

πk(i) and ζi = 1
{
λk(i) − vi ≥ 0

}
f (vi) + εi − πY k(i) respectively. With π∆k = πY k − πkβ,

the reduced-form parameters for the groups of judges are derived in Table 1.A.1. Since the

coefficient of the base judge is normalized to zero, the implementation without covariates

in simulations excludes the intercept and uses indicators for all judges, instead of omitting

the base judge and having an intercept. This implementation results in a block diagonal

projection matrix, which aids computational speed, while retaining the interpretation of π’s

in the reduced-form model. The f(v) that delivers the parameters in Table 1.A.1 is

f (v) =



−sβ + h v ∈ [0, 1
2
− s]

1
s

(1 − s)
(
−1

2
sβ − h

)
− 1

s
(1 − 2s) (−sβ + h) v ∈ (1

2
− s, 1

2
− 1

2
s]

1
s

(1 − s)
(
1
2
sβ + h

)
v ∈ (1

2
− 1

2
s, 1

2
]

1
s

(1 + s)
(
1
2
sβ − h

)
v ∈ (1

2
, 1
2

+ 1
2
s]

1
s

(1 + 2s) (sβ + h) − 1
s

(1 + s)
(
1
2
sβ − h

)
v ∈ (1

2
+ 1

2
s, 1

2
+ s]

β−( 1
2
+s)(sβ+h)
1
2
−s

v ∈ (1
2

+ s, 1]

. (1.15)

To generate the data in the simulation, I draw vi ∼ U [0, 1] as implied by the structural

model, then generate ζi | vi ∼ N(σεvvi, σεε). Hence, σεv and σεε control the correlation

between ηi and ζi, with σεε = 0 corresponding to perfect correlation. In the base case, I set

σεε = 0.1 and σεv = 0.3. With the given πk, πY k, the observable variables are generated from

X̌i = I{πk(i) > vi} and Yi = πY k(i) + ζi.
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Table 1.A.1: Parameters for Simple Example

λk
1
2
− s 1

2
− 1

2
s 1

2
1
2

+ 1
2
s 1

2
+ s

βk β − h
s

β + 2h
s

NA β − 2h
s

β + h
s

πk −s −1
2
s 0 1

2
s s

πY k −sβ + h −1
2
sβ − h 0 1

2
sβ − h sβ + h

π∆k h −h 0 −h h

MS Variance Estimand. The proposed variance estimator is:

Φ̂MS :=
2

K

∑
i

∑
j ̸=i

P 2
ij

MiiMjj + M2
ij

(eiMi·e)(ejMj·e).

By substituting ei = R∆i + νi and taking expectations,

E[eiMi·eejMj·e] = R∆iR∆j

(∑
k

MikMjkE[ν2
k ]

)
+ (MiiMjj + M2

ij)
(
E[ν2

i ]E[ν2
j ]
)
.

This estimand can be positive or negative, but observe that
∑

i

∑
j ̸=iR∆iR∆j = (

∑
i R∆i)

2−∑
i R

2
∆i = −

∑
i R

2
∆i = −(n− c)h2 in the model of Section 1.2.1. Consequently, the negative

heterogeneity component can far outweigh the positive components, resulting in a negative

estimand when h does not converge to 0.

1.B Main Proofs

A quadratic CLT is used for Theorem 1.1. Let

T =
∑
i

s′ivi +
∑
i

∑
j ̸=i

Gijv
′
iAvj,

where vi is a finite-dimensional random vector independent over i = 1, . . . , n with bounded

4th moments, si is a nonstochastic vector, and A is a conformable matrix.
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Lemma 1.2. Suppose:

1. Var (T )−1/2 is bounded;

2.
∑

i s
4
il → 0; and

3. ||GLG
′
L||F + ||GUG

′
U ||F → 0, where GL is a lower-triangular matrix with elements

GL,ij = Gij1 {i > j} and GU is an upper-triangular matrix with elements GU,ij =

Gij1 {i < j}.

Then, Var (T )−1/2 T
d−→ N(0, 1).

Proof of Theorem 1.1. By substituting Yi = RY i + ζi, Xi = Ri + ηi, ζi = νi + βηi and

RY i = R∆i −Riβ into the expression for β̂JIV E,

β̂JIV E − βJIV E =

(∑
i

∑
j ̸=i Gij (R∆iηj + νiRj + νiηj)

)
∑

i

∑
j ̸=i GijRiRj +

∑
i

∑
j ̸=i Gij (Riηj + Rjηi + ηiηj)

.

To see the equivalence with the T objects,

1√
K

∑
i

∑
j ̸=i

GijeiXj =
1√
K

∑
i

∑
j ̸=i

Gij (νiRj + νiηj + R∆iRj + R∆iηj) , and

∑
i

∑
j ̸=i

GijR∆iRj =
∑
i

∑
j ̸=i

GijRY iRj −
∑
i

∑
j ̸=i

GijRiRj

(∑
i

∑
j ̸=iGijRY iRj∑

i

∑
j ̸=iGijRiRj

)
= 0,

while TFS is immediate.

Next, I show that the joint distribution of
√

K
rn

(TAR, TLM , TFS) is asymptotically normal.

Using the Cramer-Wold device, it suffices to show that
√

K
rn

(c1TAR+c2TLM+c3TFS) is normal

for fixed c’s, where

√
K

rn
(c1TAR + c2TLM + c3TFS) = c1

1
√
rn

∑
i

∑
j ̸=i

Gij (νiRj + νiνj + R∆iR∆j + R∆iνj)

+ c2
1

√
rn

∑
i

∑
j ̸=i

Gij (νiRj + νiηj + R∆iηj) + c3
1

√
rn

∑
i

∑
j ̸=i

Gij (ηiRj + ηiηj + RiRj + Riηj) .
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The object T =
√

K
rn

(c1TAR+c2TLM+c3TFS)−c1
1√
rn

∑
i

∑
j ̸=iGijR∆iR∆j−c3

1√
rn

∑
i

∑
j ̸=iGijRiRj

can be written in the CLT form by setting:

vi = (ηi, νi)
′ , A =

 c3 0

c2 c1

 , and

si =

 c3
∑

j ̸=i (Gij + Gji)Rj + c2
∑

j ̸=iGjiR∆j

c1
∑

j ̸=i (Gij + Gji)R∆j + c2
∑

j ̸=iGijRj

 ,

so that

T =
1

√
rn

∑
i

s′ivi +
1

√
rn

∑
i

∑
j ̸=i

Gijv
′
iAvj.

Bounded 4th moments hold by Assumption 1.1(a). To apply the CLT from Lemma 1.2,

I verify the following:

1. Var (T )−1/2 is bounded;

2. 1
r2n

∑
i s

4
il → 0 for all l; and

3. ||GLG
′
L||F + ||GUG

′
U ||F → 0, where GL is a lower-triangular matrix with elements

GL,ij = 1√
rn
Gij1 {i > j} and GU is an upper-triangular matrix with elements GU,ij =

1√
rn
Gij1 {i < j}.

Condition (2) follows from Assumption 1.1(d) and applying the Cauchy-Schwarz inequality.

Condition (3) follows from Assumption 1.1(e). For Condition (1), I show that Assump-

tion 1.1(b) and (c) imply that, for any nonstochastic scalars c1, c2, c3 that are finite and not

all 0, Var(T )−1/2 is bounded. Since Cov
(∑

i s
′
ivi,
∑

i

∑
j ̸=i Gijv

′
iAvj

)
= 0,

Var (T ) =
1

rn
Var

(∑
i

s′ivi

)
+

1

rn
Var

(∑
i

∑
j ̸=i

Gijv
′
iAvj

)
, (1.16)

so it suffices to show that either term is bounded below.
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The first term can be expanded as follows:

Var

(∑
i

s′ivi

)
=
∑
i

s′iVar (vi) si =
∑
i

s2i1E[ηi]
2 + 2si1si2E[ηiνi] + s2i2E[ν2

i ]

=
∑
i

(1 − ρi)
2E[η2i ]s2i1 +

(
ρisi1

√
E[η2i ] + si2

√
E[ν2

i ]

)2

≥
∑
i

(1 − ρi)
2E[η2i ]s2i1.

A similar argument yields Var (
∑

i s
′
ivi) ≥

∑
i(1 − ρi)

2E[η2i ]s2i2. Due to Assumption 1.1(c),

at least one of the following must hold: (i) Var
(∑

i

∑
j ̸=i Gijv

′
iAvj

)
≥ c (ii) 1

rn

∑
i s

2
i1 ≥ c,

or (iii) 1
rn

∑
i s

2
i2 ≥ c. Hence, Var(T )−1/2 is bounded.

Finally, since νi, ηi are mean zero, the expectations are immediate: E [TAR] =∑
i

∑
j ̸=i GijR∆jR∆i and E [TFS] =

∑
i

∑
j ̸=i GijRjRi.

The proof of Theorem 1.2 involves several lemmas whose proofs are relegated to Sec-

tion 1.C. The proof strategy is to bound the variances above by components that are in the

h(.) form so that Assumption 1.3 inequalities can be applied.

Let Vmi = Rmi + vmi where Rmi denotes the nonstochastic component while vmi denotes

the mean zero stochastic component. Following Equation (1.6), rn :=
∑

i R̃
2
i +

∑
i R̃

2
∆i +∑

i

∑
j ̸=i G

2
ij. Let Ci, Cij, Cijk denote nonstochastic objects that are non-negative and are

bounded above by C. I use hA
4 (.) and hB

4 (.) to denote two different functions that satisfy the

definition for h4.

Lemma 1.3. Under Assumption 1.3, the following hold:

(a)
∣∣∣∑n

i ̸=j ̸=k Cijk

(∑
l ̸=i,j,k h

A
4 (i, j, k, l)Rml

)(∑
l ̸=i,j,k h

B
4 (i, j, k, l)Rml

)∣∣∣ ≤ C
∑

i R̃
2
mi,∣∣∣∑n

i ̸=j Cij

(∑
k ̸=i,j

∑
l ̸=i,j,k h

A
4 (i, j, k, l)Rml

)(∑
k ̸=i,j

∑
l ̸=i,j,k h

B
4 (i, j, k, l)Rml

)∣∣∣ ≤

C
∑

i R̃
2
mi,

and
∣∣∣∑i Ci

(∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k h

A
4 (i, j, k, l)Rml

)(∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k h

B
4 (i, j, k, l)Rml

)∣∣∣ ≤
C
∑

i R̃
2
mi.
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(b)
∣∣∣∑n

i ̸=j Cij

(∑
k ̸=i,j h

A
3 (i, j, k)Rmk

)(∑
k ̸=i,j h

B
3 (i, j, k)Rmk

)∣∣∣ ≤ C
∑

i R̃
2
mi

and
∣∣∣∑i Ci

(∑
j ̸=i

∑
k ̸=i,j h

A
3 (i, j, k)Rmk

)(∑
j ̸=i

∑
k ̸=i,j h

B
3 (i, j, k)Rmk

)∣∣∣ ≤ C
∑

i R̃
2
mi.

(c)
∣∣∣∑i Ci

(∑
j ̸=i h

A
2 (i, j)Rmj

)(∑
j ̸=i h

B
2 (i, j)Rmj

)∣∣∣ ≤ C
∑

i R̃
2
mi.

Lemma 1.4. Under Assumption 1.3, the following hold:

(a) Var
(∑n

i ̸=j GijFijV1iV2iV3jV4j

)
≤ Crn.

(b) Var
(∑n

i ̸=j ̸=k GijFijM̌ik,−ijV1iV2kV3jV4j

)
≤ Crn.

(c) Var
(∑n

i ̸=j ̸=l GijFijM̌jl,−ijV1iV2iV3jV4l

)
≤ Crn.

(d) Var
(∑n

i ̸=j ̸=k ̸=l GijFijV1iM̌ik,−ijV2kV3jM̌jl,−ijkV4l

)
≤ Crn.

Lemma 1.5. Under Assumption 1.3, the following hold:

(a) Var
(∑n

i ̸=j ̸=k GijFikV1jV2kV3iV4i

)
≤ Crn.

(b) Var
(∑n

i ̸=j ̸=k ̸=l GijFikM̌il,−ijkV1jV2kV3iV4l

)
≤ Crn.

Lemma 1.6. Under Assumption 1.3, the following hold:

(a) Var
(∑n

i ̸=j G
2
jiV1iV2iV3jV4j

)
≤ Crn;

(b) Var
(∑n

i ̸=j ̸=k G
2
jiM̌ik,−ijV1iV2kV3jV4j

)
≤ Crn;

(c) Var
(∑n

i ̸=j ̸=l G
2
jiM̌jl,−ijV1iV2iV3jV4l

)
≤ Crn;

(d) Var
(∑n

i ̸=j ̸=k ̸=l G
2
jiV1iM̌ik,−ijV2kV3jM̌jl,−ijkV4l

)
≤ Crn;

(e) Var
(∑n

i ̸=j ̸=k GjiFkiV1jV2kV3iV4i

)
≤ Crn;

(f) Var
(∑n

i ̸=j ̸=k ̸=l GjiFkiM̌il,−ijkV1jV2kV3iV4l

)
≤ Crn.
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Proof of Theorem 1.2. Proof of Unbiasedness. The variance expression can be equiva-

lently be written as:

VLM =
∑
i

E
[
ν2i
]∑

j ̸=i

GijRj

2

+ 2

∑
j ̸=i

GijRj

∑
j ̸=i

GjiR∆j

E [νiηi] + E
[
η2i
]∑

j ̸=i

GjiR∆j

2
+
∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj ] .

(1.17)

To ease notation, let:

A1i :=
∑
j ̸=i

∑
k ̸=i

GijXjGikXkei (ei −Q′
iτ̂∆,−ijk) ,

A2i :=
∑
j ̸=i

∑
k ̸=i

GijXjGkiekei (Xi −Q′
iτ̂−ijk) ,

A3i :=
∑
j ̸=i

∑
k ̸=i

GjiejGkiekXi (Xi −Q′
iτ̂−ijk) ,

A4ij := Xi

∑
k ̸=j

M̌ik,−ijXkej
(
ej −Q′

j τ̂∆,−ijk

)
, and

A5ij := ei
∑
k ̸=j

M̌ik,−ijXkej
(
Xj −Q′

j τ̂−ijk

)
.

Take expectation of A1:

E

∑
i

∑
j ̸=i

∑
k ̸=i

GijXjGikXkei
(
ei −Q′

iτ̂∆,−ijk

)
=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijE [Xj ]GikE [Xk]E
[
ei
(
ei −Q′

iτ̂∆,−ijk

)]
+
∑
i

∑
j ̸=i

G2
ijE

[
X2

j

]
E
[
ei
(
ei −Q′

iτ̂∆,−ijk

)]
=
∑
i

∑
j ̸=i

∑
k ̸=i

GijRjGikRkE
[
ν2i
]
+
∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
.
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Similarly,

E [A2i] =

(∑
j ̸=i

GijRj

)(∑
j ̸=i

GjiR∆j

)
E [νiηi] +

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj] , and

E [A3i] = E
[
η2i
](∑

j ̸=i

GjiR∆j

)2

+
∑
j ̸=i

G2
jiE
[
η2i
]
E
[
ν2
j

]
.

For the A4 and A5 terms, observe that:

Xi −Q′
iτ̂−ij = Xi −Q′

i

∑
k ̸=i,j

(∑
l ̸=i,j

QlQ
′
l

)−1

QkXk = Xi +
∑
k ̸=i,j

M̌ik,−ijXk =
∑
k ̸=j

M̌ik,−ijXk,

where the final equality follows from M̌ii,−ij = 1. Then,

E [A4ij] = E

[
Xi

∑
k ̸=j

M̌ik,−ijXkej
(
Xj −Q′

j τ̂∆,−ijk

)]
=
∑
k ̸=j

E
[
XiM̌ik,−ijXkej

(
Xj −Q′

j τ̂∆,−ijk

)]
= E

[
Xi

∑
k ̸=j

M̌ik,−ijXk

]
E
[
ej
(
ej −Q′

j τ̂∆,−ijk

)]
= E [Xi (Xi −Q′

iτ̂−ij)]E
[
ν2
j

]
= E

[
η2i
]
E
[
ν2
j

]
.

Similarly, E [A5ij] = E [ηiνi]E [ηjνj]. Combining these expressions yields the unbiasedness

result.

Proof of Consistency. By Chebyshev’s inequality,

Pr

∣∣∣∣∣∣
V̂LM − Var

(∑
i

∑
j ̸=iGijeiXj

)
Var

(∑
i

∑
j ̸=iGijeiXj

)
∣∣∣∣∣∣ > ϵ


≤ 1

ϵ2

Var
(∑

i (A1i + 2A2i + A3i) −
∑

i

∑
j ̸=i G

2
jiA4ij −

∑
i

∑
j ̸=i GijGjiA5ij

)
[
Var

(∑
i

∑
j ̸=i GijeiXj

)]2
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Observe that the numerator can be written as the variance of the estimator only because

V̂LM is unbiased. I first establish the order of the denominator. Let R̃i :=
∑

j ̸=i GijRj,

R̃∆i :=
∑

j ̸=i GjiR∆j and ρi := corr(ηiνi).

Since E[ν2
i ] and E[η2i ] are bounded away from zero and |corr(ηiνi)| is bounded away from

one by Assumption 1.1(b), the first line of the VLM expression in Equation (1.17) has order

at least
∑

i R̃
2
i +

∑
i R̃

2
∆i, and the second line has order at least

∑
i

∑
j ̸=i G

2
ij. To see this,

for some c > 0, the first line is:

∑
i

E
[
ν2i
]
R̃2

i + 2R̃∆iR̃iE [νiηi] + R̃2
∆iE

[
η2i
]
=
∑
i

E
[
ν2i
]
R̃2

i + 2R̃∆iR̃iρi

√
E
[
ν2i
]
E
[
η2i
]
+ R̃2

∆iE
[
η2i
]

≥
∑
i

(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
])

(1− |ρi|) +
∑
i

|ρi|
(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
]
− 2R̃∆iR̃i

√
E
[
ν2i
]
E
[
η2i
])

=
∑
i

(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
])

(1− |ρi|) +
∑
i

|ρi|
(√

E
[
ν2i
]
R̃2

i −
√
R̃2

∆iE
[
η2i
])2

≥
∑
i

(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
])

(1− |ρi|) ≥ c
∑
i

(
R̃2

i + R̃2
∆i

)
,

and the second line is:

∑
i

∑
j ̸=i

G2
ijE
[
ν2
i

]
E
[
η2j
]

+
∑
i

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj]

=
1

2

∑
i

∑
j ̸=i

G2
ijE
[
ν2
i

]
E
[
η2j
] (

1 − ρ2i
)

+
1

2

∑
i

∑
j ̸=i

G2
jiE
[
ν2
j

]
E
[
η2i
] (

1 − ρ2j
)

+
1

2

∑
i

∑
j ̸=i

E
[
ν2
i

]
E
[
η2j
]

(G2
ijρ

2
i + G2

jiρ
2
j) +

∑
i

∑
j ̸=i

GijGjiρiρj

√
E [ν2

i ]E
[
η2j
]√

E
[
ν2
j

]
E [η2i ]

=
1

2

∑
i

∑
j ̸=i

G2
ijE
[
ν2
i

]
E
[
η2j
] (

1 − ρ2i
)

+
1

2

∑
i

∑
j ̸=i

G2
jiE
[
ν2
j

]
E
[
η2i
] (

1 − ρ2j
)

+
1

2

∑
i

∑
j ̸=i

(
Gijρi

√
E [ν2

i ]E
[
η2j
]

+ Gjiρj

√
E
[
ν2
j

]
E [η2i ]

)2

≥ 1

2

∑
i

∑
j ̸=i

G2
ijE
[
ν2
i

]
E
[
η2j
] (

1 − ρ2i
)

+
1

2

∑
i

∑
j ̸=i

G2
jiE
[
ν2
j

]
E
[
η2i
] (

1 − ρ2j
)
≥ c

∑
i

∑
j ̸=i

G2
ij.
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Consequently,

VLM ⪰
∑
i

R̃2
i +

∑
i

R̃2
∆i +

∑
i

∑
j ̸=i

G2
ij =: rn. (1.18)

Hence, since rn → ∞ by Assumption 1.1(d), VLM also diverges. By repeated application of

the Cauchy-Schwarz inequality, it suffices to show that the variance of each of the 5 A terms

above has order at most rn (i.e., bounded by any of the three terms in Equation (1.18)).

If this is true, then since the denominator has order at least r2n, the variance estimator is

consistent. The A1 and A2 terms have the form:

∑
i

∑
j ̸=i

GijFikV1j

∑
k ̸=i

V2kV3i (V4i −Q′
iτ̂4,−ijk) =

∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=j,k

GijFikV1jV2kV3iM̌il,−ijkV4l

=
∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkV1jV2kV3iV4l +
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijFikV1jV2kV3iV4i

+
∑
i

∑
j ̸=i

∑
l ̸=i,j

GijFijM̌il,−ijV1jV2jV3iV4l +
∑
i

∑
j ̸=i

GijFijV1jV2jV3iV4i.

In particular, A1 uses F = G, V1 = X, V2 = X, V3 = e, V4 = e, while A2 uses F =

G′, V1 = X, V2 = e, V3 = e, V4 = X . By applying the Cauchy-Schwarz inequality, it

suffices to show that the variance of each of the sums has order at most rn. The terms∑
i

∑
j ̸=i GijFijV1jV2jV3iV4i and

∑
i

∑
j ̸=i

∑
l ̸=i,j GijFijM̌il,−ijV1jV2jV3iV4l are identical to the

result in Lemma 1.4, with the latter result being obtained by switching the i and j indices.

The remaining terms have a variance that has a bounded order by Lemma 1.5. For A3, we

can use Gji in place of Gij above, and use F = G′, V1 = e, V2 = e, V3 = X, V4 = X so that
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the order is bounded above due to Lemma 1.6. A4 and A5 can be written as:

∑
i

∑
j ̸=i

GjiFijV1i

∑
k ̸=j

M̌ik,−ijV2kV3j

(
V4j −Q′

j τ̂4,−ijk

)
=
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

GjiFijV1iM̌ik,−ijV2kV3jM̌jl,−ijkV4l

=
∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GjiFijM̌ik,−ijM̌jl,−ijkV1iV2kV3jV4l +
∑
i

∑
j ̸=i

∑
k ̸=i,j

GjiFijM̌ik,−ijV1iV2kV3jV4j

+
∑
i

∑
j ̸=i

∑
l ̸=i,j

GjiFijM̌jl,−ijV1iV2iV3jV4l +
∑
i

∑
j ̸=i

GjiFijV1iV2iV3jV4j.

In particular, A4 uses F = G′, V1 = X, V2 = X, V3 = e, V4 = e, while A5 uses F = G, V1 =

e, V2 = X, V3 = e, V4 = X . By applying the Cauchy-Schwarz inequality, it suffices to show

that the variance of each of the sums has order at most rn. This result is immediate from

Lemma 1.4 and Lemma 1.6.

Proof of Proposition 1.1. Let µ ∈ M = {µ : µ1 > 0, µ3 > 0, µ2
2 < µ1µ3}. I first show that

M is convex. For λ ∈ (0, 1), it suffices to show, for µa and µb that satisfy µ2
2a < µ1aµ3a and

µ2
2b < µ1bµ3b, that (λµ2a + (1 − λ)µ2b)

2 < (λµ1a + (1 − λ)µ1b) (λµ3a + (1 − λ)µ3b). This set

is intersected with the set that satisfies µ1 > 0 and µ3 > 0, which is clearly convex. The

following is negative:

(λµ2a + (1− λ)µ2b)
2 − (λµ1a + (1− λ)µ1b) (λµ3a + (1− λ)µ3b)

=λ2µ2
2a + (1− λ)2 µ2

2b + 2λ (1− λ)µ2aµ2b − λ2µ1aµ3a − (1− λ)2 µ1bµ3b − λ (1− λ) (µ1bµ3a + µ1aµ3b)

=λ2
(
µ2
2a − µ1aµ3a

)
+ (1− λ)2

(
µ2
2b − µ1bµ3b

)
+ λ (1− λ) (2µ2aµ2b − µ1bµ3a − µ1aµ3b)

<λ (1− λ) (2
√
µ1aµ1bµ1bµ3b − µ1bµ3a − µ1aµ3b)

<− λ (1− λ) (
√
µ1bµ3a −

√
µ1aµ3b)

2 ≤ 0.

The first inequality occurs from applying µ2
2a < µ1aµ3a and µ2

2b < µ1bµ3b, so M is convex.

Let m ∼ N(µ,Σ) denote a statistic drawn from the asymptotic distribution, with mi being a
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component of the vector m, so that m2 is the LM statistic. Using the linear transformation

from Lehmann and Romano (2005) Example 3.9.2 Case 3, we can transform the statistics

and parameter such that m2 is orthogonal to all other components. In particular, consider

the following transformation L:

L :=


√

σ22

σ11σ22−σ2
12

−σ12

σ22

√
σ22

σ11σ22−σ2
12

0

0 1√
σ22

0

0 −σ23

σ22

√
σ22

σ33σ22−σ2
23

√
σ22

σ33σ22−σ2
23

 .

Then,

Lm ∼ N

Lµ,


1 0 σ13σ22−σ12σ23

(σ11σ22−σ2
12)(σ33σ22−σ2

23)

0 1 0

σ13σ22−σ12σ23

(σ11σ22−σ2
12)(σ33σ22−σ2

23)
0 1



 .

The parameter space of Lµ ∈ L is also convex because L is a linear transformation: take

any µa, µb ∈ M, then observe that λLµa + (1 − λ)Lµb = L (λµa + (1 − λ)µb). Since M

is convex, and every element in M is linearly transformed into the space on L, we have

λµa + (1 − λ)µb ∈ M and hence L (λµa + (1 − λ)µb) ∈ L. Since Lm is normally dis-

tributed and L is convex with rank 3, the problem is in the exponential class, using the

definition from Lehmann and Romano (2005) Section 4.4. Since the joint distribution is in

the exponential class and the restriction to the interior ensures that there are points in the

parameter space that are above and below the null, the uniformly most powerful unbiased

test follows the form of Lehmann and Romano (2005) Theorem 4.4.1(iv), by using U =

m2 and T =

(√
σ22

σ33σ22−σ2
23
m3 − σ23√

σ22(σ33σ22−σ2
23)

m2,
√

σ22

σ11σ22−σ2
12
m1 − σ12√

σ22(σ11σ22−σ2
12)

m2

)′

in

their notation. To calculate the critical values of the Lehmann and Romano (2005) Theorem

4.4.1(iv) result, observe that [Lm]2 is orthogonal to [Lm]1 and [Lm]3, so the distribution of
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[Lm]2 conditional on [Lm]1 and [Lm]3 is standard normal. Since [Lm]2 is standard normal,

it is symmetric around 0 under the null, so the solution to the critical value is ±1.96 for a

5% test, due to simplification in Lehmann and Romano (2005) Section 4.2. The resulting

test is hence identical to the two-sided LM test.

The full and latest version of the paper, including the online appendix, can be found at

https://lutheryap.github.io/files/mwiv het wp.pdf.
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1.C Supplementary Appendix

1.C.1 Comparing Variance Estimands

Derivations for Constructed Instrument Using the notation for the just-identified IV

AR test in Section 1.2.4 when β = β0,

ε̂i = ei − X̃i

∑
i eiX̃i∑
i X̃

2
i

=
ei
∑

i X̃
2
i − X̃i

∑
i eiX̃i∑

i X̃
2
i

, and

V̂ =

∑
i X̃

2
i ε̂

2
i(∑

i X̃
2
i

)2 =

∑
i X̃

2
i

(
ei
∑

j X̃
2
j − X̃i

∑
j ejX̃j

)2
(∑

i X̃
2
i

)4
=

∑
i X̃

2
i e

2
i

(∑
j X̃

2
j

)2
+
∑

i X̃
4
i

(∑
j ejX̃j

)2
− 2

∑
i X̃

3
i ei

(∑
j X̃

2
j

)(∑
j ejX̃j

)
(∑

i X̃
2
i

)4 .

Applying the asymptotic result that 1
n

∑
j ejX̃j

p−→ 0 from Theorem 1.1,

t2AR =

(
∑

i X̃iei)
2

(
∑

i X̃
2
i )

2

∑
i X̃

2
i e

2
i (

∑
j X̃

2
j )

2
+
∑

i X̃
4
i (

∑
j ejX̃j)

2
−2

∑
i X̃

3
i ei(

∑
j X̃

2
j )(

∑
j ejX̃j)

(
∑

i X̃
2
i )

4

=

(
1√
n

∑
i X̃iei

)2 (
1
n

∑
i X̃

2
i

)2
1
n

∑
i X̃

2
i e

2
i

(
1
n

∑
j X̃

2
j

)2
+ 1

n

∑
i X̃

4
i

(
1
n

∑
j ejX̃j

)2
− 2 1

n

∑
i X̃

3
i ei

(
1
n

∑
j X̃

2
j

)(
1
n

∑
j ejX̃j

)
=

(
1√
n

∑
i X̃iei

)2 (
1
n

∑
i X̃

2
i

)2
1
n

∑
i X̃

2
i e

2
i

(
1
n

∑
j X̃

2
j

)2
+ oP (1)

=

(
1√
n

∑
i X̃iei

)2
1
n

∑
i X̃

2
i e

2
i

+ oP (1), and
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E

[∑
i

X̃2
i e

2
i

]
=
∑
i

E

(∑
j ̸=i

Pij (Rj + ηj)

)2

(R∆i + νi)
2


=
∑
i

E

[(
M2

iiR
2
i +

(∑
j ̸=i

P 2
ijη

2
j

))(
R2

∆i + ν2
i

)]

=
∑
i

(
M2

iiR
2
iR

2
∆i +

∑
j ̸=i

P 2
ijR

2
∆iE

[
η2j
]

+ M2
iiR

2
iE
[
ν2
i

]
+
∑
j ̸=i

P 2
ijE
[
ν2
i

]
E
[
η2j
])

.

Clustering by Judges. If we just use the JIVE t-ratio with clustering, weak identifi-

cation is still a problem, and we should similarly get over-rejection. The just-identified AR

with clustered standard errors uses the following estimator:

V̂clus =

∑
i

∑
j∈Ni

X̃iε̂iX̃j ε̂j(∑
i X̃

2
i

)2 ,

where Ni is the neighborhood of i (i.e., the set of observations that share the same cluster

as i). Expanding V̂clus using the same steps as before,

V̂clus =

∑
i

∑
j∈Ni

X̃iX̃j

(
eiej

(∑
k X̃

2
k

)2
− 2X̃iej

(∑
k ekX̃k

)(∑
k X̃

2
k

)
+ X̃iX̃j

(∑
k ekX̃k

)2)
(∑

i X̃
2
i

)4 .

Using the fact that 1
n

∑
k ekX̃k = oP (1), the dominant term is:

∑
i

∑
j∈Ni

X̃iX̃jeiej, which is

analogous to the previous derivation. The expansion steps are analogous to that required to
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derive VLM , so they are omitted. Then,

E

[∑
i

∑
j∈Ni

X̃iX̃jeiej

]

= E

[∑
i

∑
j∈Ni

(∑
k ̸=i

Pik (Rk + ηk)

)(∑
k ̸=j

Pjk (Rk + ηk)

)
(R∆i + νi) (R∆j + νj)

]

= E

[∑
i

∑
j∈Ni

(
MiiRi +

∑
k ̸=i

Pikηk

)(
MjjRj +

∑
k ̸=j

Pjkηk

)
(R∆iR∆j + νiR∆j + R∆iνj + νiνj)

]

=
∑
i

∑
j∈Ni

(
MiiMjjRiRjR∆iR∆j + R∆iR∆j

∑
k ̸=i,j

PikPjkE
[
η2k
])

+ 2
∑
i

∑
j∈Ni

MiiRiR∆jPjiE [ηiνi] +
∑
i

M2
iiR

2
iE
[
ν2
i

]
+
∑
i

∑
k ̸=i

P 2
ikE

[
ν2
i

]
E
[
η2k
]

+
∑
i

∑
j∈Ni\{i}

P 2
ijE [νiηi]E [νjηj] .

By applying the fact that the entries of the projection matrix are nonzero only when the

observations share the same judge, the expression simplifies further:

E

[∑
i

∑
j∈Ni

X̃iX̃jeiej

]
=
∑
i

∑
j∈Ni

MiiMjjRiRjR∆iR∆j +
∑
i

M2
iiR

2
∆iE

[
η2i
]

+ 2
∑
i

MiiRiR∆iE [ηiνi] +
∑
i

M2
iiR

2
iE
[
ν2
i

]
+
∑
i

∑
j ̸=i

P 2
ij

(
E
[
ν2
i

]
E
[
η2j
]

+ E [νiηi]E [νjηj]
)
.

Compared to the true variance in Equation (1.20), due to the own-observation

bias, we have an extra
∑

i

∑
j∈Ni

MiiMjjRiRjR∆iR∆j term, and the estimand here has∑
i MiiRiR∆iE [ηiνi] instead of

∑
i M

2
iiRiR∆iE [ηiνi]. Even though

∑
i

∑
j∈Ni

MiiMjjRiRjR∆iR∆j ≥

0,
∑

iMii(1 − Mii)RiR∆iE [ηiνi] could be positive or negative, so the clustered variance

estimand could either over or underestimate the true variance.
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Comparing MO Variance Estimand with L3O. The Matsushita and Otsu (2022)

variance estimator presented in Equation (1.4) is biased in general. The model of Sec-

tion 1.2.1 implies:

E
[
Ψ̂MO

]
=
∑
i

M2
iiR

2
iR

2
∆i +

∑
i

M2
iiR

2
iE
[
ν2
i

]
+
∑
i

∑
j ̸=i

P 2
ijE
[
ν2
i

]
E
[
η2j
]

+
∑
i

∑
j ̸=i

P 2
ijR

2
∆iE

[
η2j
]

+
∑
i

∑
j ̸=i

P 2
ij (RiR∆iRjR∆j + E [ηiνi]RjR∆j + RiR∆iE [ηjνj] + E [ηiνi]E [ηjνj]) .

(1.19)

As a corollary of Equation (1.8), when G = P , by observing that P is symmetric, and that

since PR = I, we have
∑

j ̸=i PijRj =
∑

j ̸=i PjiRj = MiiRi, so

Var

(∑
i

∑
j ̸=i

PijeiXj

)
=
∑
i

E
[
ν2
i

]
M2

iiR
2
i +

∑
i

∑
j ̸=i

P 2
ij

(
E
[
ν2
i

]
E
[
η2j
]

+ E [ηiνi]E [ηjνj]
)

+ 2
∑
i

E [νiηi]M
2
iiRiR∆i +

∑
i

E
[
η2i
]
M2

iiR
2
∆i.

(1.20)

If the R∆’s are zero, then Ψ̂MO is unbiased. Nonetheless, heterogeneity results in many

excess terms in the expectation of the variance estimator, generating bias and inconsistency

in general. However, Ψ̂MO can be consistent when forcing weak identification and weak

heterogeneity. If it is assumed that 1√
K

∑
iMiiR

2
i → CS < ∞ and 1√

K

∑
iMiiR

2
∆i → C < ∞

with weak identification and weak heterogeneity, then the excess terms in 1
K
E
[
Ψ̂MO

]
can

be written as 1√
K

1√
K

∑
i MiiR

2
i = 1√

K
O(1) = o(1) and 1√

K
1√
K

∑
iMiiR

2
∆i = o(1). However,

when identification or heterogeneity is strong, 1
K

∑
i MiiR

2
i or 1

K

∑
i MiiR

2
∆i is nonnegligible

and the variance estimator is inconsistent. The variance estimator adapted from MS22 has

similar properties. In contrast, the L3O variance estimator is robust regardless of whether

the identification is weak or strong.
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In general, heterogeneity does not make the MO variance estimator any more or less

conservative than L3O. In the simple case with judge instruments and G = P , we have:

E
[
Ψ̂MO

]
− V ar

(∑
i

∑
j ̸=i

PijeiXj

)
=
∑
i

M2
iiR

2
iR
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∆i +

∑
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P 2
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+
∑
i

∑
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P 2
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2
∆iE
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η2j
]
−
∑
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2
∆iE

[
η2i
]

+ 2
∑
i

∑
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P 2
ijE [ηiνi]RjR∆j − 2
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E [νiηi]M
2
iiRiR∆i
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MiiR
2
∆iR

2
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∑
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Mii(1 − 2Pii)R
2
∆iE

[
η2i
]
− 2

∑
i
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=
∑
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MiiR
2
∆i

(
R2

i − (1 − 2Pii)E
[
η2i
])

− 2
∑
i

Mii(1 − 2Pii)E [ηiνi]RiR∆i

which can be positive or negative. The second equality uses the fact that P and M are

non-zero only for observations that share the same judge, and when that occurs, they have

the same R,RY , E[η2i ], and E[ζ2i ], and that
∑

j ̸=i P
2
ij = PiiMii.

To compare the confidence sets of MO and L3O, observe that the shape of the confi-

dence set depends on the coefficient on β2
0 . In particular, for Ψ2 :=

∑
i

(∑
j ̸=i PijXj

)2
X2

i +∑
i

∑
j ̸=i P

2
ijX

2
i X

2
j , MO is unbounded when

(∑n
i ̸=j PijXiXj

)2
− qΨ2 < 0 and L3O is un-

bounded when
(∑n

i ̸=j PijXiXj

)2
− qB2 < 0. In the simple judges case without covariates,

the expected coefficients can be compared. With

E [Ψ2] =
∑
i

(∑
j ̸=i

PijRj

)2

+
∑
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P 2
ijE
[
η2j
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i ] +
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P 2
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i ]E[X2
j ],
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the difference is:

E [Ψ2] − E [B2] =
∑
i

(∑
j ̸=i

PijRj

)2
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∑
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P 2
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,

where the second equality uses the same trick as before.

Derivation of LM Variance.

Proof of Equation (1.8). Expanding the variance,
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The first term is:
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In the next few terms, the expansion steps are analogous, so intermediate steps are

omitted for brevity. The second to fourth terms can be expressed as:
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The expression stated in the equation combines these expressions.
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1.C.2 Further Details for Power

Further Analytic Results

Lemma 1.7. (s′1, s
′
2)

′ are sufficient statistics for (π′
Y , π

′)′. Further, for transformations of

the form Z → ZF ′ where F is a K × K orthogonal matrix, (s′1s1, s
′
1s2, s

′
2s2) is a maximal

invariant, and  s1

s2

 ∼ N


 (Z ′Z)1/2 πY

(Z ′Z)1/2 π

 ,Ω ⊗ IK

 .

Proposition 1.2. With Equation (1.12), K → ∞ and 1√
K

(π′
YZ

′ZπY , π
′Z ′ZπY , π

′Z ′Zπ) →

(CY Y , CY , CS),

1√
K


s′1s1 −Kωζζ − CY Y

s′1s2 −Kωζη − CY

s′2s2 −Kωηη − CS

 d−→ N




0

0

0

 ,Σ

 (1.21)

for some variance matrix Σ. If CY Y , CY , CS < ∞,

Σ =


2ω2

ζζ 2ωζηωζζ 2ω2
ζη

2ωζηωζζ ωζζωηη + ω2
ζη 2ωζηωηη

2ω2
ζη 2ωζηωηη 2ω2

ηη

 .

The proof of Proposition 1.2 relies on K → ∞ because objects like s′1s1 can be written as

a sum of K objects. With an appropriate representation to obtain independence, a CLT can

be applied to yield normality. Compared to MS22, Proposition 1.2 does not require constant

treatment effects and characterizes the distribution without orthogonalizing the sufficient

statistics. Nonetheless, the form of the covariance matrix is similar to MS22.
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Instead of using the maximal invariant, we use the L1O analog

(TY Y , TY X , TXX) :=
1√
K

∑
i

∑
j ̸=i

Pij(YiYj, YiXj, XiXj),

which relates to the JIVE directly as β̂JIV E = TY X/TXX , so the asymptotic problem is:


TY Y

TY X

TXX

 ∼ N (µ,Σ) , µ =
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∑
j ̸=i PijRY iRY j
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∑
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σ11 σ12 σ13

· σ22 σ23

· · σ33

 .

(1.22)

With abuse of notation, µ and Σ refer to the asymptotic mean and variances of

(TY Y , TY X , TXX) instead of (TAR, TLM , TFS) so that the statistics do not depend on the

hypothesized null, but these are identical when β0 = 0. Using the same argument as

Section 1.4, µ1, µ3 ≥ 0 and µ2
2 ≤ µ1µ3.

Even with covariates, if the regression is fully saturated with G given by UJIVE, Propo-

sition 1.3 below shows that the same inequality restrictions hold. To be precise, saturation

is defined in Section 2 of Evdokimov and Kolesár (2018). All individuals can be parti-

tioned into L covariate groups, so with group index Gi ∈ {1, · · · , L}, we have covariates

Wi,l = 1{Gi = l}. We also have an instrument Si that takes M + 1 possible values in each

group, and these values for every group l are labeled sl0, · · · , slM . Then, the vector of in-

struments has dimension K = ML and Zi,lm = 1{Si = slm}. Adapting Equation (1.22) to

the case with covariates,

µ =

(
1√
K

∑
i

∑
j ̸=i

GijRY iRY j,
1√
K

∑
i

∑
j ̸=i

GijRY iRj,
1√
K

∑
i

∑
j ̸=i

GijRiRj

)′

.
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Proposition 1.3. If µ is defined such that G = (I − diag (HQ))−1HQ−(I − diag (HW ))−1HW ,

and the regression is fully saturated, then µ1 ≥ 0, µ3 ≥ 0 and µ2
2 ≤ µ1µ3.

Using the asymptotic problem of Equation (1.22), testing H0 : µ2/µ3 = β∗ is identical

to testing H0 : µ2 − β∗µ3 = 0. Since β∗ is fixed, and I consider alternatives of the form:

HA : µ2 − β∗µ3 = hA. The LM statistic corresponds to TY X − β∗TXX , so it can be used

to test the null directly. I focus on the most common case of β∗ = 0, and it is analogous

to extend the argument for β∗ ̸= 0. Let µA denote the mean under the alternative and µH

under the null. The remainder of this section presents theoretical results for power, and

numerical results beyond the environment covered by theory are relegated to Section 1.C.2.

The one-sided test is the most powerful test for testing against a particular subset of

alternatives S :=
{(

µA
1 , µ

A
2 , µ

A
3

)
: µA

1 − σ12

σ22
µA
2 ≥ 0, µA

3 − σ23

σ22
µA
2 ≥ 0

}
. While S may not be

empirically interpretable, this set is constructed so that standard Lehmann and Romano

(2005) arguments can be applied to conclude that the one-sided LM test is the most powerful

test. The proposition makes no statement about alternative hypotheses that are not in S.

A more powerful test can be constructed when µA
2 is large and covariance σ23, σ12 are large.

Proposition 1.4. The one-sided LM test is the most powerful test for testing any alternative

hypothesis
(
µA
1 , µ

A
2 , µ

A
3

)
∈ S in the asymptotic problem of Equation (1.22).

For a given
(
µA
1 , µ

A
2 , µ

A
3

)
in the alternative space, LM (which just uses the second element)

is justified as being most powerful because it is identical to the Neyman-Pearson test when

testing against a point null µH with µH
1 = µA

1 − σ12

σ22
µA
2 , µH

2 = 0 and µH
3 = µA

3 − σ23

σ22
µA
2 . The

inequalities in S are imposed so that µH
1 , µ

H
3 ≥ 0, ensuring that µH is in the null space, so

LM is the most powerful test. In contrast, if the inequalities fail in the alternative space,

then (µA
1 − σ12

σ22
µA
2 , 0, µ

A
3 − σ23

σ22
µA
2 ) is not in the null space, and the Lehmann and Romano

(2005) argument cannot be applied.

71



Existence of Structural Model

This section presents a structural model, then argues that any reduced-form model in the

form of Equation (1.22) can be justified by this structural model.

Example 1.1. Consider a linear potential outcomes model with an instrument Z that is a

vector of indicators for judges, each with c = 5 cases, a continuous endogenous variable X,

and outcome Y :

Xi(z) = z′π + vi, Yi(x) = x (β + ξi) + εi, and
εi

ξi

vi

 | k(i) = k ∼ N




0

0

0

 ,


σεε σεξ σεv

· σξξ σξvk

· · σvv


 .

(1.23)

Due to the judge design, Xi = πk(i) +vi, where k(i) is the judge that observation i is assigned

to. The strength of the instrument is CS = 1√
K

∑
k(c − 1)π2

k. The πk’s are constructed as

such: with s =
√

CS/
√
K/(c− 1), set πk = 0 for the base judge, πk = −s for half the judges

and πk = s for the other half. The heterogeneity covariances σξvk are constructed so that∑
k πk = 0,

∑
k σξvk = 0, and

∑
k πkσξvk = 0. With CH characterizing the heterogeneity in

the model, and h =
√
CH/

√
K/(c− 1), set σξvk = 0 of the base judge; among judges with

πk = s, half of them have σξvk = h and the other half σξvk = −h. The same construction of

σξvk applies for judges with πk = −s.

In this model, the individual treatment effect is βi = β + ξi. We can interpret vi as

the noise associated with the first-stage regression, εi as the noise in the intercept of the

outcome equation, and ξi as the individual-level treatment effect heterogeneity. Further,

σξvk characterizes the extent of treatment effect heterogeneity. The observed outcome in a

model with constant treatment effects is Yi(Xi) = Xiβ + ε̌i, with E[ε̌i]=0. When σξvk = 0,

regardless of the values of σεξ, σξξ, the observed outcome of Equation (1.23) can be written
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as Yi(Xi) = Xiβ + ε̌i where E[ε̌i] = E[Xiξi + εi] = E[XiE[ξi | Xi]] = 0, which resembles the

constant treatment effect case.

Lemma 1.8. Consider the model of Example 1.1. If
√
Ks2 → C̃S < ∞ and

√
Kh2 → C̃H <

∞, then

σ11 =
4

σ33

(
σ22 −

σ2
23

2σ33

)2

+ o(1), σ12 = 2
σ23

σ33

(
σ22 −

σ2
23

2σ33

)
+ o(1), σ13 =

σ2
23

σ33

+ o(1),

σ22 =
c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)

+ (σvvβ + σεv)
2)+ o(1),

σ33 = 2
c− 1

c
σ2
vv + o(1), σ23 = 2

c− 1

c
σvv (σvvβ + σεv) + o(1), and

µ1

µ2

µ3

 =


√
K (c− 1) (s2β2 + h2)
√
K (c− 1) s2β

√
K (c− 1) s2

 = (c− 1)


CSβ

2 + CH

CSβ

CS

 .

Proposition 1.5. In the model of Example 1.1 with
√
Ks2 → C̃S < ∞ and

√
Kh2 → C̃H <

∞, for any σ22, σ23, σ33 such that σ22, σ33 > 0, σ2
23 ≤ σ22σ33 and µ such that µ1 ≥ 0, µ3 > 0,

µ2
2 ≤ µ1µ3, the following values of structural parameters:

C̃S = µ3/ (c− 1) , β = µ2/µ3, h =

√
1√
K

1

c− 1

(
µ1 −

µ2
2

µ3

)
,

ΣSF =


σεε σεξ σεv

. σξξ σξvk

. . σvv

 =


1

σvv

c
c−1

(
σ22 − σ2

23

σ33

)
+ σ2

εv

σvv
0 σεv

. h
σvv

±h

. . σvv

 ,

σvv =

√
σ33c

2 (c− 1)
, and σεv =

1

σvv

(
σ23c

2 (c− 1)
− σ2

vvβ

)
,

satisfy the equations in Lemma 1.8, and det (ΣSF ) /h → CD ≥ 0.

Due to Proposition 1.5, since the principal submatrices of ΣSF are positive semidefinite

asymptotically, ΣSF is a symmetric positive semidefinite matrix asymptotically. The propo-
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sition thus implies that when the σ’s and µ satisfy the conditions, there exists structural

parameters that can generate the given µ and Σ asymptotically. Hence, there are no further

restrictions on µ from the observed Σ in Example 1.1.

Numerical Results for Power

This section presents numerical results for power in environments not covered by the theory.

I first consider one-sided tests beyond the set S covered by the theory, then weighted average

power for two-sided tests rather than the class of unbiased tests.

The power envelope is achieved by a test that is valid across the entire composite null

space, and is most powerful for testing against a particular point in the alternative space.

To obtain this test, I implement the algorithm from Elliott et al. (2015) (EMW) where all

weight on the alternative are placed on a single point while being valid across a composite

null. Then, testing against every point in the alternative space requires a different critical

value. For the numerical exercises in this subsection, I use a Σ matrix of the form:

Σ =


2 2ρ 2ρ2

· 1 + ρ2 2ρ

· · 2

 , (1.24)

which corresponds to the Σ matrix in Proposition 1.2 with ωζζ = ωηη = 1, ωζη = ρ.

In the numerical exercises, I display the rejection rate across 500 independent draws

from X∗ ∼ N(µ,Σ) at each point on the µ2 axis, across several µ1, µ3 values for a 5% test.

The composite null uses a grid of µ1 ∈ [0, 5], µ3 ∈ [0, 5] in 0.5 increments, and assumes the

variance is known.

Figure 1.C.1 uses a one-sided LM test, with a large covariance at ρ = 0.9. When data is

generated from the null, since LM and EMW are valid tests, their rejection rate is at most

0.05. EMW has exact size when testing a weighted average of values in the null space and
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is valid across the entire space, so when data is generated from one particular point in the

null, EMW can be conservative. Consistent with Proposition 1.4, when µ2 is small enough

for µ1 = 1, µ3 = 4, LM achieves the power envelope, but as µ2 gets larger, the gap widens

substantially. This phenomenon occurs because EMW still uses the same null grid, but now

it no longer needs to have correct size for testing against the point (µA
1 − σ12

σ22
µA
2 , 0, µ

A
3 − σ23

σ22
µA
2 ),

as that point is no longer in the null space.

In Figure 1.C.2, Σ is calibrated by using the Σ matrix calculated from the Angrist and

Krueger (1991) application, so after appropriate normalizations, ρ = 0.37. With such a low

covariance, LM is basically indistinguishable from the EMW bound. Hence, even though

there are gains to be made theoretically, in the empirical application considered, the gains

are small.

Instead of considering a point alternative, we may be more interested in testing against a

composite alternative. Here, the alternative grid for EMW places equal weight on alternatives

(µA
1 , µ

A
2 , µ

A
3 ) ∈ [0, 5] × [−2, 2] × [0, 5] in increments of 0.5 (excluding µ2 = 0) subject to

inequality constraints. Figures 1.C.3 and 1.C.4 present one such possibility by allowing

EMW to place equal weight on several points within the alternative space. The resulting

test is the nearly optimal test for a weighted average of values the null space against the

uniformly weighted average of alternative values. Hence, there is no guarantee that its power

is necessarily higher than the LM test at every point in the alternative space. While there are

weighted-average power curves that substantially outperform LM, this result is compatible

with Proposition 1.1. EMW is a biased test as there are points in the alternative space that

are not a part of the grid where LM outperforms EMW. Nonetheless, Figure 1.C.4 suggests

that, when using the empirical covariance, LM does not perform substantially worse than

EMW.
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Figure 1.C.1: One-sided test with ρ = 0.9

Figure 1.C.2: One-sided test with ρ = 0.37
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Figure 1.C.3: Uniform Weighting on grid of alternatives with ρ = 0.9

Figure 1.C.4: Uniform Weighting on grid of alternatives with ρ = 0.37
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1.C.3 Constructing Confidence Sets

Expressions for the test are given in Section 1.3, which can be efficiently implemented using

matrix operations. Inverting the test to obtain a confidence set is also straightforward in

this procedure, as the bounds of the confidence set are derived in closed-form in this section.

To invert the LM test to obtain a confidence set, use ei = Yi−Xiβ0 and expand the A ex-

pressions in Equation (1.9) so that they are written in terms of X and Y . The two-sided test

rejects:
(∑

i

∑
j ̸=i GijeiXj

)2
/V̂LM ≥ q = Φ(1 − α/2)2. Let TY X := 1√

K

∑
i

∑
j ̸=i GijYiXj.

Then,
∑

i

∑
j ̸=iGijeiXj =

√
K (TY X − TXXβ0), so squaring it results in a term that is

quadratic in β2
0 . With V̂LM = B0 + C1β0 + B2β

2
0 quadratic in β0, the analysis for the shape

of the confidence intervals is similar to the AR procedure for just-identified IV. Calculations

for coefficients is similar to that of the L3O variance.

Proposition 1.6. The two-sided LM test does not reject β0 when (KT 2
XX − qB2) β

2
0 −

(2KTY XTXX + qB1) β0 + (KT 2
Y X − qB0) ≤ 0. Let

D := (2KTY XTXX + qB1)
2 − 4

(
KT 2

XX − qB2

) (
KT 2

Y X − qB0

)
.

If D ≥ 0 and KT 2
XX − qB2 ≥ 0, then the upper and lower bounds of confidence set are:

(2KTY XTXX + qB1) ±
√
D

2 (KT 2
XX − qB2)

.

If D < 0 and KT 2
XX − qB2 < 0, then the confidence set is empty. Otherwise, the confidence

set is unbounded.

Due to +qB1,−qB2 in the expression of the upper and lower bounds, the confidence set

is not necessarily centered around β̂JIV E = TY X/TXX .
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1.C.4 Further Simulation Results

This section reports simulation results from several structural models to assess how well

various procedures control for size. Since the nominal size is 0.05, and data is generated

under the null, the target rejection rate is 0.05. Across the board, the L3O method performs

well, and for all existing procedures, there is at least one design where they perform badly.

Continuous Treatment

This subsection reports results for a simulation based on Example 1.1 that has a continuous

X. Table 1.C.1 reports results with K = 500 and Table 1.C.2 reports results for K = 40.

The L3O rejection rates are closer to the nominal rate than the existing procedures in

the literature, albeit worse with a smaller K. ARorc has high rejection rates with strong

heterogeneity and EK has high rejection rates with weak instruments. Notably, with perfect

correlation and an irrelevant instrument, EK can achieve 100% rejection in the simulation

with K = 500. The procedures that use the LM statistic are MO, X̃-AR, L3O and LMorc;

they differ only in variance estimation. Hence, while X̃-AR and MO over-reject, the extent

of over-rejection is smaller than ARorc and EK in the adversarial cases.

Binary Treatment

This subsection presents a structural model with a binary X. Data is generated from a

judge model with J = K + 1 judges, each with c = 5 cases, and cases are indexed by i. The

structural model is:

Yi(x) = x(β + ξi) + εi, and

Xi(z) = I {z′π − vi ≥ 0} .
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Table 1.C.1: Rejection rates under the null for nominal size 0.05 test for continuous X

TSLS EK ARorc MO X̃-t X̃-AR L3O LMorc

CH = CS = 3
√
K, σεv = 0 0.061 0.017 1.000 0.061 0.079 0.078 0.042 0.044

CH = 2
√
K,CS = 2

√
K 0.952 0.022 1.000 0.073 0.087 0.084 0.058 0.055

CH = 2
√
K,CS = 2 1.000 0.009 1.000 0.096 0.076 0.127 0.053 0.050

CH = 2
√
K,CS = 0 1.000 0.006 1.000 0.103 0.061 0.127 0.059 0.052

CH = 3, CS = 3
√
K 0.986 0.033 0.109 0.057 0.062 0.064 0.056 0.047

CH = 3, CS = 3 1.000 0.036 0.168 0.055 0.078 0.087 0.055 0.047
CH = 3, CS = 0 1.000 0.048 0.184 0.058 0.106 0.088 0.053 0.057

CH = 0, CS = 2
√
K 1.000 0.089 0.049 0.063 0.083 0.080 0.061 0.058

CH = 0, CS = 2 1.000 0.207 0.045 0.054 0.243 0.135 0.057 0.045
CH = 0, CS = 0 1.000 0.337 0.051 0.042 0.413 0.127 0.045 0.048
CH = CS = 0, σεv = 1 1.000 1.000 0.044 0.042 1.000 0.157 0.052 0.044

Notes: Data generating process corresponds to Example 1.1. Unless mentioned otherwise, simula-
tions use K = 500, c = 5, β = 0, σεε = σvv = 1, σεξ = 0,= σεv = 0.8, σξξ = 1 + h for h2 < 1 with
1000 simulations. The table displays rejection rates of various procedures (in columns) for various
designs (in rows). CH = 0 uses ξi = 0 for all i, which uses σξξ = σεξ = σξv = 0, corresponding to
constant treatment effects. Procedures are described in Table 1.1.

Table 1.C.2: Rejection Rates under the null for nominal size 0.05 test for Continuous X with
K = 40

TSLS EK ARorc MO X̃-t X̃-AR L3O LMorc

CH = CS = 3
√
K, σεv = 0 0.072 0.022 0.525 0.051 0.074 0.068 0.039 0.055

CH = 2
√
K,CS = 2

√
K 0.238 0.034 0.388 0.051 0.074 0.077 0.055 0.062

CH = 2
√
K,CS = 2 0.547 0.033 0.475 0.083 0.096 0.133 0.077 0.053

CH = 2
√
K,CS = 0 0.651 0.013 0.511 0.072 0.088 0.102 0.068 0.054

CH = 3, CS = 3
√
K 0.213 0.025 0.109 0.048 0.057 0.063 0.055 0.046

CH = 3, CS = 3 0.658 0.032 0.129 0.045 0.074 0.063 0.064 0.055
CH = 3, CS = 0 0.849 0.049 0.127 0.063 0.109 0.103 0.087 0.057

CH = 0, CS = 2
√
K 0.853 0.105 0.049 0.064 0.068 0.098 0.085 0.056

CH = 0, CS = 2 0.999 0.152 0.048 0.045 0.201 0.132 0.098 0.037
CH = 0, CS = 0 1.000 0.342 0.052 0.051 0.439 0.143 0.080 0.049
CH = CS = 0, σεv = 1 1.000 1.000 0.045 0.040 1.000 0.179 0.082 0.045

Note: Designs are identical to Table 1.C.1, but K = 40 here.
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Table 1.C.3: Rejection Rates under the null for nominal size 0.05 test for binary X

TSLS EK ARorc MO X̃-t X̃-AR L3O LMorc

CH = CS = 3
√
K, σεv = 0 0.046 0.049 0.059 0.045 0.045 0.045 0.049 0.054

CH = 2
√
K,CS = 2

√
K 0.097 0.047 0.177 0.037 0.038 0.041 0.051 0.052

CH = 2
√
K,CS = 2 0.727 0.059 1.000 0.127 0.051 0.143 0.058 0.051

CH = 2
√
K,CS = 0 0.891 0.037 1.000 0.204 0.067 0.247 0.059 0.045

CH = 3, CS = 3
√
K 0.092 0.060 0.051 0.055 0.057 0.056 0.055 0.047

CH = 3, CS = 3 0.996 0.089 0.888 0.059 0.086 0.096 0.055 0.048
CH = 3, CS = 0 1.000 0.124 0.999 0.101 0.289 0.181 0.068 0.052

CH = 0, CS = 2
√
K 0.408 0.058 0.055 0.043 0.046 0.046 0.045 0.041

CH = 0, CS = 2 1.000 0.212 0.052 0.061 0.188 0.108 0.078 0.057
CH = 0, CS = 0 1.000 0.654 0.046 0.034 0.750 0.149 0.069 0.039
CH = CS = 0, σεε = 0 1.000 1.000 0.053 0.057 1.000 0.173 0.076 0.053

Note: The data generating process corresponds to Section 1.C.4. Unless stated otherwise, designs
use K = 100, c = 5, β = 0, p = 7/8, σεε = 0.1, σεv = 0.5 with 1000 simulations.

Our unobservables are generated as follows. Draw vi ∼ U [−1, 1], then generate residuals

from:

εi | vi ∼


N (σεv, σεε)

N (−σεv, σεε)

if

if

vi ≥ 0

vi < 0

,

ξi | vi ≥ 0 =


σξvk

−σξvk

w.p.

w.p.

p

1 − p

, and ξi | vi < 0 =


σξvk

−σξvk

w.p.

w.p.

1 − p

p

.

The process for determining s, h and πk ∈ {0,−s, s}, σξvk ∈ {0,−h, h} are identical to

Example 1.1, as s controls the strength of the instrument, h the extent of heterogeneity, and

β is the object of interest. Then, the problem’s variances and covariances are determined by

(p, σεv, σεε). The JIVE estimand is shown to be β in Section 1.C.6. A simulation is run with

K = 100, so the sample size is smaller than the normal experiment in Example 1.1.

Results are presented in Table 1.C.3, and are qualitatively similar to Section 1.2. The

oracle test consistently obtains rejection rates close to the nominal 5% rate across all designs,

in accordance with the normality result, even with heterogeneous treatment effects and non-
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normality of errors due to the binary setup. The L3O rejection rate is close to the nominal

rate even with a smaller sample size. EK, ARorc and MO continue to have high rejection

rates in the adversarial designs.

Incorporating Covariates

This section presents a data-generating process that involves covariates. Instead of judges,

consider a model where there are K states. Let t = 1, · · · , K index the state and let W

denote the control vector that is an indicator for states. With a binary exogenous variable

(say an indicator for birth being in the fourth quarter) B ∈ {0, 1}, the value of the instrument

is given by k = t× B. Then, the instrument vector Z is an indicator for all possible values

of k. The structural model is:

Yi(x) = x(β + ξi) + w′γ + εi, and

Xi(z) = I {z′π + w′γ − vi ≥ 0} .

In the simulation, every state has 10 observations, of which 5 have B = 1 and the other

5 have B = 0. The process for generating (vi, εi, ξi), πk, σξvk, and s, h is identical to the

binary case. Hence, π0 = σξv0 for the base group, which constitutes half the observations.

For k ̸= 0, πk is the coefficient for observations from state t = k and have B = 1, and σξvk is

the corresponding heterogeneity term. Whenever πt = s, set γt = g; whenever πt = −s, set

γt = −g. In this setup, it can be shown that the UJIVE estimand is β, and the proof is in

Section 1.C.6. Table 1.C.4 reports the associated simulation results, which are qualitatively

similar to the results described before.
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Table 1.C.4: Rejection Rates under the null for nominal size 0.05 test for binary X with
covariates

TSLS EK ARorc MO X̃-t X̃-AR L3O LMorc

CH = CS = 3
√
K, σεv = 0 0.048 0.123 0.049 0.052 0.047 0.055 0.054 0.060

CH = 2
√
K,CS = 2

√
K 0.072 0.111 0.052 0.044 0.041 0.046 0.050 0.053

CH = 2
√
K,CS = 2 0.171 0.016 0.471 0.083 0.012 0.092 0.060 0.050

CH = 2
√
K,CS = 0 0.259 0.002 0.960 0.126 0.008 0.135 0.047 0.058

CH = 3, CS = 3
√
K 0.065 0.132 0.048 0.053 0.056 0.054 0.060 0.049

CH = 3, CS = 3 0.131 0.015 0.108 0.040 0.003 0.042 0.044 0.050
CH = 3, CS = 0 0.247 0.003 0.300 0.087 0.004 0.091 0.062 0.053

CH = 0, CS = 2
√
K 0.084 0.099 0.054 0.041 0.036 0.043 0.048 0.050

CH = 0, CS = 2 0.178 0.006 0.058 0.043 0.002 0.044 0.052 0.051
CH = 0, CS = 0 0.246 0.006 0.048 0.063 0.005 0.069 0.081 0.050
CH = CS = 0, σεε = 0 1.000 0.497 0.042 0.013 0.147 0.049 0.092 0.035

Note: The data generating process corresponds to Section 1.C.4. Unless stated otherwise, designs
use K = 48, c = 5, β = 0, p = 7/8, σεε = 0.5, σεv = 0.1, and g = 0.1 with 1000 simulations.

1.C.5 Proofs for Appendix 1.A and 1.B

Proof of Lemma 1.1. Suppose not. Then, for some real β0,

E [TAR] =
∑
i

∑
j ̸=i

PijR∆iR∆j =
∑
i

∑
j ̸=i

Pij

(
RY iRY j −RiRY jβ0 −RY iRjβ0 + RiRjβ

2
0

)
= 0.

Solving for β0,

β0 =
2
∑

i

∑
j ̸=i PijRiRY j ±

√
4
(∑

i

∑
j ̸=i PijRiRY j

)2
− 4

(∑
i

∑
j ̸=i PijRiRj

)(∑
i

∑
j ̸=i PijRY iRY j

)
2
(∑

i

∑
j ̸=i PijRiRj

) .

In our structural model, Ri = πk(i) and RY i = πY k(i). The term in the square root can

be written as:

D = 4

(∑
k

πkπY k

)2

− 4

(∑
k

π2
k

)(∑
k

π2
Y k

)
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Using Table 1.A.1,
∑

k π
2
k = 5

8
s2K,

∑
k π

2
Y k =

(
5
8
s2β2 + h2

)
K, and

∑
k πkπY k = 5

8
s2βK,

we obtain

1

4
D =

(
5

8
s2βK

)2

−
(

5

8
s2K

)(
5

8
s2β2 + h2

)
K = −5

8
s2h2K2 ≤ 0.

Since h ̸= 0 and Ks2 > 0, there are no real roots of β0, a contradiction.

Proof of Lemma 1.2. I rewrite the quadratic term to produce a martingale difference array:

∑
i

∑
j ̸=i

Gijv
′
iAvj =

∑
i

∑
j<i

Gijv
′
iAvj +

∑
i

∑
j>i

Gijv
′
iAvj

=
∑
i

∑
j<i

(
Gijv

′
iAvj + Gjiv

′
jAvi

)
.

Hence,
∑

i s
′
ivi +

∑
i

∑
j ̸=i Gijv

′
iAvj =

∑
i yi, where

yi = s′ivi +
∑
j<i

(
Gijv

′
iAvj + Gjiv

′
jAvi

)
= s′ivi + v′iA

(∑
j<i

Gijvj

)
+

(∑
j<i

Gjiv
′
j

)
Avi

= s′ivi + v′iA (GLv)′i· + (G′
Uv)i· Avi.

Let Fi denote the filtration of y1, . . . , yi−1. To apply the martingale CLT, we require:

1.
∑

i E [|yi|2+ϵ] → 0.

2. Conditional variance converges to 1, i.e., P (|
∑

i E [B2y2i | Fi] − 1| > η) → 0, where

B = Var (T )−1/2.

The 4th moments of vi are bounded. With ϵ = 2, we want
∑

iE [y4i ] → 0. Using Loeve’s cr

inequality, it suffices that, for any element l of the vi vector,

∑
i

s4ilE
[
v4il
]
→ 0, and

∑
i

E
[
v4il (GLv)4il

]
→ 0.
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The first condition is immediate from condition (2). The second condition holds by

condition (3) using the proof in EK18. To be precise,

∑
i

E
[
v4il (GLv)4il

]
=
∑
i

E
[
v4il
]
E
[
(GLv)4il

]
⪯
∑
i

E
[
(GLv)4il

]
=
∑
i

∑
j

G4
L,ijE

[
v4il
]

+ 3
∑
i

∑
j

∑
k ̸=j

G2
L,ijG

2
L,ikE

[
v2il
]
E
[
v2jl
]

⪯
∑
i

∑
j

∑
k

G2
L,ijG

2
L,ik =

∑
i

(GLG
′
L)

2
ii

≤
∑
i

∑
j

(GLG
′
L)

2
ij = ||GLG

′
L||2F .

The argument for GU is analogous. Now, I turn to showing convergence of the conditional

variance. With abuse of notation, let Wi = s′ivi and Xi = v′iA (GLv)′i· + v′iA (G′
Uv)′i·. Since

Var (BT ) = B2
∑

i E [W 2
i ] + B2

∑
i E [X2

i ] = 1,

∑
i

E
[
B2y2i | Fi

]
− 1 = B2

∑
i

(
E
[
X2

i | Fi

]
− E

[
X2

i

])
+ 2B2

∑
i

E [WiXi | Fi]

+ B2
∑
i

(
E
[
W 2

i | Fi

]
− E

[
W 2

i

])
.

The previous observations in the filtration do not feature, so E [W 2
i | Fi] − E [W 2

i ] = 0.

It suffices to show that the RHS converges to 0. For the
∑

iE [WiXi | Fi] term,

B2
∑
i

E [WiXi | Fi] = B2
∑
i

E
[
Wi

(
v′iA (GLv)′i· + v′iA (G′

Uv)
′
i·
)
| Fi

]
= B2

∑
i

E [Wiv
′
iA] (GLv)′i· + B2

∑
i

E [Wiv
′
iA] (G′

Uv)
′
i· .

It suffices to show that the respective squares converge to 0. Due to bounded fourth

moments, and applying the Cauchy-Schwarz inequality repeatedly, for some n-vector δv with
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||δv||2 ≤ C,

E

(∑
i

E[Wiv
′
i]A (GLv)′i·

)2
 ⪯ δ′vGLG

′
Lδv ≤ ||δv||22||GLG

′
L||2 ⪯ ||GLG

′
L||F ,

and the same argument can be applied to the GU term. Finally,

∑
i

(
E
[
X2

i | Fi

]
− E

[
X2

i

])
=
∑
i

(
E
[(
v′iA (GLv)′i· + v′iA (G′

Uv)
′
i·
)2 | Fi

]
− E

[(
v′iA (GLv)′i· + v′iA (G′

Uv)
′
i·
)2])

.

It suffices to consider the GL term, as the GU and cross terms are analogous:

∑
i

(
E
[(
v′iA (GLv)′i·

)2 | Fi

]
− E

[(
v′iA (GLv)′i·

)2])
=
∑
i

(
(GLv)i· A

′E [viv
′
i]A (GLv)′i· − E

[
(GLv)i· A

′viv
′
iA (GLv)′i·

])
.

Since
∑

i (GLv)i· A
′E [viv

′
i]A (GLv)′i· is demeaned, it suffices to show that its variance

converges to 0. Due to bounded moments,

Var

(∑
i

(GLv)i· A
′E [viv

′
i]A (GLv)′i·

)
⪯
∑
i

∑
j

(GLG
′
L)

2
= ||GLG

′
L||2F ,

which suffices for the result.
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Proof of Lemma 1.3. I begin with part (c). By applying the Cauchy-Schwarz inequality,

∣∣∣∣∣∑
i

Ci

(∑
j ̸=i

hA
2 (i, j)Rmj

)(∑
j ̸=i

hB
2 (i, j)Rmj

)∣∣∣∣∣
≤

∑
i

Ci

(∑
j ̸=i

hA
2 (i, j)Rmj

)2
1/2∑

i

Ci

(∑
j ̸=i

hB
2 (i, j)Rmj

)2
1/2

≤ max
i

Ci

∑
i

(∑
j ̸=i

hA
2 (i, j)Rmj

)2
1/2∑

i

(∑
j ̸=i

hB
2 (i, j)Rmj

)2
1/2

≤ max
i

Ci

(∑
i

R̃2
mi

)1/2(∑
i

R̃2
mi

)1/2

≤ C
∑
i

R̃2
mi.

The proof of all other parts are entirely analogous.

Proof of Lemma 1.4. Proof of Lemma 1.4(a).

Using the decomposition from AS23,

Var

(∑
i

∑
j ̸=i

GijFijV1iV2iV3jV4j

)

=
n∑

i ̸=j

G2
ijF

2
ijVar (V1iV2iV3jV4j) +

n∑
i ̸=j

GijFijGjiFjiCov (V1iV2iV3jV4j, V1jV2jV3iV4i)

+
n∑

i ̸=j ̸=k

GijFijGkjFkjCov (V1iV2iV3jV4j, V1kV2kV3jV4j)

+
n∑

i ̸=j ̸=k

GijFijGjkFjkCov (V1iV2iV3jV4j, V1jV2jV3kV4k)

+
n∑

i ̸=j ̸=k

GijFijGikFikCov (V1iV2iV3jV4j, V1iV2iV3kV4k)

+
n∑

i ̸=j ̸=k

GijFijGkiFkiCov (V1iV2iV3jV4j, V1kV2kV3iV4i)

≤ 2

[
max
i,j

Var (V1iV2iV3jV4j)

]∑
i

(∑
j ̸=i

GijFij

)2

+

(∑
j ̸=i

GijFij

)(∑
j ̸=i

GjiFji

) .
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Notice that the terms in
∑n

i ̸=j are absorbed into the sum over k so that the final expression

can be written as
∑

i

∑
j ̸=i

∑
k ̸=i. Then, due to Assumption 1.3(a) and the Cauchy-Schwarz

inequality,

∑
i

(∑
j ̸=i

GijFij

)2

≤
∑
i

(∑
j ̸=i

G2
ij

)(∑
j ̸=i

F 2
ij

)
≤ C

∑
i

∑
j ̸=i

G2
ij,

and

∣∣∣∣∣∑
i

(∑
j ̸=i

GijFij

)(∑
j ̸=i

GjiFji

)∣∣∣∣∣ ≤
∑

i

(∑
j ̸=i

GijFij

)2
1/2∑

i

(∑
j ̸=i

GjiFji

)2
1/2

≤ C

(∑
i

∑
j ̸=i

G2
ij

)1/2(∑
i

∑
j ̸=i

G2
ji

)1/2

= C
∑
i

∑
j ̸=i

G2
ij.

Proof of Lemma 1.4(b). Expand the term:

n∑
i ̸=j ̸=k

GijFijM̌ik,−ijV1iV2kV3jV4j =
n∑

i ̸=j ̸=k

GijFijM̌ik,−ij (R1iR2k + v1iR2k + R1iv2k + v1iv2k)V3jV4j.

Consider the final sum with 4 stochastic terms. The 6-sums have zero covariances due to

independent sampling. The 5-sums also have zero covariances, because at least one of v1

or v2 needs to have different indices. Within the 4-sum, the covariance is nonzero only for

j2 ̸= j. We require i2 to be equal to either i or k and k2 the other index. Hence, by bounding
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covariances above by Cauchy-Schwarz,

Var

(
n∑

i ̸=j ̸=k

GijFijM̌ik,−ijv1iv2kV3jV4j

)

≤max
i,j,k

Var (v1iv2kV3jV4j)
∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

(
GijFijGilFilM̌ik,−ijM̌ik,−il + GijFijGklFklM̌ik,−ijM̌ki,−kl

)
+ max

i,j,k
Var (v1iv2kV3jV4j) 3!

n∑
i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij

≤max
i,j,k

Var (v1iv2kV3jV4j)

(
n∑

i ̸=j ̸=k ̸=l

G2
ijG

2
ilM̌

2
ik,−ij

)1/2( n∑
i ̸=j ̸=k ̸=l

F 2
ijF

2
ilM̌

2
ik,−ij

)1/2

+ max
i,j,k

Var (v1iv2kV3jV4j)

(
n∑

i ̸=j ̸=k ̸=l

G2
ijG

2
klM̌

2
ik,−ij

)1/2( n∑
i ̸=j ̸=k ̸=l

F 2
ijF

2
klM̌

2
ik,−ij

)1/2

+ max
i,j,k

Var (v1iv2kV3jV4j) 3!
n∑

i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij.

To obtain the first inequality, observe that once we have fixed 3 indices, there are 3!

permutations of the v1iv2kV3jV4j that we can calculate covariances for. They are all bounded

above by the variance. In the various combinations, we may have different combinations of

G and F , but they are bounded above by the expression. To be precise, the 3-sum is:

n∑
i ̸=j ̸=k

GijFijM̌ik,−ij

(
GijFijM̌ik,−ij + GikFikM̌ij,−ik + GjiFjiM̌jk,−ji

)
+

n∑
i ̸=j ̸=k

GijFijM̌ik,−ij

(
GjkFjkM̌ji,−jk + GkiFkiM̌kj,−ki + GkjFkjM̌ki,−kj

)
.

Apply Cauchy-Schwarz to the sum and apply the commutative property of summations to

obtain the upper bound. For instance,

(
n∑

i ̸=j ̸=k

GijFijM̌ik,−ijGjkFjkM̌ji,−jk

)2

≤

(
n∑

i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij

)(
n∑

i ̸=j ̸=k

G2
jkF

2
jkM̌

2
ji,−jk

)
.
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Then, observe that
∑

i

∑
j ̸=i

∑
k ̸=i,j G

2
jkF

2
jkM̌

2
ji,−jk =

∑
j

∑
k ̸=j

∑
i ̸=j,k G

2
jkF

2
jkM̌

2
ji,−jk

=
∑

i

∑
j ̸=i

∑
k ̸=i,j G

2
ijF

2
ijM̌

2
ik,−ij. Due to AS23 Equation (22),

∑
l M̌

2
il−ijk = O(1), so∑n

i ̸=j ̸=k G
2
ijF

2
ijM̌

2
ik,−ij ≤ C

∑
i

∑
j ̸=i G

2
ijF

2
ij ≤ C

∑
i

∑
j ̸=i G

2
ij. Similarly,

∑n
i ̸=j ̸=k ̸=l G

2
ijG

2
klM̌

2
ik,−ij =

O(1)
∑n

i ̸=j ̸=k G
2
ijM̌

2
ik,−ij = O(1)

∑n
i ̸=j G

2
ij, which delivers the order required.

To deal with 3 stochastic terms,

Var

(
n∑

i ̸=j ̸=k

GijFijM̌ik,−ijR1iv2kV3jV4j

)
= Var

(
n∑

i ̸=j

v2iV3jV4j

(∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

))

≤
n∑

i ̸=j

Var (v2iV3jV4j)

(∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

)[∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k +
∑
k ̸=i,j

GkiFkiM̌kj,−kiR1k

]

+ max
i,j

Var (v2iV3jV4j)
n∑

i ̸=j

∑
l ̸=i,j

(∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

)(∑
k ̸=i,l

GklFklM̌ki,−klR1k

)

≤
∑
i

∑
j ̸=i

Var (v2iV3jV4j)

(∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

)
[∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k +
∑
k ̸=i,j

GkiFkiM̌kj,−kiR1k

]

+ max
i,j

Var (v2iV3jV4j)
∑
i

(∑
j ̸=i

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

)2

− max
i,j

Var (v2iV3jV4j)
∑
i

∑
j ̸=i

(∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

)2

≤ max
i,j

Var (v2iV3jV4j)
∑
i

(∑
j ̸=i

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

)2

+
n∑

i ̸=j

Var (v2iV3jV4j)

(∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

)(∑
k ̸=i,j

GkiFkiM̌kj,−kiR1k

)

To get the first inequality, observe that, if for l ̸= i, j, we have v2l instead of V3lV4l, the

covariance must be 0. We can then bound the order by using Assumption 1.3 and Lemma 1.3.
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Similarly,

Var

(
n∑

i ̸=j ̸=k

GijFijM̌ik,−ijv1iR2kV3jV4j

)
= Var

(
n∑

i ̸=j

v1iV3jV4j

(∑
k ̸=i,j

GijFijM̌ik,−ijR2k

))

≤ max
i,j

Var (v1iV3jV4j)
∑
i

(∑
j ̸=i

∑
k ̸=i,j

GijFijM̌ik,−ijR2k

)2

+
∑
i

∑
j ̸=i

Var (v1iV3jV4j)

(∑
k ̸=i,j

GijFijM̌ik,−ijR2k

)(∑
k ̸=i,j

GjiFjiM̌jk,−ijR2k

)
.

since the expansion in the intermediate steps are entirely analogous.

Turning to the sum with two stochastic objects,

Var

(
n∑

i ̸=j ̸=k

GijFijM̌ik,−ijR1iR2kV3jV4j

)
= Var

(∑
i

V3iV4i

(∑
j ̸=i

∑
k ̸=i,j

GjiFjiM̌jk,−ijR1jR2k

))

=
∑
i

Var (V3iV4i)

(∑
j ̸=i

∑
k ̸=i,j

GjiFjiM̌jk,−ijR1jR2k

)2

≤ max
i

Var (V3iV4i)
∑
i

(∑
j ̸=i

∑
k ̸=i,j

GjiFjiM̌jk,−ijR1jR2k

)2

.

With these inequalities, applying Assumption 1.3 suffices for the result.

Proof of Lemma 1.4(c). Expand the term:

n∑
i ̸=j ̸=l

GijFijM̌jl,−ijV1iV2iV3jV4l =
n∑

i ̸=j ̸=l

GijFijM̌jl,−ijV1iV2i (R3jR4l + R3jv4l + v3jR4l + v3jv4l) .
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With four stochastic objects,

Var

(
n∑

i ̸=j ̸=l

GijFijM̌jl,−ijV1iV2iv3jv4l

)

≤max
i,j,k

Var (V1iV2iv3jv4l)
n∑

i ̸=j ̸=l

∑
i2 ̸=i,j,l

(
GijFijM̌jl,−ijGi2jFi2jM̌jl,−i2j + GijFijM̌jl,−ijGi2lFi2lM̌lj,−i2l

)
+ max

i,j,k
Var (V1iV2iv3jv4l) 3!

n∑
i ̸=j ̸=l

G2
ijF

2
ijM̌

2
jl,−ij.

Simplifying the first line,

n∑
i ̸=j ̸=l

∑
i2 ̸=i,j,l

(
GijFijM̌jl,−ijGi2jFi2jM̌jl,−i2j + GijFijM̌jl,−ijGi2lFi2lM̌lj,−i2l

)
≤

(
n∑

i ̸=j ̸=l ̸=i2

G2
ijG

2
i2j
M̌2

jl,−ij

)1/2( n∑
i ̸=j ̸=l ̸=i2

F 2
ijF

2
i2j
M̌2

jl,−i2j

)1/2

+

(
n∑

i ̸=j ̸=l ̸=i2

G2
ijG

2
i2l
M̌2

jl,−ij

)1/2( n∑
i ̸=j ̸=l ̸=i2

F 2
ijF

2
i2l
M̌2

lj,−i2j

)1/2

.

These terms have the required order due to a proof analogous to Lemma 1.4(b). Next,

Var

(
n∑

i ̸=j ̸=l

GijFijM̌jl,−ijV1iV2iR3jv4l

)
= Var

(∑
i

∑
j ̸=i

V1iV2iv4j

(∑
l ̸=i,j

GilFilM̌lj,−ilR3l

))

≤
∑
i

∑
j ̸=i

Var (V1iV2iv4j)

(∑
l ̸=i,j

GilFilM̌lj,−ilR3l

)[∑
l ̸=i,j

GilFilM̌lj,−ilR3l +
∑
l ̸=i,j

GjlFjlM̌li,−jlR3l

]

+ max
i,j

Var (V1iV2iv4j)
∑
i

∑
j ̸=i

∑
i2 ̸=i,j

(∑
l ̸=i,j

GilFilM̌lj,−ilR3l

)(∑
k ̸=i2,l

GklFklM̌ki2,−klR1k

)

≤ max
i,j

Var (V1iV2iv4j)
∑
i

(∑
j ̸=i

∑
l ̸=i,j

GilFilM̌lj,−ilR3l

)2

+
∑
i

∑
j ̸=i

Var (V1iV2iv4j)

(∑
l ̸=i,j

GilFilM̌lj,−ilR3l

)(∑
l ̸=i,j

GjlFjlM̌li,−jlR3l

)
.
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Further, Var
(∑n

i ̸=j ̸=l GijFijM̌jl,−ijV1iV2iv3jR4l

)
can be bounded by a similar argument.

Turning to the sum with two stochastic objects,

Var

(
n∑

i ̸=j ̸=l

GijFijM̌jl,−ijV1iV2iR3jR4l

)
=
∑
i

Var (V1iV2i)

(∑
j ̸=i

∑
l ̸=i,j

GijFijM̌jl,−ijR3jR4l

)2

.

These inequalities suffice for the result due to Assumption 1.3.

Proof of Lemma 1.4(d). Expand the term:

n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iV2kV3jV4l

=
n∑

i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2k (R3jR4l + R3jv4l + v3jR4l + v3jv4l)

+
n∑

i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2k (R3jR4l + R3jv4l + v3jR4l + v3jv4l) .

Consider the v2k line first. We only have the 4-sum to contend with. For 5-sum and

above, at least one of the errors can be factored out as a zero expectation. Hence, by using

Cauchy-Schwarz and the same argument as above,

Var

(
n∑

i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2kv3jv4l

)

≤ max
i,j,k,l

Var (V1iv2kv3jv4l) 4!
n∑

i ̸=j ̸=k ̸=l

G2
ijF

2
ijM̌

2
ik,−ijM̌

2
jl,−ijk

≤ C
n∑

i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij ≤ C

n∑
i ̸=j

G2
ijF

2
ij ≤ C

(
n∑

i ̸=j

G2
ij

)1/2( n∑
i ̸=j

F 2
ij

)1/2

.
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By using the same expansion step as before,

Var

(
n∑

i ̸=j ̸=k

GijFijM̌ik,−ijV1iv2kv3j

(∑
l ̸=i,j,k

M̌jl,−ijkR4l

))

≤max
i,j,k

Var

(
V1iv2kv3j

(∑
l ̸=i,j,k

M̌jl,−ijkR4l

))
n∑

i ̸=j ̸=k ̸=i2

(
GijFijGi2jFi2jM̌ik,−ijM̌i2k,−ij + GijFijGi2kFi2kM̌ij,−ikM̌i2j,−ik

)
+ max

i,j,k
Var

(
V1iv2kv3j

(∑
l ̸=i,j,k

M̌jl,−ijkR4l

))
3!
∑
i

∑
j ̸=i

∑
k ̸=i,j

G2
ijF

2
ijM̌

2
ik,−ij.

The
∑n

i ̸=j ̸=k ̸=i2

(
GijFijGi2jFi2jM̌ik,−ijM̌i2k,−ij + GijFijGi2kFi2kM̌ij,−ikM̌i2j,−ik

)
term has

the required order due to the same argument as the proof of Lemma 1.4(b). Next,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2kR3jv4l

 = Var

 n∑
i̸=j ̸=k

V1iv2kv4j

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l


≤max

i,j,k
Var (V1iv2kv4j)

n∑
i ̸=j ̸=k

∑
i2 ̸=i,j,k

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

 ∑
l ̸=i2,j,k

Gi2lFi2lM̌i2k,−i2lM̌lj,−i2lkR3l


+max

i,j,k
Var (V1iv2kv4j)

n∑
i ̸=j ̸=k

∑
i2 ̸=i,j,k

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

 ∑
l ̸=i2,j,k

Gi2lFi2lM̌i2j,−i2lM̌lk,−i2ljR3l


+max

i,j,k
Var (V1iv2kv4j) 3!

n∑
i ̸=j ̸=k

M̌2
ik,−ij

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

≤max
i,j,k

Var (V1iv2kv4j)
∑
k

∑
j ̸=k

∑
i ̸=k,j

∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

−max
i,j,k

Var (V1iv2kv4j)
∑
k

∑
j ̸=k

∑
i ̸=k,j

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

+max
i,j,k

Var (V1iv2kv4j)
∑
k

∑
j ̸=k

∑
i ̸=k,j

∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

∑
i ̸=k,j

∑
l ̸=i,j,k

GilFilM̌ij,−ilM̌lk,−iljR3l


−max

i,j,k
Var (V1iv2kv4j)

∑
k

∑
j ̸=k

∑
i̸=k,j

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

 ∑
l ̸=i,j,k

GilFilM̌ij,−ilM̌lk,−iljR3l


+max

i,j,k
Var (V1iv2kv4j) 3!

n∑
i ̸=j ̸=k

M̌2
ik,−ij

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

.
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The first term in the v2k line is then:

Var

 n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2kR3jR4l

 = Var

 n∑
i ̸=j

GijFijM̌ij,−ikV1iv2j
∑
k ̸=i,j

∑
l ̸=i,j,k

M̌kl,−ijkR3kR4l


≤ max

i,j
Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l

2

+max
i,j

Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l


GjiFji

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ji,−jkM̌kl,−ijkR3kR4l


+max

i,j
Var (V1iv2j)

n∑
i ̸=j ̸=i2

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l


Gi2jFi2j

∑
k ̸=i2,j

∑
l ̸=i2,j,k

M̌i2j,−i2kM̌kl,−i2jkR3kR4l


≤ max

i,j
Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l

2

+max
i,j

Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l


GjiFji

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ji,−jkM̌kl,−ijkR3kR4l


+max

i,j
Var (V1iv2j)

∑
j

∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ij,−ikM̌kl,−ijkR3kR4l

2

−max
i,j

Var (V1iv2j)
∑
j

∑
i̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ij,−ikM̌kl,−ijkR3kR4l

2

.

Now, we turn back to the R2k expression to complete the proof:

n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2k (R3jR4l +R3jv4l + v3jR4l + v3jv4l) .
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Consider the term with three stochastic terms first, and simplify it using the same strategy as

before:

Var

 n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2kv3jv4l

 = Var

 n∑
i̸=j ̸=k

GijFijV1iv3jv4k
∑

l ̸=i,j,k

M̌il,−ijM̌jk,−ijlR2l


≤ max

i,j,k
Var (V1iv3jv4k)

( n∑
k ̸=j

∑
i ̸=k,j

∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

2

−
n∑

k ̸=j

∑
i ̸=k,j

 ∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

2)

+max
i,j,k

Var (V1iv3jv4k)
∑
k

∑
j ̸=k

∑
i ̸=k,j

∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

∑
i ̸=k,j

∑
l ̸=i,j,k

GikFikM̌il,−ikM̌kj,−iklR2l


−max

i,j,k
Var (V1iv3jv4k)

∑
k

∑
j ̸=k

∑
i̸=k,j

 ∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

 ∑
l ̸=i,j,k

GikFikM̌il,−ikM̌kj,−iklR2l


+max

i,j,k
Var (V1iv3jv4k) 3!

n∑
i ̸=j ̸=k

GijFij

∑
l ̸=i,j,k

M̌il,−ijM̌jk,−ijlR2l

2

.

Next,

Var

∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ik,−ijM̌jl,−ijkV1iR2kv3jR4l


≤ max

i,j
Var (V1iv3j)

n∑
i̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

2

+max
i,j

Var (V1iv3j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

GjiFji

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌jk,−ijM̌il,−ijkR2kR4l


+max

i,j
Var (V1iv3j)

∑
j

∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

2

−max
i,j

Var (V1iv3j)

n∑
j ̸=i

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

2

.
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Finally,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2kR3jR4l


=
∑
i

Var (V1i)

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ik,−ijM̌jl,−ijkR2kR3jR4l

2

.

Proof of Lemma 1.5. Proof of Lemma 1.5(a). Expand the term:

n∑
i ̸=j ̸=k

GijFikV1jV2kV3iV4i =
n∑

i ̸=j ̸=k

GijFikV3iV4i (R1jR2k + R1jv2k + v1jR2k + v1jv2k) .

With four stochastic objects,

V ar

(
n∑

i ̸=j ̸=k

GijFikV3iV4iv1jv2k

)
≤ max

i,j,k
Var (V3iV4iv1jv2k)

n∑
i ̸=j ̸=k

∑
i2 ̸=i,j,k

(GijFikGi2jFi2k + GijFikGi2kFi2j)

+ max
i,j,k

Var (V1iV2iv3jv4l) 3!
n∑

i ̸=j ̸=k

G2
ijF

2
ik.

Observe that, due to Assumption 1.3(a),

n∑
i ̸=j ̸=k ̸=l

GijFikGljFlk =
n∑

j ̸=k

(∑
i ̸=j,k

GijFik

)(∑
l ̸=j,k

GljFlk −GijFik

)

=
n∑

j ̸=k

(∑
i ̸=j,k

GijFik

)2

−
n∑

j ̸=k ̸=i

G2
ijF

2
ik
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has the required order, which suffices for the bound. Next,

Var

(
n∑

i ̸=j ̸=k

GijFikV3iV4iR1jv2k

)

= Var

(∑
i

∑
j ̸=i

FijV3iV4iv2j

(∑
k ̸=i,j

GikR1k

))

≤
∑
i

∑
j ̸=i

Var (V3iV4iv2j)

(∑
k ̸=i,j

FijGikR1k

)[∑
k ̸=i,j

FijGikR1k +
∑
k ̸=i,j

FjiGjkR1k

]

+ max
i,j

Var (V3iV4iv2j)
∑
i

∑
j ̸=i

∑
i2 ̸=i,j

(∑
k ̸=i,j

FijGikR1k

)(∑
k ̸=i2,l

Fi2jGi2kR1k

)

≤ max
i,j

Var (V3iV4iv2j)
∑
i

(∑
j ̸=i

∑
k ̸=i,j

FijGikR1k

)2

+
∑
i

∑
j ̸=i

Var (V3iV4iv2j)

(∑
k ̸=i,j

FijGikR1k

)(∑
k ̸=i,j

FjiGjkR1k

)
.

Similarly,

Var

(
n∑

i ̸=j ̸=k

GijFikV3iV4iv1jR2k

)
= Var

(∑
i

∑
j ̸=i

V3iV4iv1j

(∑
k ̸=i,j

GijFikR2k

))

≤ max
i,j

Var (V3iV4iv1j)
∑
i

(∑
j ̸=i

∑
k ̸=i,j

GijFikR2k

)2

+
∑
j ̸=i

(∑
k ̸=i,j

GijFikR2k

)(∑
k ̸=i,j

GjiFjkR2k

) .

Turning to the sum with two stochastic objects,

Var

(
n∑

i ̸=j ̸=k

GijFikV3iV4iR1jR2k

)
= Var

(∑
i

V3iV4i

(∑
j ̸=i

∑
k ̸=i,j

GijFikR1jR2k

))

≤ max
i

Var (V3iV4i)
∑
i

(∑
j ̸=i

∑
k ̸=i,j

GijFikR1jR2k

)2

.

Proof of Lemma 1.5(b).
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Decompose the term:

n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV1jV2kV3iV4l

=
n∑

i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1j (R2kR4l + R2kv4l + v2kR4l + v2kv4l)

+
n∑

i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1j (R2kR4l + R2kv4l + v2kR4l + v2kv4l) .

Consider the v1j line first.

Var

(
n∑

i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jv2kv4l

)
≤ max

i,j,k,l
Var (V3iv1jv2kv4l) 4!

n∑
i ̸=j ̸=k ̸=l

G2
ijF

2
ikM̌

2
il,−ijk.

Next, by using the same expansion and simplification steps as before,

Var

(
n∑

i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jv2kR4l

)
= Var

(
n∑

i ̸=j ̸=k

GijFikV3iv1jv2k
∑
l ̸=i,j,k

M̌il,−ijkR4l

)

≤ max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

(∑
i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

)2

−
∑
i ̸=j,k

(∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

)2


+ max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

(∑
i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

)(∑
i ̸=j,k

∑
l ̸=i,j,k

GikFijM̌il,−ijkR4l

)

− max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

∑
i ̸=j,k

(∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

)(∑
l ̸=i,j,k

GikFijM̌il,−ijkR4l

)

+ max
i,j,k

Var (V3iv1jv2k) 3!
n∑

i ̸=j ̸=k

G2
ijF

2
ik

(∑
l ̸=i,j,k

M̌il,−ijkR4l

)2
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and

Var

(
n∑

i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jR2kv4l

)
= Var

(
n∑

i ̸=j ̸=k

GijFikV3iv1jv4k
∑
l ̸=i,j,k

M̌ik,−ijlR2l

)

≤ max
i,j,k

Var (V3iv1jv4k)
∑
k

∑
j ̸=k

(∑
i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

)2

−
∑
i ̸=j,k

(∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

)2


+ max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

(∑
i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

)(∑
i ̸=j,k

∑
l ̸=i,j,k

GikFijM̌il,−ijkR2l

)

− max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

∑
i ̸=j,k

(∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

)(∑
l ̸=i,j,k

GikFijM̌il,−ijkR2l

)

+ max
i,j,k

Var (V3iv1jv4k) 3!
n∑

i ̸=j ̸=k

G2
ijF

2
ik

(∑
l ̸=i,j,k

M̌ik,−ijlR2l

)2

with
(∑

l ̸=i,j,k M̌ik,−ijlR2l

)2
≤ C. Finally,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jR2kR4l

 = Var

 n∑
i ̸=j

GijV3iv1j
∑
k ̸=i,j

∑
l ̸=i,j,k

FikM̌il,−ijkR2kR4l


≤ max

i,j
Var (V3iv1j)

n∑
i ̸=j

Gij

∑
k ̸=i,j

∑
l ̸=i,j,k

FikM̌il,−ijkR2kR4l

2

+max
i,j

Var (V3iv1j)

n∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR2kR4l

∑
k ̸=i,j

∑
l ̸=i,j,k

GjiFjkM̌jl,−ijkR2kR4l


+max

i,j
Var (V3iv1j)

∑
j


∑

i̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR2kR4l

2

−
∑
i̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR2kR4l

2
 .
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Now, return to theR1j line:
∑n

i ̸=j ̸=k ̸=l GijFikM̌il,−ijkV3iR1j (R2kR4l +R2kv4l + v2kR4l + v2kv4l),

so

Var

 n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1jv2kv4l

 = Var

 n∑
i ̸=j ̸=k

GilFikV3iv2kv4j
∑

l ̸=i,j,k

M̌ij,−ilkR1l


≤ max

i,j,k
Var (V3iv2kv4j)

∑
j

∑
k ̸=j

∑
i ̸=j,k

∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

2

−
∑
j

∑
k ̸=j

∑
i ̸=j,k

 ∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

2


+max
i,j,k

Var (V3iv2kv4j)
∑
j

∑
k ̸=j

∑
i ̸=j,k

∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

∑
i̸=j,k

∑
l ̸=i,j,k

GilFijM̌ik,−iljR1l


−max

i,j,k
Var (V3iv2kv4j)

∑
j

∑
k ̸=j

∑
i̸=j,k

 ∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

 ∑
l ̸=i,j,k

GilFijM̌ik,−iljR1l


+max

i,j,k
Var (V3iv2kv4j) 3!

n∑
i ̸=j ̸=k

Fik

∑
l ̸=i,j,k

GilM̌ij,−ilkR1l

2

,

and

Var

 n∑
i̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1jv2kR4l

 = Var

 n∑
i ̸=j

FijV3iv2j
∑
k ̸=i,j

∑
l ̸=i,j,k

GikM̌il,−ijkR1kR4l


≤ max

i,j
Var (V3iv2j)

n∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

2

+max
i,j

Var (V3iv2j)

n∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGjkM̌jl,−ijkR1kR4l


+max

i,j
Var (V3iv2j)

∑
j


∑

i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

2

−
∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

2
 .

The
∑n

i ̸=j ̸=k ̸=l GijFikM̌il,−ijkV3iR1jR2kv4l term is symmetric, because it does not matter which

Rm we use. Finally,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1jR2kR4l

 =
∑
i

Var (V3i)

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR1jR2kR4l

2

.
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Proof of Lemma 1.6. The proof of Lemma 1.6 is entirely analogous to Lemmas 1.4 and 1.5

just that Gji is used in place of Gij.

1.C.6 Proofs for Appendix 1.C

Proofs for Propositions in Appendix 1.C

Proof of Proposition 1.2. Let

 ΠY

Π

 :=

 (Z ′Z)1/2 πY

(Z ′Z)1/2 π

 .

With this definition, (π′
YZ

′ZπY , π
′Z ′ZπY , π

′Z ′Zπ) = (Π′
Y ΠY ,Π

′
Y Π,Π′Π), and

 s1

s2

 ∼ N


 ΠY

Π

 ,Ω ⊗ IK

 .

Split s1 and s2 into the Π component and a random normal component: s1k = ΠY k + z1k

and s2k = Πk + z2k. Then, for all k,

 z1k

z2k

 ∼ N


 0

0

 ,

 ωζζ ωζη

ωζη ωηη


 , and
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
s′1s1

s′1s2

s′2s2

 =


∑

k s
2
1k∑

k s1ks2k∑
k s

2
2k

 =


∑

k (ΠY k + z1k)2∑
k (ΠY k + z1k) (Πk + z2k)∑

k (Πk + z2k)2



=


∑

k Π2
Y k + 2

∑
k ΠY kz1k +

∑
k z

2
1k∑

k ΠY kΠk +
∑

k ΠY kz2k +
∑

k Πkz1k +
∑

k z1kz2k∑
k Π2

k + 2
∑

k Πkz2k +
∑

k z
2
2k

 .

Under the assumption, Π′Π/
√
K → CS, so 1√

K

∑
k Π2

k → CS. By applying the Lindeberg

CLT due to bounded moments,

1√
K



∑
k Πkz1k∑
k ΠY kz1k∑
k ΠY kz2k∑
k Πkz2k∑
k z1kz2k∑
k z

2
2k∑

k z
2
1k



a∼ N





0

0

0

0
√
Kωζη

√
Kωηη

√
Kωζζ



, V



,
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where V is some variance matrix. By assumption, 1√
K

∑
k ΠY kΠk → CY and 1√

K

∑
k Π2

Y k →

CY Y , so

1√
K


s′1s1

s′1s2

s′2s2

 =
1√
K


∑

k Π2
Y k + 2

∑
k ΠY kz1k +

∑
k z

2
1k∑

k ΠY kΠk +
∑

k ΠY kz2k +
∑

k Πkz1k +
∑

k z1kz2k∑
k Π2

k + 2
∑

k Πkz2k +
∑

k z
2
2k



a∼


CY Y

CY

C

+ A
1√
K



∑
k Πkz1k∑
k ΠY kz1k∑
k ΠY kz2k∑
k Πkz2k∑
k z1kz2k∑
k z

2
2k∑

k z
2
1k



, where

A =


0 2 0 0 0 0 1

1 0 1 0 1 0 0

0 0 0 2 0 1 0

 .

This means:

1√
K


s′1s1

s′1s2

s′2s2

 a∼ N




CY Y +
√
Kωζζ

CY +
√
Kωζη

C +
√
Kωηη

 , AV A′

 .

Let Σ = AV A′ to obtain the result as stated. To derive Σ explicitly, I derive V by

applying the Isserlis’ Theroem. As a special case of the Isserlis’ Theorem for X’s that are

multivariate normal and mean zero,

E [X1X2X3X4] = E [X1X2]E [X3X4] + E [X1X3]E [X2X4] + E [X1X4]E [X2X3] .
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Another corrolary is that if n is odd, then there is no such pairing, so the moment is

always zero. Hence,

E
[
z21kz

2
2k

]
= E

[
z21k
]
E
[
z22k
]

+ 2E [z1kz2k]E [z1kz2k] = ωζζωηη + 2ω2
ζη, and

Var (z1kz2k) = ωζζωηη + ω2
ζη.

Similarly,

Var
(
z22k
)

= E
[
z42k
]
− ω2

ηη = 3ω2
ηη − ω2

ηη = 2ω2
ηη,

Cov (z1k, z1kz2k) = E
[
z21kz2k

]
− E [z1k]E [z1kz2k] = 0,

Cov
(
z21k, z1kz2k

)
= E

[
z31kz2k

]
− E

[
z21k
]
E [z1kz2k]

= 3ωζηωζζ − ωζζωζη = 2ωζηωζζ ,

Cov
(
z21k, z

2
2k

)
= E

[
z21kz

2
2k

]
− ωζζωηη = 2ω2

ζη, and

V =

 V11 0

0 V22

 , where

V11 =



1
K

∑
k Π2

kωζζ
1
K

∑
k ΠkΠY kωζζ

1
K

∑
k ΠkΠY kωζη

1
K

∑
k Π2

kωζη

. 1
K

∑
k Π2

Y kωζζ
1
K

∑
k Π2

Y kωζη
1
K

∑
k ΠkΠY kωζη

. . 1
K

∑
k Π2

Y kωηη
1
K

∑
k ΠkΠY kωηη

. . . 1
K

∑
k Π2

kωηη


,

V22 =


ωζζωηη + ω2

ζη 2ωζηωηη 2ωζηωζζ

. 2ω2
ηη 2ω2

ζη

. . 2ω2
ζζ

 .
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If 1
K

∑
k Π2

k → 0, 1
K

∑
k ΠkΠY k → 0, 1

K

∑
k Π2

Y k → 0 under weak identification, then we

obtain the Σ expression stated in the proposition.

Proof of Proposition 1.3. Use nQ
q and nW

w to denote the number of observations in the in-

strument and covariate groups respectively, so

µ3 =
∑
i

∑
j ̸=i

GijRiRj =
∑
q

nQ
q

nQ
q − 1

∑
i∈NQ

q

∑
j∈NQ

q ,j ̸=i

1

nQ
q

RiRj −
∑
w

nW
w

nW
w − 1

∑
i∈NW

w

∑
j∈NW

w ,j ̸=i

1

nW
w

RiRj

=
∑
q

1

nQ
q − 1

∑
i∈NQ

q

∑
j∈NQ

q ,j ̸=i

RiRj −
∑
w

1

nW
w − 1

∑
i∈NW

w

∑
j∈NW

w ,j ̸=i

RiRj

=
∑
w

 ∑
q∈Mw

1

nQ
q − 1

∑
i∈NQ

q

∑
j∈NQ

q ,j ̸=i

RiRj −
1

nW
w − 1

∑
i∈NW

w

∑
j∈NW

w ,j ̸=i

RiRj


=
∑
w

 ∑
q∈Mw

nQ
q

(
nQ
q − 1

)
nQ
q − 1

(πq + γw)2 − 1

nW
w − 1

∑
i∈NW

w

∑
j∈NW

w ,j ̸=i

RiRj

 .

Considering the second term,

∑
i∈NW

w

∑
j∈NW

w ,j ̸=i

RiRj =
∑
i∈NW

w

∑
j∈NW

w ,j ̸=i

(
πq(i) + γw

) (
πq(j) + γw

)
=
∑

q∈Mw

∑
i∈Nq

∑
j∈NW

w ,j ̸=i

(
πq(i) + γw

) (
πq(j) + γw

)
=
∑

q∈Mw

nQ
q

(
nQ
q − 1

)
(πq + γw)2 +

∑
q∈Mw

∑
i∈Nq

∑
j∈NW

w ,j ̸=i

(
πq(i) + γw

) (
πq(j) + γw

)
=
∑

q∈Mw

nQ
q

(
nQ
q − 1

)
(πq + γw)2 +

∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw) (πq′ + γw) .

Since

∑
q∈Mw

nQ
q (πq + γw)2 − 1

nW
w − 1

∑
q∈Mw

nQ
q

(
nQ
q − 1

)
(πq + γw)2 =

∑
q∈Mw

nQ
q

(
nW
w − nQ

q

nW
w − 1

)
(πq + γw)2 ,
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and nW
w =

∑
q∈Mw

nQ
q , we obtain

µ3 =
∑
w

( ∑
q∈Mw

nQ
q

(
nW
w − nQ

q

nW
w − 1

)
(πq + γw)2 − 1

nW
w − 1

∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw) (πq′ + γw)

)

=
∑
w

1

nW
w − 1

( ∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw)2 −

∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw) (πq′ + γw)

)

=
∑
w

1

nW
w − 1

( ∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw) (πq − πq′)

)
.

Then, observe that

∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γ) (πq − πq′)

=
∑

q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πq + γ) (πq − πq′) +

∑
q∈Mw

∑
q′∈Mw,q′>q

nQ
q n

Q
q′ (πq + γ) (πq − πq′)

=
∑

q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πq + γ) (πq − πq′) −

∑
q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πq′ + γ) (πq − πq′)

=
∑

q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πq − πq′) (πq + γ − πq′ − γ) =

∑
q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πq − πq′)

2 ,

where the second equality switches the indices of q and q′ in the second element. Hence,

µ3 =
∑
w

1

nW
w − 1

( ∑
q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πq − πq′)

2

)
≥ 0.
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Analogously,

µ2 =
∑
w

 ∑
q∈Mw

1

nQ
q − 1

∑
i∈NQ

q

∑
j∈NQ

q ,j ̸=i

RiRY j −
1

nW
w − 1

∑
i∈NW

w

∑
j∈NW

w ,j ̸=i

RiRY j


=
∑
w

( ∑
q∈Mw

nQ
q (πq + γw) (πY q + γw) − 1

nW
w − 1

∑
q∈Mw

nQ
q

(
nQ
q − 1

)
(πq + γw) (πY q + γw)

)

−
∑
w

1

nW
w − 1

∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw) (πY q′ + γw)

=
∑
w

( ∑
q∈Mw

nQ
q

(
nW
w − nQ

q

nW
w − 1

)
(πq + γw) (πY q + γw)

− 1

nW
w − 1

∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw) (πY q′ + γw)

)

=
∑
w

1

nW
w − 1

( ∑
q∈Mw

∑
q′∈Mw,q′ ̸=q

nQ
q n

Q
q′ (πq + γw) (πY q − πY q′)

)

=
∑
w

1

nW
w − 1

( ∑
q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πq − πq′) (πY q − πY q′)

)
,

and

µ1 =
∑
w

1

nW
w − 1

( ∑
q∈Mw

∑
q′∈Mw,q′<q

nQ
q n

Q
q′ (πY q − πY q′)

2

)
≥ 0.

Proof of Proposition 1.4. Fix any alternative
(
πA, πA

Y

)
∈ S with a corresponding

(
µA
1 , µ

A
2 , µ

A
3

)
.

Due to the restriction in S,


µH
1

µH
2

µH
3

 =


µA
1 − σ12

σ22
µA
2

0

µA
3 − σ23

σ22
µA
2


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is in the null space. The Neyman-Pearson test for µH against µA rejects large values of:

log
dN
(
µA,Σ

)
dN (µH ,Σ)

=
µA
2

σ22

X2 −
1

2

(
µA
2

)2
σ22

.

Hence, the most powerful test rejects large values of X2, which is what LM does. By

Lehmann and Romano (2005) Theorem 3.8.1(i), since LM is valid for any distribution in the

null space (by Theorem 1.1) and it is most powerful for some distribution in the null space,

LM is most powerful for testing the composite null against the given alternative
(
πA, πA

Y

)
.

Proof of Proposition 1.5. The first two are straightforward: CS = µ3/ (c− 1) and β = µ2/µ3

imply µ3 = (c− 1)CS and µ2 = (c− 1)CSβ. For µ1, observe that:

h =

√
1√
K

1

c− 1

(
µ1 −

µ2
2

µ3

)
=

√
1√
K

(µ1 − CSβ2), and

CH =
√
Kh2 = µ1/ (c− 1) − CSβ

2, so

(c− 1)
(
CSβ

2 + CH

)
= (c− 1)

(
CSβ

2 + µ1/ (c− 1) − CSβ
2
)

= µ1

as required. Next, since σvv =
√

σ33c
2(c−1)

, σ33 = 2 c−1
c
σ2
vv is immediate. Similarly, with σεv =

1
σvv

(
σ23c

2(c−1)
− σ2

vvβ
)

, σ23 = 2 c−1
c
σvv (σvvβ + σεv). From these two expressions, we can observe

that:

(σvvβ + σεv)
2 =

c

2 (c− 1)

σ2
23

σ33

.

To obtain an expression for σ22, rearrange σεε = 1
σvv

c
c−1

(
σ22 − σ2

23

σ33

)
+ σ2

εv

σvv
≥ 0:

σ22 =
σ2
23

σ33

+
c− 1

c

(
σεεσvv − σ2

εv

)
=

c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)

+ (σvvβ + σεv)
2)+ o(1),
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where the final step uses σξξ = h/σvv. This expression for σ22 is of the form required in

Lemma 1.8. Then,

det (ΣSF ) = σεεσξξσvv − σεεh
2 − σ2

εξσvv + 2σεξσεvh− σξξσ
2
εv

= σεεσξξσvv − σεεh
2 − σξξσ

2
εv = σεεh− σεεh

2 − h
σ2
εv

σvv

; and

det (ΣSF ) /h = σεε −
σ2
εv

σvv

− σεεh = σεε −
σ2
εv

σvv

+ o(1).

An analogous argument holds for σξvk = −h. From the σ22 equation, σεε − σ2
εv

σvv
=

c
c−1

(
σ22 − σ2

23

σ33

)
≥ 0, which delivers the result that det (ΣSF ) /h → CD ≥ 0.

Proof of Proposition 1.6. The A expressions can be written as:

A1 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGikXk

(
YiYl −XiYlβ0 − YiXlβ0 + XiXlβ

2
0

)
;

A2 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGkiXl

(
YiYk −XiYkβ0 − YiXkβ0 + XiXkβ

2
0

)
;

A3 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkXlGjiGkiXi

(
YjYk −XjYkβ0 − YjXkβ0 + XjXkβ

2
0

)
;

A4 = −
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌jl,−ijkM̌ik,−ijG
2
jiXiXk

(
YjYl −XjYlβ0 − YjXlβ0 + XjXlβ

2
0

)
; and

A5 = −
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌ik,−ijM̌jl,−ijkGijGjiXkXl

(
YiYj −XiYjβ0 − YiXjβ0 + XiXjβ

2
0

)
.

Since these terms have a quadratic form, the variance estimator is also quadratic in β0,

i.e.,

V̂LM = B0 + B1β0 + B2β
2
0 ,
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where the B’s can be worked out by collecting the expressions above. For instance,

B0 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGikXkYiYl + 2
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGkiXlYiYk

+
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkXlGjiGkiXiYjYk

−
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌jl,−ijkM̌ik,−ijG
2
jiXiXkYjYl −

∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌ik,−ijM̌jl,−ijkGijGjiXkXlYiYj

B1 and B2 are analogous by collecting the coefficients on β0, β
2
0 from expressions A1 to A5.

The test does not reject:

(KTY X −KTXXβ0)
2

B0 + B1β0 + B2β2
0

≤ q ⇔
(
KT 2

XX − qB2

)
β2
0 − (2KTY XTXX + qB1) β0 +

(
KT 2

Y X − qB0

)
≤ 0.

Solutions exist when:

D := (2KTY XTXX + qB1)
2 − 4

(
KT 2

XX − qB2

) (
KT 2

Y X − qB0

)
≥ 0.

The rest of the lemma is immediate from properties of solving quadratic inequalities.

Proofs for Lemmas in Appendix 1.C

Proof of Lemma 1.7. The joint distribution of (Y ′, X ′)′ is:

 Y

X

 ∼ N


 ZπY

Zπ

 ,

 Inωζζ Inωζη

Inωζη Inωηη


 .
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Stack them together with their predicted values PY = Z (Z ′Z)−1 Z ′Y and PX =

Z (Z ′Z)−1 Z ′X:



Y

X

P ′Y

P ′X


∼ N





ZπY

Zπ

ZπY

Zπ


,



Inωζζ Inωζη ωζζP
′ ωζηP

′

Inωζη Inωηη ωζηP
′ ωηηP

′

ωζζP
′ ωζηP

′ ωζζP
′ ωζηP

′

ωζηP
′ ωηηP

′ ωζηP
′ ωηηP

′




.

Then, the conditional normal distribution is:

 Y

X

 |

 Z (Z ′Z)−1 Z ′Y

Z (Z ′Z)−1 Z ′X

 ∼ N


 ZπY

Zπ

+

 Z (Z ′Z)−1 Z ′Y − ZπY

Z (Z ′Z)−1 Z ′X − Zπ

 , V


= N


 Z (Z ′Z)−1 Z ′Y

Z (Z ′Z)−1 Z ′X

 , V

 = N


 PY

PX

 , V


Hence, PX and PY (i.e, Z ′X, Z ′Y ) are sufficient statistics for πY , π.

To show that (s′1s1, s
′
1s2, s

′
2s2) is a maximal invariant, let F be some conformable or-

thogonal matrix so F ′F = I. For invariance, let s∗1 = Fs1. Then, s∗′1 s
∗
1 = s′1F

′Fs1 = s′1s1.

Invariance of (s′1s2, s
′
2s2) is analogous. Maximality states that if s∗′1 s

∗
1 = s′1s1, then s∗1 = Fs1

for some F . Suppose not. This means s∗1 = Gs1, and G is not an orthogonal matrix but yet

s∗′1 s
∗
1 = s′1s1. Since G is not an orthogonal matrix, G′G ̸= I. Hence, s∗′1 s

∗
1 = s′1G

′Gs1 ̸= s′1s1,

a contradiction. To obtain the distribution,

 s1

s2

 =

 (Z ′Z)−1/2 Z ′ (ZπY + ζ)

(Z ′Z)−1/2 Z ′ (Zπ + η)

 =

 (Z ′Z)1/2 πY

(Z ′Z)1/2 π

+

 (Z ′Z)−1/2 Z ′ζ

(Z ′Z)−1/2 Z ′η

 .
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Since Var
(

(Z ′Z)−1/2 Z ′η
)

= (Z ′Z)−1/2 Z ′ωηηZ (Z ′Z)−1/2 = IKωηη,

 s1

s2

 ∼ N


 (Z ′Z)1/2 πY

(Z ′Z)1/2 π

 ,Ω ⊗ IK

 .

Proof of Lemma 1.8. I work out the µ’s first. Using the judge structure,
∑

i M
2
ii =∑

k
(c−1)2

c
,
∑

i

∑
j ̸=i Pij =

∑
k

c−1
c

. We have also chosen πk, σξvk such that
∑

k πk =

0,
∑

k σξvk = 0,
∑

k πkσξvk = 0. Then, we get the result for means:


µ1

µ2

µ3

 =


1√
K

∑
k (c− 1)

(
π2
kβ

2 + 2πkβσξvk + σ2
ξvk

)
1√
K

∑
k (c− 1) (π2

kβ + πkσξvk)

1√
K

∑
k (c− 1) π2

k

 =


√
K (c− 1) (s2β2 + h2)
√
K (c− 1) s2β

√
K (c− 1) s2

 .
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Using a derivation similar to that of the lemma for VLM expression,

Kσ22 =
∑
i

∑
j ̸=i

∑
k ̸=i

(
GjiGkiE

[
ζ2i
]
RjRk + 2GijGkiE [ηiζi]RY jRk + GijGikE

[
η2i
]
RY jRY k

)
+
∑
i

∑
j ̸=i

(
G2

ijE
[
η2i
]
E
[
ζ2j
]

+ GijGjiE [ηiζi]E [ηjζj]
)

;

Kσ11 =
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
ζ2i
]
RY jRY k (GjiGki + 2GijGki + GijGik)

+
∑
i

∑
j ̸=i

E
[
ζ2i
]
E
[
ζ2j
] (

G2
ij + GijGji

)
;

Kσ33 =
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
η2i
]
RjRk (GjiGki + 2GijGki + GijGik)

+
∑
i

∑
j ̸=i

E
[
η2i
]
E
[
η2j
] (

G2
ij + GijGji

)
;

Kσ12 =
∑
i

∑
j ̸=i

∑
k ̸=i

(
GjiGkiE

[
ζ2i
]
RjRY k + 2GijGkiE

[
ζ2i
]
RY jRk + GijGikE [ηiζi]RY jRY k

)
+
∑
i

∑
j ̸=i

E [ηiζi]E
[
ζ2j
] (

G2
ij + GijGji

)
;

Kσ23 =
∑
i

∑
j ̸=i

∑
k ̸=i

(
GjiGkiE

[
η2i
]
RY jRk + 2GijGkiE

[
η2i
]
RjRY k + GijGikE [ηiζi]RjRk

)
+
∑
i

∑
j ̸=i

E [ηiζi]E
[
η2j
] (

G2
ij + GijGji

)
; and

Kσ13 =
∑
i

∑
j ̸=i

∑
k ̸=i

E [ηiζi]RY jRk (GjiGki + 2GijGki + GijGik)

+
∑
i

∑
j ̸=i

E [ηiζi]E [ηjζj]
(
G2

ij + GijGji

)
.

The equalities hold regardless of whether identification is strong or weak and whether

heterogeneity converges or not. Without covariates, G = P is symmetric and the above

expressions simplify. For instance,

Kσ22 =
∑
k

(c− 1)2

c

(
ωζζkπ

2
k + 2ωζηkπkπY k + ωηηkπ

2
Y k

)
+
∑
k

c− 1

c

(
ωηηkωζζk + ω2

ζηk

)
.
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Evaluate the terms in the expression. For higher moments of πk,
∑

k π
2
k = Ks2,

∑
k π

3
k =

0, and
∑

k π
4
k = Ks4. Similarly,

∑
k π

3
kσξv = 0. Treating the heterogeneity in the same way,∑

k σ
2
ξv = Kh2. Then,

∑
k

ωζζkπ
2
k =

∑
k

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε − σ2

ξvk + σvvβ
2 + σvvσξξ + 2σ2

ξvk + 2σεvβ
)
π2
k

= s2K
(
s2σξξ + σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)

; and∑
k

ωζηkπkπY k =
∑
k

(πkσξvk + σvvβ + σεv) πk (πkβ + σξvk)

=
∑
k

(
σvvβ

2π2
k + σεvπ

2
kβ + π2

kσ
2
ξvk

)
= s2K

(
σvvβ

2 + σεvβ + h2
)
.

Now, for the P 2
ij part,

∑
k

ωηηkωζζk =
∑
k

σvv

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε − σ2

ξvk + σvvβ
2 + σvvσξξ + 2σ2

ξvk + 2σεvβ
)

=
∑
k

σvv

(
π2
kσξξ + σεε − σ2

ξvk + σvvβ
2 + σvvσξξ + 2σ2

ξvk + 2σεvβ
)

= Kσvv

(
s2σξξ + σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)

; and∑
k

ω2
ζηk =

∑
k

(πkσξvkπkσξvk + σvvβπkσξvk + σεvπkσξvk + πkσξvkσvvβ + σvvβσvvβ + σεvσvvβ)

+
∑
k

(
πkσξvkσεv + σvvβσεv + σ2

εv

)
=
∑
k

(
π2
kσ

2
ξvk + σ2

vvβ
2 + σεvσvvβ + σvvβσεv + σ2

εv

)
= K

(
s2h2 + (σvvβ + σεv)

2) .
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Combine the expressions for σ22 and impose asymptotics where s → 0 and h → 0:

σ22 =
1

K

∑
k

(c− 1)2

c
h2

+
1

K

∑
k

c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)

+ (σvvβ + σεv)
2)+ o(1)

=
c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)

+ (σvvβ + σεv)
2)+ o(1).

Next, evaluate a few more sums that feature in the other σ expressions:

∑
k

ωζζπ
2
Y k =

∑
k

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)
(
π2
kβ

2 + 2πkσξvk + σ2
ξv

)
1

K

∑
k

ωζζπ
2
Y k =

1

K

∑
k

σ2
ξv

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)
= h2

(
σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)

= o(1);

1

K

∑
k

ω2
ζζ =

1

K

∑
k

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)2
=

1

K

∑
k

(
σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)2
=
(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)2

;

1

K

∑
k

ωζηπ
2
Y k =

1

K

∑
k

(πkσξvk + σvvβ + σεv)
(
π2
kβ

2 + 2πkσξvk + σ2
ξv

)
= h2 (σvvβ + σεv) = o(1); and

1

K

∑
k

ωζηωζζ =
1

K

∑
k

(πkσξvk + σvvβ + σεv)

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)
=

1

K

∑
k

(σvvβ + σεv)
(
σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)
= (σvvβ + σεv)

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)

+ o(1).
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Using these results,

σ22 =
c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)

+ (σvvβ + σεv)
2)+ o(1);

σ11 = 2
c− 1

c

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)2

+ o(1);

σ33 = 2
c− 1

c
σ2
vv + o(1);

σ12 = 2
c− 1

c
(σvvβ + σεv)

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)

+ o(1);

σ23 = 2
c− 1

c
σvv (σvvβ + σεv) + o(1); and

σ13 = 2
c− 1

c
(σvvβ + σεv)

2 + o(1).

Hence, σ13 = σ2
23/σ33 + o(1) is immediate. Further, for σ12,

2
σ23

σ33

(
σ22 −

σ2
23

2σ33

)
= 2

σvvβ + σεv

σvv

(
σ22 −

(
2 c−1

c
σvv (σvvβ + σεv)

)2
2 × 2 c−1

c
σ2
vv

)
+ o(1)

= 2
c− 1

c
(σvvβ + σεv)

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)

+ o(1) = σ12 + o(1).

Finally, the σ11 can be obtained:

4

σ33

(
σ22 −

σ2
23

2σ33

)2

=
2

c−1
c
σ2
vv

(
c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)))2

+ o(1)

= 2
c− 1

c

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)2

+ o(1) = σ11 + o(1).

Derivations for Simulations

Derivation for continuous setup without covariates.

This subsection derives expressions for objects in the reduced-form model. Comparing

the first-stage equations, ηi = vi. As a corollary, for all i, E [η2i ] = σvv. Then, ζi =
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Z ′
i (πβi − πY ) + viβi + εi. Define πY using E [ζi] = 0 and E [viβi] = E [vi (β + ξi)] = σξvk(i),

which implies πY k = πkβ + σξvk. Hence, we can rewrite ζi as:

ζi = πk(i)ξi − σξvk(i) + viβ + viξi + εi.

By substituting the expression for ζi, the covariance is E [ηiζi | k] = πkσξvk + σvvβ +

E [v2i ξi] + σεv. By Isserlis’ theorem, E [v2i ξi] = 0, so E [ηiζi | k] = πkσξvk + σvvβ + σεv.

The variance of ζi can be derived analogously. Since E [v2i β
2
i ] = σvvβ

2 + σvvσξξ + 2σ2
ξvk by

applying Isserlis’ theorem, with ωηηk := E[η2i | k(i) = k], ωζηk := E[ζiηi | k(i) = k], and

ωζζk := E[ζ2i | k(i) = k], we obtain:

ωηηk = σ2
vv,

ωζηk = πkσξvk + σvvβ + σεv, and

ωζζk = π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σ2

ξvk + σvvβ
2 + σvvσξξ + 2σεvβ.

(1.25)

In this model, the local average treatment effect (LATE) of judge k relative to the base

judge 0 is:

LATEk =
πY k

πk

= β +
σξvk

πk

. (1.26)

Derivation for binary setup without covariates.

The reduced-form residuals are given by:

ηi | vi =


1 − πk

−πk

if

if

vi ≤ πk

vi > πk

, and ζi = πk(i)βi − πY k(i) + ηiβi + εi.

Imposing E [ζi] = 0, πY k(i) = πk(i)β + E [ηiβi], where E [ηiβi] = − (1 − s) (2p− 1)σξvk.

Hence,

πY k = πkβ − (1 − s) (2p− 1)σξvk.
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Due to the judge setup, the estimand is:

∑
k πY kπk∑

k π
2
k

=

∑
k (πkβ − (1 − s) (2p− 1)σξvk) πk∑

k π
2
k

= β

because
∑

k σξvkπk = 0 by construction.

Derivation for binary setup with covariates.

Consider the structural model:

Yi(x) = x(β + ξi) + w′γ + εi, and

Xi(z) = I {z′π + w′γ − vi ≥ 0} .

Let Nt denote the set of observations in state t. Then, using the G that corresponds to

UJIVE,

∑
i∈Nt

∑
j∈Nt\i

GijRY iRj =
∑
i∈Nt

∑
j∈Nt\i

Gij

(
πY k(i) + γt(i)

) (
πk(j) + γt(j)

)
=
∑
i∈Nt

∑
j∈Nt\i

Gij

(
πY k(i)πk(j) + γt(i)πk(j) + πY k(i)γt(j) + γt(i)γt(j)

)
=

1

1 − 1/5

∑
k∈{0,t}

5 × 4 × 1

5

(
πY kπk + γtπk + πY kγt + γ2

t

)
− 1

1 − 1/10

∑
i∈Nt

∑
j∈Nt\i

1

10

(
πY k(i)πk(j) + γtπk(j) + πY k(i)γt + γ2

t

)
=
∑

k∈{0,t}

5
(
πY kπk + γtπk + πY kγt + γ2

t

)
− 1

9

∑
k∈{0,t}

5 × 4
(
πY kπk + γY tπk + πY kγXt + γ2

t

)
− 1

9
5 × 5

(
πY tπ0 + γtπ0 + πY tγt + γ2

t

)
− 1

9
5 × 5

(
πY 0πt + γtπt + πY 0γt + γ2

t

)
= 5

(
5

9

)
(πY 0π0 + πY tπt − πY tπ0 − πY 0πt) .
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Using the result that πY k = πkβ − (1 − s) (2p− 1)σξvk,

∑
i∈Nt

∑
j∈Nt\i

GijRY iRj = 5

(
5

9

)
(πY 0π0 + πY tπt − πY tπ0 − πY 0πt) =

25

9
πY tπt.

Analogously,
∑

i∈Nt

∑
j∈Nt\iGijRiRj = 25

9
π2
t . Hence, as long as

∑
t σξvtπt = 0, which is

the case for the construction in the main text, we still recover β as our estimand:

∑
i

∑
j ̸=iGijRY iRj∑

i

∑
j ̸=iGijRiRj

=

∑
t πY tπt∑
t π

2
t

=

∑
t (πtβ − (1 − s) (2p− 1)σξvt) πt∑

t π
2
t

= β −
∑

t (1 − s) (2p− 1)σξvtπt∑
t π

2
t

= β,

regardless of γt.
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Derivations for Variance Estimands

Proof of Equation (1.19).

E
[
Ψ̂MO

]
= E

∑
i

∑
j ̸=i

Pij (Rj + ηj)

2

(R∆i + νi)
2
+
∑
i

∑
j ̸=i

P 2
ij (Ri + ηi) (R∆i + νi) (Rj + ηj) (R∆j + νj)


= E

∑
i


∑

j ̸=i

PijRj

2

+

∑
j ̸=i

Pijηj

2
 (R∆i + νi)

2


+ E

∑
i

∑
j ̸=i

P 2
ij (RiR∆i + ηiR∆i +Riνi + ηiνi) (RjR∆j + ηjR∆j +Rjνj + ηjνj)


=
∑
i

M2
iiR

2
i

(
R2

∆i + E
[
ν2i
])

+
∑
i

R2
∆iE


∑

j ̸=i

Pijηj

2
+

∑
i

E
[
ν2i
]
E


∑

j ̸=i

Pijηj

2


+
∑
i

∑
j ̸=i

P 2
ij (RiR∆i + E [ηiνi]) (RjR∆j + E [ηjνj ])

=
∑
i

M2
iiR

2
i

(
R2

∆i + E
[
ν2i
])

+
∑
i

∑
j ̸=i

P 2
ijE

[
η2j
(
R2

∆i + ν2i
)]

+
∑
i

∑
j ̸=i

P 2
ij (RiR∆i + E [ηiνi]) (RjR∆j + E [ηjνj ])

=
∑
i

M2
iiR

2
iR

2
∆i +

∑
i

M2
iiR

2
iE
[
ν2i
]
+
∑
i

∑
j ̸=i

P 2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

P 2
ijR

2
∆iE

[
η2j
]

+
∑
i

∑
j ̸=i

P 2
ij (RiR∆iRjR∆j + E [ηiνi]RjR∆j +RiR∆iE [ηjνj ] + E [ηiνi]E [ηjνj ])
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Chapter 2

Asymptotic Theory for Two-Way

Clustering1

2.1 Introduction

Clustering standard errors on multiple dimensions is common and attractive in applied econo-

metrics because it allows observations to be dependent whenever they share a cluster on any

dimension. Though more broadly applicable, a common instance of two-way clustering is

in linear regressions, where a researcher wants to do inference on the coefficient of interest

when the residual is two-way clustered. The variance estimator proposed by Cameron et

al. (2011) (henceforth CGM) has thus been widely applied to contexts with such two-way

dependence.2 For instance, Nunn and Wantchekon (2011) clustered on ethnic group and dis-

trict when studying the effect of slave trade on trust; Michalopoulos and Papaioannou (2013)

clustered on country and ethnolinguistic family when studying the effect of pre-colonial in-

stitutions on development; Jackson (2018) clustered on teacher and student when studying

the effect of the teacher on students’ skill; Neumark et al. (2019) clustered on resume and

1This chapter is published in the Journal of Econometrics (see Yap (2025)), and presented at the Econo-
metric Society European Meeting in 2023 (Barcelona).

2CGM has 3886 citations on Google Scholar at the time of writing.
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job ad when studying the effect of age on getting a call-back. The existing justification for

the asymptotic validity of the CGM estimator and other inference procedures in two-way

clustering (e.g., MacKinnon et al. (2021); Davezies et al. (2021); Menzel (2021)) relies on

separate exchangeability, which implies homogeneity of clusters, a restriction that is not

required in one-way clustering. This paper provides sufficient general conditions for valid

inference in two-way clustering by proving that, even with cluster heterogeneity, a central

limit theorem holds, and the CGM variance estimator is consistent.

An environment with two-way clustering permits dependence whenever observations

share at least one cluster. To fix ideas, consider Jackson (2018): observations of the same

student or of the same teacher are plausibly correlated, but two observations of different

students and different teachers are assumed to be independent.3 The CGM variance esti-

mator accommodates such dependence, and a subsequent literature provided a theoretical

basis for its validity: MacKinnon et al. (2021) obtained sufficient conditions for validity of

the CGM estimator in regression models; Davezies et al. (2021) obtained analogous results

for empirical processes. Menzel (2021) also showed the validity of a bootstrap procedure for

two-way clustering that is robust to asymptotic non-normalities.4 The theoretical basis for

inference thus far relies on separate exchangeability, the assumption that random variables

are exchangeable on either clustering dimension, though not necessarily both.

However, separate exchangeability implies identical marginal distributions. Separate ex-

changeability in the student-teacher example thus implies the random variables for all stu-

dents must be drawn from the same distribution, including students of different cohorts over

time. As Wooldridge (2010, p. 146) notes in the discussion of pooled data in his graduate

3This setting permits more general dependence structures than one-way clustering. If there is one-way
clustering by student, then two observations from different students are automatically independent. In two-
way clustering, two observations from different students are not necessarily independent because they may
share the same teacher.

4Menzel (2021) pointed out that a purely interactive data generating processes unique to two-way de-
pendence has an asymptotic distribution that is not normal. Section 2.2 will consider this process and show
how the assumptions of this paper rule it out.
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textbook, distributions of variables tend to change over time, so the identical distribution

assumption is not usually valid. In other examples, separate exchangeability implies that

countries (Michalopoulos and Papaioannou, 2013) and jobs (Neumark et al., 2019) are iden-

tically distributed. Applied researchers surely would want size to be controlled in such

heterogeneous environments, but the existing theories that rely on separate exchangeabil-

ity do not imply this result. Further, in linear regressions with regressor Xi and residual

ui, asymptotic theory is applied to Xiui. Separate exchangeability of the product implies

that the regressors must also be separately exchangeable, which is not plausible when the

regressors include a time trend, say.

In contrast, existing asymptotic theory on one-way clustering (e.g., Hansen and Lee

(2019); Djogbenou et al. (2019)) allows the distribution of the random variable to be het-

erogeneous over clusters. Since the only available conditions for the validity of two-way

clustering require separate exchangeability, the literature lacks conditions for two-way clus-

tering that generalize one-way clustering and permit heterogeneity over clusters. This paper

fills the gap, and thus justifies two-way clustering as a more robust version of one-way clus-

tering.

Example 2.1. To illustrate separate exchangeability, consider an additive random effects

model. Individual i who belongs to cluster g(i) on the G dimension and cluster h(i) on

the H dimension is characterized by a random variable Wi generated from Wi = αg(i) +

γh(i) + εi, where cluster-specific α1, . . . , αg, . . . , αG, γ1, . . . , γh, . . . , γH and individual-specific

ε1, . . . , εi, . . . , εn are mutually independent. If we assume separate exchangeability, then αg,

γh, and εi are iid.5 In contrast, under one-way cluster asymptotics, the cluster-specific error

αg need not be identically distributed. The general conditions provided in this paper permit

valid inference even when αg, γh, εi are not identically distributed in this model.

5To see this, for individuals i and j where g(i) ̸= g(j), h(i) = h(j) = h, separate exchangeability implies

αg(i) + γh + εi
d
= αg(j) + γh + εj . Since αg, γh and εi are independent, εi

d
= εj and αg

d
= αg′ .
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The main result is a central limit theorem for two-way clustering with heterogeneous

cluster sizes and distributions. This result is proven using Stein’s method. It adapts the

strategy from Ross (2011) Theorem 3.6: I first derive an upper bound on the distance between

the distribution of a pivotal statistic and the standard normal, then show that this distance

converges to zero asymptotically. This proof strategy hence yields intermediate results on

non-asymptotic Berry-Esseen type bounds that provide worst-case bounds on the quality

of approximation between the pivotal statistic and the standard normal, which may be of

independent interest. I apply the theorem to a simple setting of a linear regression, but

it is more broadly applicable to many other econometric procedures that exhibit a similar

clustering structure.

This paper contributes to the literature on multi-way clustering and Stein’s method.

This paper differs from the existing literature on multi-way clustering (e.g., MacKinnon

et al. (2021); Davezies et al. (2021); Menzel (2021); Chiang and Sasaki (2023); Chiang et

al. (2024)) in that it does not rely on separate exchangeability. Stein’s method has been

applied to other contexts such as two-way fixed effects (Verdier, 2020), spillover effects (e.g.,

Chin (2018), Leung (2022) and Braun and Verdier (2023)), and network formation (e.g.,

Chandrasekhar and Jackson (2016)). Unlike the aforementioned papers, this paper speaks

directly to multi-way clustering, and it makes a modification to the proof of Ross (2011)

Theorem 3.6 to obtain the result instead of applying the theorem directly.

2.2 Setting and Main Result

2.2.1 Setup

Consider a setup with two-way clustering on dimensions G and H for random vectors

{Wi}ni=1, where Wi := (Wi1,Wi2, · · · ,WiK)′ ∈ RK and i = 1, . . . , n is the unit of observation.

For example, G could denote states and H could denote industries. Clustering in more than
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two dimensions is possible, and derivations are entirely analogous. This section establishes

a central limit theorem (CLT) for
∑

i Wi, as n → ∞. Here and in the following, sums are

over (subsets of) {1, 2, . . . , n}. For C ∈ {G,H}, let NC
c denote the set of observations in

cluster c on dimension C — this setup partitions the sample on the C dimension.

Let g(i) and h(i) denote the cluster that observation i belongs to on the G and H dimen-

sions respectively. These cluster identities are nonstochastic and observed. Let NC
c := |NC

c |

denote the size of cluster c on dimension C ∈ {G,H} and Ngh := |NG
g ∩ NH

h |. These

cluster sizes are allowed to be heterogeneous in a way that will be formalized in the as-

sumptions below. Wi is assumed to be independent of the joint distribution of {Wj} for

j /∈ NG
g(i) ∪NH

h(i) =: Ni, i.e., when i and j do not share a cluster on either dimension. Hence,

Ni is the set of observations that are arbitrarily dependent with i. This environment is

stated as Assumption 2.1.

Assumption 2.1. With Ni = NG
g(i) ∪NH

h(i),

(a) Wi ⊥⊥ {Wj}j /∈Ni
for all i.

(b) For observations i, j and k ∈ Ni, l ∈ Nj and all nonstochastic µ ∈ RK, if j, l /∈

(Ni ∪Nk), then Cov(µ′WiW
′
kµ, µ

′WjW
′
lµ) = 0.

While the dependence structure is implicitly described in the setup of many clustering

papers (e.g., Hansen and Lee (2019); Menzel (2021)), Assumption 2.1 makes the dependence

structure explicit. Assumption 2.1(a) is a dissociation assumption similar to Definition 3.5

of Ross (2011) required to apply Stein’s method. Assumption 2.1(b) is required because, for

a scalar Wi, a crucial step of the proof requires E[WiWjWkWl] = E[WiWk]E[WjWl] when

j, l do not share any cluster with i, k. Even when Wi ⊥⊥ (Wj,Wl) and Wk ⊥⊥ (Wj,Wl), we

cannot conclude that E[WiWjWkWl] = E[WiWk]E[WjWl] in general, because independence

of marginal distributions does not imply independence of the joint distribution. Assumption

2.1(b) hence makes an assumption on the joint distribution. It can alternatively be stated

as (Wi,Wk) ⊥⊥ (Wj,Wl), which is stronger but more interpretable than the zero-covariance
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assumption. I further discuss the relationship between Assumption 2.1 and the existing

literature in Section 2.2.3.

Assumption 2.1 is agnostic about the dependence structure between Wi and Wj when i

and j share at least one cluster. It also allows the data generating process to be arbitrarily

heterogeneous across different clusters, mimicking the heterogeneity permitted in one-way

clustering (e.g., Hansen and Lee (2019); Djogbenou et al. (2019)). Since one-way clustering

is a special case of two-way clustering where the H cluster consists of single observations,

the result here generalizes the existing results in one-way clustering. In contrast, the existing

literature on two-way clustering assumes separate exchangeability that additionally imposes

identical distribution over clusters, so it does not generalize the results on one-way clustering.

For positive definite matrix Q, let λmin(Q) denote the smallest eigenvalue of Q. Then, let

Qn := V ar (
∑

i Wi) denote the variance of the sum and λn := λmin(Qn) denote its smallest

eigenvalue. For example, when K = 1, Wi is a scalar and λn = Qn = V ar(
∑

i Wi). K0 is

used throughout the paper to denote an arbitrary constant.

Assumption 2.2. For C ∈ {G,H}, and k ∈ {1, 2, · · · , K}, there exists K0 < ∞ such that:

(a) E[W 4
ik] ≤ K0 for all i.

(b) 1
λn

maxc(N
C
c )2 → 0.

(c) 1
λn

∑
c(N

C
c )2 ≤ K0.

Since the objective of this paper is to prove a CLT, Assumption 2.2 imposes restrictions

that rule out data generating processes that are asymptotically non-Gaussian. One such

example is explained later in Remark 2.1. Nonetheless, as reflected in Table 1 of Chiang

and Sasaki (2023), such a non-Gaussian regime is an exception rather than the norm when

considering a generic separately exchangeable process.

Assumption 2.2(a) requires the fourth moment to be bounded, which is stronger than

the moment condition in one-way clustering (e.g., Equation (7) of Hansen and Lee (2019)
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and Assumption 1 of Djogbenou et al. (2019)). The proof in one-way clustering usually ver-

ifies a Lindeberg condition then applies the Lindeberg CLT because blocks of observations

are independent of each other. With two-way dependence, we no longer have independent

blocks because each cluster can have observations that are dependent on observations from

a different cluster when these observations share a cluster on a different dimension. Hence,

a different proof strategy is required. The proof in this paper uses Stein’s method, which

requires stronger moment restrictions, but provides a non-asymptotic bound on the approx-

imation error — details are in Subsection 2.2.4. By using this strategy, a bounded fourth

moment is required.

Assumption 2.2(b) requires the size of the largest cluster to be small relative to the

total variance. This condition mimics the sparsity condition in the networks literature (e.g.,

Graham (2020)). Intuitively, this condition is required so that the removal of a cluster does

not change the variance substantively. This assumption allows the ratio of any two cluster

sizes to diverge to infinity. It is identical to Equation (12) of Hansen and Lee (2019) and

Assumption 3 of Djogbenou et al. (2019) for one-way clustering. Assumption 2.2(b) also

rules out having components that are perfectly correlated: if the components of the vector

were perfectly correlated (i.e., µ′Wi = 0 for some µ ̸= (0, . . . , 0)′), then λn = 0. If cluster

sizes are uniformly bounded, and λn → ∞, then Assumption 2.2(b) is satisfied.6

Assumption 2.2(c) is a summability condition that requires λn not to be too small,

and requires λn to be the same order as
∑

c(N
C
c )2, i.e., λn ≍

∑
c(N

C
c )2, C ∈ {G,H}.7

With strictly positive covariance within clusters, λn ≍
∑

c(N
C
c )2 is satisfied. However,

if the researcher were conservative and clustered on C when the data is indeed iid, then

λn ≍ n, which then requires
∑

c(N
C
c )2 ≍ n for the condition to hold. The assumption that

6Assumption 2.2(b) is hence a more general version of sparsity than having the size of the dependency
neighborhood (i.e., the number of observations plausibly correlated with some observation i) being bounded
above. The conditions are also comparable with Verdier (2020) in the two-way fixed effects literature: when
the neighborhood size is bounded, λn ≍ n, which matches his assumption 2(c).

7For sequences an and bn, an ≍ bn if and only if there exists K0 < ∞ such that an/bn, bn/an ∈ [−K0,K0]
for all elements in the sequence.

128



(1/λn)
∑

c(N
C
c )2 ≤ K0 matches Equation (11) of Hansen and Lee (2019) and Assumption 2

of Djogbenou et al. (2019).

In general, the structure of dependence affects λn while the structure of clustering affects∑
c(N

C
c )2. For example, using the common shocks model of Example 1, λn ≍

∑
c(N

C
c )2

when the variances of common shocks αg and γh are non-zero, but if the variances of αg

and γh are zero, then λn ≍ n. With a balanced clustering structure where g ∈ {1, · · · ,M},

h ∈ {1, · · · ,M} and Ngh = 1, we have n = M2 and
∑

c(N
C
c )2 = M3. However, if we have

one large cluster, say when all observations are the only observation in their H cluster, i.e.,

h(i) = i, and on the G dimension, the first cluster has size NG
1 = n1/4, while all other clusters

have size 1, then,
∑

c(N
C
c )2 ≍ n1/2 + (n− n1/4) ≍ n.

Remark 2.1. Assumptions 2.2(b) and 2.2(c) rule out the following purely interactive model.

For g ∈ {1, · · · ,M}, h ∈ {1, · · · ,M} and Ngh = 1, we observe Wgh = αgγh, where

αg and γh are iid with mean zero and variances σ2
α and σ2

γ respectively, so there are M2

observations. As pointed out by Menzel (2021) Example 1.7, this model has an asymp-

totic distribution that is non-normal, with no analog in one-way clustering. To see this,∑
g,hWgh/M =

(∑
g αg/

√
M
)(∑

h γh/
√
M
)

d−→ Z1Z2, where Z1 and Z2 are independent

standard normal random variables. This limiting distribution is also known as Gaussian

chaos. Since maxg(N
G
g )2/λn = M2/(M2σ2

ασ
2
γ) = 1/(σ2

ασ
2
γ) does not converge to 0, As-

sumption 2.2(b) fails. Further,
∑

g(N
G
g )2/λn = M3/(M2σ2

ασ
2
γ) = M/σ2

ασ
2
γ → ∞ violates

Assumption 2.2(c).

Remark 2.2. Assumptions 2(b) and 2(c) mimic the Lindeberg condition as they divide

by the variance of the sum. Nonetheless, if we are willing to make stronger assumptions

on variances, we can rewrite the assumptions in terms of primitives. Consider the simple

case where Wi is a scalar. If we assume that E [WiWj] ≥ c > 0 for all i and j ∈ Ni,

then Assumption 2(c) is satisfied as λn ≥ c

(∑
g

(
NG

g

)2
+
∑

h

(
NH

h

)2 −∑g,h

(
NG∩H

(g,h)

)2)
≥

c
∑

g

(
NG

g

)2
and λn ≥ c

∑
h(NH

h )2. Then, as long as the largest cluster is small relative to
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∑
c

(
NC

c

)2
, i.e., maxc(N

C
c )2/

∑
c

(
NC

c

)2 → 0, (b) is satisfied. Consequently, a stronger way

to state (b) and (c) is that maxc(N
C
c )2/

∑
c

(
NC

c

)2 → 0 and E [WiWj] ≥ c > 0 for all i and

j ∈ Ni.

2.2.2 Main Result

The main result is that the sum of a sequence of two-way clustered random variables is

asymptotically normal. Further, the plug-in variance estimator originally proposed by CGM,

Q̂n :=
∑

i

∑
j∈Ni

WiW
′
j , is consistent. This plug-in expression matches Equation (2.8) of

CGM, where W is used here in place of their û.

Theorem 2.1. Under Assumptions 2.1 and 2.2, Q
−1/2
n

∑
i(Wi − E[Wi])

d−→ N(0, IK). Fur-

ther, if E[Wi] = 0 ∀i, then Q
−1/2
n Q̂nQ

−1/2
n

p−→ IK.

One-way clustering is a special case of this theorem when one dimension is weakly nested

within the other: examples include G = H so both dimensions are identical, and clustering

by county and state (as counties are nested in states). A sufficient condition for consistent

variance estimation is E[Wi] = 0, similar to Theorem 3 of Hansen and Lee (2019). This

assumption is sufficient in many applications: for example, linear regressions considered in

Section 2.3 are identified by requiring the expectation of the residual term to be zero. If

E[Wi] = µ for all i as in Theorem 4 of Hansen and Lee (2019), consistency can be obtained

under the same assumptions.8

Remark 2.3. A double array of random vectors, where the random vector Win is in-

dexed by n, can be accommodated. In this setup, with K = 1 for simplicity, we can de-

fine Wn as the class of distributions of n random variables {Win}ni=1 that satisfy Assump-

tions 2.1, 2.2(a), 2.2(c), and that for C ∈ {G,H}, there exists K0 < ∞ and ϵ > 0 such

that 1
λn

maxc(N
C
c )2 ≤ K0n

−ϵ (which is a modification of Assumption 2.2(b)). Then, for

8Since (1/n)
∑

i Wi consistently estimates µ, the result follows by using W̃i = Wi − µ in place of Wi.
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Rn := Q
−1/2
n

∑
i(Win − E[Win]), dW denoting the Wasserstein distance9, and Z denoting

the standard normal random variable, we have sup{Win}ni=1∈Wn
dW (Rn, Z) → 0 as n → 0.

Consequently, normality holds for a double array uniformly over distributions in Wn. The

proof of such a result is the same as the proof of Theorem 2.1. In the double array, Assump-

tion 2.2(c) rules out a balanced setting where component variances are of order smaller than

one: there are O(M3) variance and covariance objects in λn, so when they are of order rM ,

λn = O(M3rM) while
∑

c(N
C
c )2 = M3. Then, any rM that decays at any order of M violates

Assumption 2.2(c).10

Remark 2.4. While the CGM variance estimator is valid in this environment without

separate exchangeability, we must be more careful with bootstrap methods that were devel-

oped under separate exchangeability (e.g., Menzel (2021), MacKinnon et al. (2021)). Boot-

strap methods often resample cluster-specific means, such as α̂g = (1/NG
g )
∑

i∈NG
g
Wi −

(1/n)
∑

i Wi. Consider a data generating process where, with αg = (1/NG
g )
∑

i∈NG
g

[Wi] −

(1/n)
∑

i E[Wi], odd-numbered g clusters have αg = −1 and even-numbered g clusters have

αg = 2, and there are twice as many units in odd-numbered clusters as even-numbered clus-

ters. Such a process is not exchangeable. Resampling α̂g’s with equal probability results in a

positive mean, which invalidates naive bootstrap procedures.

The following two subsections discuss technicalities on the dependence structure and the

proof sketch. A general-interest audience may wish to proceed immediately to Section 2.3.

9See details in Section 2.2.4.
10These assumptions are primarily used in Lemmas 2.6 and 2.7 of the appendix, so an alternative way to

proceed with the proof of normality is to assume their conclusions 1
λ3
n

∑
i

∑
j,k∈Ni

E [|Wi|WjWk] = o(1) and

1
λ4
n
V ar

(∑
i

∑
j∈Ni

WiWj

)
= o(1) directly. In the balanced design where the second, third and fourth mo-

ments decay at the same rate rM ,
∑

i

∑
j,k∈Ni

E [|Wi|WjWk] = O
(
M4rM

)
and V ar

(∑
i

∑
j∈Ni

WiWj

)
=

O
(
M5rM

)
. Then, 1

σ3
n

∑
i

∑
j,k∈Ni

E [|Wi|WjWk] = O
(
M−1/2r

−1/2
M

)
and 1

σ4
n
V ar

(∑
i

∑
j∈Ni

WiWj

)
=

O
(
M−1r−1

M

)
. Hence, the conclusions can still hold if these moments decay at a rate slower than M : for

instance, if rM = M−1/2, then O
(
M−1r−1

M

)
= O

(
M−1/2

)
= o(1).
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2.2.3 Discussion of Dependence Structure

To compare the setup used in Assumption 2.1 to the existing literature, I carefully define

a few terms used in Menzel (2021), whose setup uses a dissociated separately exchangeable

array. Let Ygh denote an infinite array of observations in cluster g on the G dimension and

cluster h on the H dimension. Ygh is a separately exchangeable array if, for any integers

G̃, H̃ and permutations π1 : {1, . . . , G̃} → {1, . . . , G̃} and π2 : {1, . . . , H̃} → {1, . . . , H̃}, we

have:

(Yπ1(g)π2(h))g,h
d
= (Ygh)g,h,

where
d
= denotes equality in distribution.11 Such an array is dissociated if, for any G0, H0 ≥ 1,

(Ygh)g=G0,h=H0

g=1,h=1 is independent of (Ygh)g>G0,h>H0 . Dissociation is how the existing literature

formally incorporates the multi-way clustering structure. Separate exchangeability implies

that the cluster indices are not meaningful, and it is stronger than having identical distribu-

tions across clusters. This environment is a special case of Assumption 2.1, as the following

proposition claims.

Proposition 2.1. A dissociated separately exchangeable array satisfies Assumption 2.1.

One formal generalization of separate exchangeability is relative exchangeability in Crane

and Towsner (2018), where exchangeability need not hold for the full sample, but only within

each stratum (i.e., relative to some structure), such as within cohorts of students. However,

such a generalization is insufficient in finite-population settings with two-way clustered sam-

pling. Suppose there is a finite superpopulation of outcomes {Yi}ni=1 that is nonstochastic,

11Due to Kallenberg (2005), {Ygh}g≥1,h≥1 is separately exchangeable if and only if there exists a rep-

resentation Ygh = f(αg, γh, εgh), where (αg, γh, εgh)
iid∼ U [0, 1]. The setup in this paper does not require

(αg, γh, εgh)
iid∼ U [0, 1], which allows some data generating processes ruled out by separate exchangeabil-

ity. For example, suppose there is some Ygh = −Ygh′ . These random variables are allowed to be per-
fectly correlated under Assumption 2.1 since they share a cluster. However, the representation f(.) implies
E[Ygh|αg] ⊥⊥ E[Ygh′ |αg], so no such representation exists.
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and two-way clustered sampling by ethnic groups and district (e.g., Nunn and Wantchekon

(2011)): a subset of districts are independently sampled, a subset of ethnic groups are in-

dependently sampled, and units are sampled from the intersections of districts and ethnic

groups that are both sampled. We are interested in the mean of Y in the finite superpopula-

tion. With Ri denoting the indicator for whether individual i is sampled and hence observed,

the observed random variable is Wi = RiYi. Even though Ri is separately exchangeable, RiYi

is neither separately exchangeable nor relatively exchangeable due to conditioning on {Yi}ni=1,

but Assumption 2.1 is still satisfied.

2.2.4 Proof Sketch

The proof of Theorem 2.1 proceeds by first proving a CLT for a scalar random variable, then

applying the Cramer-Wold device to obtain the multivariate CLT. The scalar CLT is proven

using Stein’s method. I adapt the proof strategy from Ross (2011) Theorem 3.6 to obtain

an upper bound on the Wasserstein distance between a pivotal statistic and the standard

normal random variable. By exploiting the two-way clustering structure, the upper bound

on the distance can be shown to converge to zero. All details are in Appendix 2.A.

For ease of exposition, consider a simpler environment where K = 1, and E[Wi] = 0.

Let σ2
n := Qn, R =

∑
i Wi/σn, and Z ∼ N(0, 1). Lemma 2.4 in Appendix 2.A provides

an explicit bound on the Wasserstein distance between R and Z. With dW (.) denoting the

Wasserstein distance, and dK(.) denoting the Kolmogorov distance, Proposition 1.2 from

Ross (2011) implies that dK(R,Z) ≤ (2/π)1/4
√

dW (R,Z).12 The Kolmogorov distance is the

maximal distance between two CDF’s, so it is informative of the maximum distance between

12For completeness, I define both distance metrics using the notation in Ross (2011). For two probability
measures µ and ν, and family of test functions H, distances are defined as:

dH(µ, ν) = sup
h∈H

∣∣∣∣ ∫ h(x)dµ(x)−
∫

h(x)dν(x)

∣∣∣∣.
As special cases, the Kolmogorov distance uses H = {1[· ≤ x] : x ∈ R} and the Wasserstein distance uses
H = {h : R → R : |h(x)− h(y)| ≤ |x− y|}.
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the distribution of the pivotal statistic and the standard normal. If dW (R,Z) → 0, then

dK(R,Z) → 0, so the statistic R is asymptotically normal. By using Assumption 2.1 to

adapt the proof of Theorem 3.6 in Ross (2011),

dW (R,Z) ≤ 1

σ3
n

∑
i

∑
j,k∈Ni

E[|Wi|WjWk] +

√
2√

πσ2
n

√√√√V ar

(∑
i

∑
j∈Ni

WiWj

)
. (2.1)

This inequality is informative of the quality of the normal approximation. This bound on

the Wasserstein distance (and hence the Kolmogorov distance) is non-asymptotic, and of the

Berry-Esseen type, thereby giving a worst-case bound on the distance between the pivotal

statistic and the standard normal. Ross (2011) Theorem 3.6 is a corollary of (2.1): the term

with the third moment is immediate, while the term with the fourth moment results from

the last line of their proof.

At this point, my proof departs from the proofs in the existing statistical literature that

employ Stein’s method (e.g., Chen and Shao (2004); Janisch and Lehéricy (2024)). Let

Ni := |Ni|. Hölder’s inequality is employed on objects such as
∑

i

∑
j,k∈Ni

E[|Wi|WjWk].

The existing literature uses the L1 norm of moments E[|Wi|3] and the L∞ norm of Ni,

resulting in (maxm Nm)2
∑

i E[|Wi|3]. In contrast, my proof uses the L∞ norm of E[|Wi|3]

and the L1 norm of Ni, resulting in maxm E[|Wm|3]
∑

i N
2
i . Hence,

1

σ3
n

∑
i

∑
j,k∈Ni

E[|Wi|WjWk] ≤ 1

σ3
n

max
m

E[|Wm|3]
∑
i

N2
i .
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Since maxm E[|Wm|3] is bounded by Assumption 2.2(a), it suffices to show that∑
i N

2
i /σ

3
n → 0. Due to Assumption 2.1(a), Ni ≤ NG

g(i) + NH
h(i), so

1

σ3
n

∑
i

N2
i ≤ 1

σ3
n

∑
i

(NG
g(i) + NH

h(i))
2 ≤ 1

σ3
n

max
g,h

(NG
g + NH

h )
∑
i

(Ng(i) + Nh(i))

≤
[

1

σn

max
g,h

(NG
g + NH

h )

]
1

σ2
n

(∑
g

(NG
g )2 +

∑
h

(NH
h )2

)
.

Since λn = σ2
n when K = 1, maxg,h(NG

g + NH
h )/σn → 0 by Assumption 2.2(b) and the final

term
(∑

g(N
G
g )2 +

∑
h(NH

h )2
)
/σ2

n is bounded by Assumption 2.2(c). Hence, the term is

o(1).

A similar argument is made for the fourth moment that features in V ar
(∑

i

∑
j∈Ni

WiWj

)
.

To complete the proof for variance estimation, observe that since the fourth moments exist,

the consistency of the plug-in variance estimator can be proven by using Chebyshev’s

inequality and the existing intermediate results.

Remark 2.5. By modifying the proof of Theorem 3.6 in Ross (2011), the conditions in this

paper permit some forms of heterogeneity in cluster sizes that Theorem 3.6 of Ross (2011)

does not. The following is one such example. All observations are the only observation in

their H cluster, i.e., h(i) = i. On the G dimension, the first cluster has size NG
1 = n1/4, while

all other clusters have size 1. Then, with positive correlation for units within each cluster such

that λn ≍
∑

c(N
C
c )2, we have λn ≍ n1/2 + (n− n1/4) ≍ n and (NG

1 )2/λn ≍ n1/2/n = o(1), so

the conditions of Theorem 2.1 are satisfied. However, Theorem 3.6 of Ross (2011) bounds the

Wasserstein distance by
(
N2

1/λ
3/2
n

)∑
i E|Wi|3 and a term that involves the fourth moment.

We have N2
1/λ

3/2
n

∑
i E|Wi|3 ≍ n−1

∑
iE|Wi|3 ̸= o(1), so we may not obtain convergence.

This example similarly rules out using results from Janisch and Lehéricy (2024) directly.

Remark 2.6. There are several early papers in probability theory that deliver similar results,

but are insufficient for Theorem 2.1. For instance, Theorem 2 of Janson (1988) is a central
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limit theorem that uses the condition (with m = 3):

(
n

maxi Ni

)1/3
(maxi Ni) maxi |Wi|

σn

=

(
n

σ3
n

(
max

i
Ni

)2)1/3

max
i

|Wi| → 0.

In this proof sketch, I have shown that
∑

i N
2
i /σ

3
n → 0, but n(maxi Ni)

2/σ3
n ≥

∑
iN

2
i /σ

3
n, so

the Janson (1988) condition need not hold in this environment.

2.3 Theory for Least Squares Regression

This section applies Theorem 2.1 to linear regressions, showing that using the normal ap-

proximation with the CGM variance estimator is valid. Consider a linear model where the

scalar outcome Yi is generated by:

Yi = X ′
iβ + ui.

with Xi ∈ RK . We are interested in estimating β. Suppose E[Xiui] = 0 for all i, and

(X ′
i, ui) is allowed to be two-way clustered. The standard OLS estimator is:

β̂ =

(∑
i

XiX
′
i

)−1(∑
i

XiYi

)
= β +

(∑
i

XiX
′
i

)−1(∑
i

Xiui

)
.

This object is assumed to be well-defined in that
∑

i XiX
′
i is invertible. Define Sn :=∑

i E[XiX
′
i] and Qn := V ar (

∑
iXiui), and denote their sample analogs as Ŝn =

∑
i XiX

′
i

and Q̂n :=
∑

i

∑
j∈Ni

ûiûjXiX
′
j. Let the smallest eigenvalue of Qn be λn := λmin(Qn).

The asymptotic variance of β̂ and its sample analog are V (β̂) := S−1
n QnS

−1
n and V̂ (β̂) :=

Ŝ−1
n Q̂nŜ

−1
n respectively.

Assumption 2.3 provides sufficient conditions for the estimator β̂ to be asymptotically

normal and for the CGM variance estimator to be consistent. The conditions mimic Assump-
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tion 2.2 so that Theorem 2.1 is applicable to the random vector Xiui. The new condition

is a weak regularity condition that λmin (Sn/n) ≥ K1 > 0, mimicking the rank condition in

OLS.

Assumption 2.3. For C ∈ {G,H}, and k ∈ {1, 2, · · · , K}, there exists K0 < ∞ and K1 > 0

such that:

(a) E[u4
i |Xi] ≤ K0, E[X4

ik] ≤ K0, E[Xiui] = 0 for all i.

(b) 1
λn

maxc(N
C
c )2 → 0.

(c) 1
λn

∑
c(N

C
c )2 ≤ K0.

(d) (X ′
i, ui)

′ ⊥⊥ {(X ′
j, uj)

′}j /∈Ni
. For observations i, j and k ∈ Ni, l ∈ Nj and all non-

stochastic µ ∈ RK, if j, l /∈ (Ni ∪Nk), then (X ′
i, ui, X

′
k, uk)′ ⊥⊥ (X ′

j, uj, X
′
l , ul)

′.

(e) λmin

(
1
n
Sn

)
≥ K1.

Proposition 2.2. Under Assumption 2.3, Q
−1/2
n Sn(β̂−β)

d−→ N(0, IK), and [S−1
n QnS

−1
n ]−1[Ŝ−1

n Q̂nŜ
−1
n ]

p−→

IK.

Proposition 2.2 is useful for performing F tests on a subvector of β. The proof of Propo-

sition 2.2 proceeds by applying Theorem 2.1 to
∑

i Xiui, then showing that S−1
n Ŝn

p−→ IK ,

which uses the rank condition of Assumption 2.3(e). It then remains to show that the

remainder terms are asymptotically negligible.

The practitioner’s takeaway from Proposition 2.2 is that the existing CGM variance es-

timator can be used for valid inference with two-way clustering. The result provides the

formal theoretical guarantee for using the estimator, under conditions that permit hetero-

geneity across clusters.

Besides the application mentioned, Theorem 2.1 also has implications on the conditions

required for valid inference when the random variable is two-way clustered in many other

econometric models, including design-based settings and instrumental variables models. This
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theory is especially relevant for design-based settings where the researcher conditions on po-

tential outcomes, so the random variable cannot be separately exchangeable by construction

— see Xu and Yap (2024), for instance. Inference for estimators based on moment conditions

can be done by straightforward application of Theorem 2.1 as in linear regression. Practi-

cally, this paper has shown that the popular CGM estimator is robust in an environment

without separate exchangeability, but practitioners should exercise caution when applying

bootstrap methods to environments that are not separately exchangeable. While the results

are presented for two-way clustering, they can be easily extended to clustering on three or

more dimensions.
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Appendix

2.A Proof of Theorem 2.1

The proof strategy is as follows. I first prove Lemma 2.1, which is a central limit theorem

(CLT) for scalars. The proof of Lemma 2.1 relies on Lemmas 2.2 to 2.7. Lemmas 2 to 4

derive an upper bound on the Wasserstein distance between a pivotal statistic and standard

normal Z. Lemmas 5 to 7 then show that the derived upper bound is o(1). With Lemma

2.1, the multivariate CLT of Theorem 2.1 is obtained by using the Cramer-Wold device.

The remainder of the proof proceeds in the following order: (i) introduce definitions and

notation, (ii) state Lemma 2.1, (iii) state and prove Lemmas 2.2 to 2.7, (iv) prove Lemma

2.1, then (v) complete the proof of Theorem 2.1.

The following definitions and notations are used throughout the proof. Let dW (X, Y )

denote the Wasserstein distance between random variables X and Y , so dW (X, Y ) = 0 if

and only if the distributions of X and Y are identical. The norms of functions are defined as

the sup norm i.e., ||f || = supx∈D |f(x)|. For vector a, ||a|| = (a′a)1/2 is the Euclidean norm,

and for positive semi-definite matrix A and λmax(A) denoting the largest eigenvalue, ||A|| =√
λmax(A′A) denotes the spectral norm, and A1/2 denotes the symmetric matrix such that

A1/2A1/2 = A.
∑

i∈NG
g

∑
j∈NG

g
is abbreviated as

∑
i,j∈NG

g
. The dependency neighborhood of

i, Ni ⊆ {1, · · · , n}, is defined as the set of observations where i ∈ Ni and Xi is independent

of {Xj}j ̸=Ni
, and Ni := |Ni| is the number of observations in i’s dependency neighborhood.

1[A] is an indicator function that takes value 1 if A is true and 0 otherwise. In the rest of
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this proof, Xi denotes a scalar random variable while Wi ∈ RK as stated in the main text

is a random vector. Denote the variance of the sum of the scalar random variable Xi as

σ2
n := V ar (

∑
i Xi). We are interested in the asymptotic distribution of (1/σn)

∑
i Xi.

Assumption 2.4. For C ∈ {G,H}, there exists K0 < ∞ such that:

(a) E[Xi] = 0 and E[X4
i ] ≤ K0 < ∞ for all i;

(b) 1
σ2
n

maxc

(
NC

c

)2 → 0;

(c) 1
σ2
n

∑
c

(
NC

c

)2 ≤ K0 < ∞;

(d) Xi ⊥⊥ {Xj}j /∈Ni
; and

(e) for observations i, j, k ∈ Ni, l ∈ Nj, if (Ni∪Nk)∩(Nj∪Nl) = ∅, then Cov(XiXk, XjXl) =

0.

Lemma 2.1. Under Assumption 2.4, (1/σn)
∑

i Xi
d−→ N(0, 1), where σ2

n := V ar (
∑

i Xi).

Further, using feasible estimator σ̂2
n :=

∑
i

∑
j∈Ni

XiXj, σ̂
2
n/σ

2
n

p−→ 1.

Lemma 2.2. (Theorem 3.1 of Ross (2011)) If R is a random variable, Z has a standard

normal distribution, and we define the family of functions F = {f : ||f ||, ||f ′′|| ≤ 2, ||f ′|| ≤
√

2π}, then dW (R,Z) ≤ supf∈F |E[f ′(R) −Rf(R)]|.

The proofs of Lemmas 2.3 and 2.4 follow Ross (2011) Theorem 3.6 up to Equations (3.11)

and (3.12).

Lemma 2.3. Let X1, · · · , Xn be random variables such that E[Xi] = 0, σ2
n = V ar(

∑
i Xi),

and define R =
∑

i Xi/σn. If Ri :=
∑

j /∈Ni
Xj/σn, then, for all f ∈ F ,

E[Rf(R)] = E

[
1

σn

∑
i

Xi(f(R) − f(Ri) − (R−Ri)f
′(R))

]
+ E

[
1

σn

∑
i

Xi(R−Ri)f
′(R)

]
.
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Proof. Start from right-hand side:

E

[
1

σn

∑
i

Xi(f(R) − f(Ri) − (R−Ri)f
′(R))

]
+ E

[
1

σn

∑
i

Xi(R−Ri)f
′(R)

]

= E

[
1

σn

∑
i

Xi(f(R) − f(Ri))

]
= E

[
1

σn

∑
i

Xif(R)

]
− E

[
1

σn

∑
i

Xif(Ri)

]

= E

[
1

σn

∑
i

Xif(R)

]
= E[Rf(R)].

The first equality in the final line comes from the fact that Ri is independent of Xi based

on how dependency neighborhoods are defined. Hence, E[Xif(Ri)] = 0.

Lemma 2.4. Let X1, · · · , Xn be random variables such that, E[Xi] = 0, σ2
n = V ar(

∑
i Xi),

and define R =
∑

i Xi/σn. Let the collection (X1, · · · , Xn) have dependency neighborhoods

Ni, i = 1, · · · , n. Then for Z a standard normal random variable,

dW (R,Z) ≤ 1

σ3
n

∑
i

∑
j,k∈Ni

E [|Xi|XjXk] +

√
2√

πσ2
n

√√√√V ar

(∑
i

∑
j∈Ni

XiXj

)
. (2.2)

Proof. Due to Lemma 2.2, to bound dW (R,Z) from above, it is sufficient to bound |E[f ′(R)−

Rf(R)]|, where ||f ||, ||f ′′|| ≤ 2, ||f ′|| ≤
√

2/π. Define Ri :=
∑

j /∈Ni
Xj/σn, so Xi is indepen-

dent of Ri. Then,

|E[f ′(R) −Rf(R)]| = |E[f ′(R)] − E[Rf(R)]|

≤

∣∣∣∣∣E[f ′(R)] − E

[
1

σn

∑
i

Xi(f(R) − f(Ri) − (R−Ri)f
′(R))

]
− E

[
1

σn

∑
i

Xi(R−Ri)f
′(R)

]∣∣∣∣∣
≤

∣∣∣∣∣E
[

1

σn

∑
i

Xi(f(R) − f(Ri) − (R−Ri)f
′(R))

]∣∣∣∣∣+

∣∣∣∣∣E
[
f ′(R)

(
1 − 1

σn

∑
i

Xi(R−Ri)

)]∣∣∣∣∣ .
The first inequality applies Lemma 2.3, and the second inequality applies the triangle

inequality. Consequently, it is sufficient to show that the first term is bounded by the corre-
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sponding first term of Equation (2.2), and the second term is bounded by the corresponding

second term.

Consider the first term. By Taylor expansion of f(Ri) around f(R), and the triangle

inequality, the term that generates the third moment is:

∣∣∣∣∣E
[

1

σn

∑
i

Xi(f(R) − f(Ri) − (R−Ri)f
′(R))

] ∣∣∣∣∣ ≤ ||f ′′||
2σn

∣∣∣∣∣∑
i

E[|Xi|(R−Ri)
2]

∣∣∣∣∣
≤ 1

σ3
n

∑
i

E

|Xi|

(∑
j∈Ni

Xj

)2
 =

1

σ3
n

∑
i

∑
j,k∈Ni

E[|Xi|XjXk].

Turning now to the second term,

∣∣∣∣∣E
[
f ′(R)

(
1 − 1

σn

∑
i

Xi(R−Ri)

)]∣∣∣∣∣
≤ ||f ′||

σ2
n

E

∣∣∣∣∣σ2
n −

∑
i

Xi

(∑
j∈Ni

Xj

)∣∣∣∣∣ ≤ ||f ′||
σ2
n

E

(σ2
n −

∑
i

Xi

(∑
j∈Ni

Xj

))2
1/2

11/2

≤
√

2√
πσ2

n

√√√√V ar

(∑
i

∑
j∈Ni

XiXj

)
.

Lemma 2.5. E[|XiXjXk|] ≤ maxm E[|Xm|3], E[|XiXjXkXl|] ≤ maxm E[|Xm|4], and

|E[XiXk]E[XjXl]| ≤ maxm E[|Xm|4].

Proof. By the arithmetic mean — geometric mean (AM-GM) inequality,

E|XiXjXk| ≤
1

3

(
E|Xi|3 + E|Xj|3 + E|Xk|3

)
≤ max

m
E[|Xm|3].
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A similar argument yields E[|XiXjXkXl|] ≤ maxm E[|Xm|4]. For the final result, first observe

that E[XiXk]2 ± 2E[XiXk]E[XjXl] + E[XjXl]
2 = (E[XiXk] ± E[XjXl])

2 ≥ 0. Hence,

|E[XiXk]E[XjXl]| ≤
1

2
(E[XiXk]2 + E[XjXl]

2) ≤ 1

2
(E[X2

i X
2
k ] + E[X2

jX
2
l ])

≤ 1

4
(E[X4

i ] + E[X4
j ] + E[X4

k ] + E[X4
l ]) ≤ max

m
E[X4

m].

Lemma 2.6. Under Assumption 2.4, 1
σ3
n

∑
i

∑
j,k∈Ni

E [|Xi|XjXk] = o(1).

Proof. Using Lemma 2.5,

1

σ3
n

∑
i

∑
j,k∈Ni

E [|Xi|XjXk] ≤ 1

σ3
n

∑
i

∑
j,k∈Ni

E [||Xi|XjXk|]

≤ maxm E[|Xm|3]
σ3
n

∑
i

∑
j,k∈Ni

1 =
maxm E[|Xm|3]

σ3
n

∑
i

N2
i .

Observe maxm E[|Xm|3] ≤ K0 since the 4th moment exists, so it remains to show that

the remaining terms are o(1). Due to Assumption 2.1, Ni ≤ NG
g(i) + NH

h(i), so

1

σ3
n

∑
i

N2
i ≤ 1

σ3
n

∑
i

(NG
g(i) + NH

h(i))
2 ≤ 1

σ3
n

max
g,h

(NG
g + NH

h )
∑
i

(Ng(i) + Nh(i))

≤
[

1

σn

max
g,h

(NG
g + NH

h )

]
1

σ2
n

(∑
g

(NG
g )2 +

∑
h

(NH
h )2

)
.

maxg,h(NG
g +NH

h )/σn → 0 by Assumption 2.2(b) and the final term
(∑

g(N
G
g )2 +

∑
h(NH

h )2
)
/σ2

n

is bounded by Assumption 2.2(c). Hence, the term is o(1).

Lemma 2.7. Under Assumption 2.4, 1
σ4
n
V ar

(∑
i

∑
j∈Ni

XiXj

)
= o(1).
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Proof. Observe that:

1

σ4
n

V ar

(∑
i

∑
j∈Ni

XiXj

)
=

1

σ4
n

E

(∑
i

∑
j∈Ni

XiXj

)2
− 1

σ4
n

(∑
i

∑
j∈Ni

E[XiXj]

)2

=
1

σ4
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

(E[XiXjXkXl] − E[XiXk]E[XjXl]).

Due to Assumption 2.1(b), when j, l do not share any cluster with i, k, E[XiXjXkXl] =

E[XiXk]E[XjXl]. Hence, we only have to consider terms where there is at least one pair

that shares a cluster. Let Aij := 1[j ∈ Ni]. With finite 4th moment and Lemma 2.5, using

the same argument as the proof of Lemma 2.6, it is sufficient to show

1

σ4
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

(Aij + Ail + Akj + Akl) = o(1).

It is sufficient to consider the Aij term because the other terms are symmetric. In particular,

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Ail =
∑
i

∑
k∈Ni

∑
l

∑
j∈Nl

Ail =
∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij,

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Akj =
∑
k

∑
i∈Nk

∑
j

∑
l∈Nj

Akj =
∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij, and

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Akl =
∑
k

∑
l

∑
i∈Nk

∑
j∈Nl

Akl =
∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij.

Considering the Aij term,

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij ≤
∑
i

 ∑
j∈NG

g(i)

+
∑

j∈NH
h(i)


 ∑

k∈NG
g(i)

+
∑

k∈NH
h(i)


 ∑

l∈NG
g(j)

+
∑

l∈NH
h(j)

Aij.
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The first and last terms of the summation take the form:

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NG

g(j)

Aij =
∑
g

∑
i,j,k,l∈NG

g

Aij =
∑
g

(NG
g )4.

The first equality in the equation above follows from how
∑

i =
∑

g

∑
i∈NG

g
and that if

j ∈ NG
g(i), then i and j share the same g and hence

∑
l∈NG

g(j)
=
∑

l∈NG
g(i)

. The second equality

occurs as Aij = 1 when i and j share the same g cluster. With this equality, observe that∑
g(N

G
g )4 =

(
maxg(N

G
g )2
)∑

g(N
G
g )2. Since 1

σ2
n

maxg

(
NG

g

)2
= o(1) and 1

σ2
n

∑
g

∑
i,j∈NG

g
Aij ≤

1
σ2
n

∑
g(N

G
g )2 < ∞ by Assumption 2.4, these terms are o(1) when divided by σ4

n.

An upper bound can similarly be derived for the interactive terms. To explain the steps

carefully, I label the equalities and inequalities (i) to (iv):

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NH

h(j)

Aij

(i)
=
∑
i,j,k

∑
g

1[i ∈ NG
g ]1[j ∈ NG

g ]1[k ∈ NG
g ]
∑
l

∑
h

1[j ∈ NH
h ]1[l ∈ NH

h ]Aij

(ii)
=
∑
g

∑
i,j,k

1[i ∈ NG
g ]1[j ∈ NG

g ]1[k ∈ NG
g ]Aij

∑
h

∑
l

1[j ∈ NH
h ]1[l ∈ NH

h ]

(iii)

≤

(
max

j

∑
h

∑
l

1[j ∈ NH
h ]1[l ∈ NH

h ]

)∑
g

∑
i,j,k∈NG

g

Aij


(iv)

≤

max
h

∑
l∈NH

h

1

max
g

∑
k∈NG

g

1

∑
g

∑
i,j∈NG

g

Aij

 =
(

max
h

NH
h

)(
max

g
NG

g

)(∑
g

(NG
g )2

)
.

The equality in (i) is obtained by transforming the conditional sums into sums over

products of indicators. The equality in (ii) is obtained from commutative and associa-

tive properties of additional and multiplication. In step (iii), the inequality is obtained

by using the upper bound on the innermost sum over h and l. In step (iv), to see how

maxj

∑
h

∑
l 1[j ∈ NH

h ]1[l ∈ NH
h ] = maxh

∑
l∈NH

h
1, observe that once we choose the index
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j, the indicator 1[j ∈ NH
h ] can only take value 1 for one particular h, so the maximum occurs

when we choose a corresponding h that results in the largest
∑

l∈NH
h

1. The inequality in (iv)

is due to extracting
(

maxg

∑
k∈NG

g
1
)

from
(∑

g

∑
i,j,k∈NG

g
Aij

)
. Since

∑
g(N

G
g )2/σ2

n ≤ K0

and maxg N
G
g /σn = o(1),

1

σ4
n

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NH

h(j)

Aij ≤
(

1

σn

max
h

NH
h

)(
1

σn

max
g

NG
g

)(
1

σ2
n

∑
g

(NG
g )2

)
= o(1).

Proof of Lemma 2.1. Apply Lemma 2.4 to obtain:

dW (R,Z) ≤ 1

σ3
n

∑
i

∑
j,k∈Ni

E[|Xi|XjXk] +

√
2√

πσ2
n

√√√√V ar

(∑
i

∑
j∈Ni

XiXj

)
.

Applying Lemma 2.6 and 2.7 on each of the two terms, dW (R,Z) = o(1). Proof for con-

sistency of the variance estimator is equivalent to proving that (σ̂2
n − σ2

n)/σ2
n = oP (1). By

Chebyshev’s inequality,

P

(
σ̂2
n − σ2

n

σ2
n

> ϵ

)
≤ 1

ϵ2
1

σ4
n

E[(σ̂2
n − σ2

n)2] =
V ar

(∑
i

∑
j∈Ni

XiXj

)
ϵ2σ4

n

= oP (1).

The convergence in the last step occurs by Lemma 2.7.

Proof of Theorem 2.1. To show that Q
−1/2
n

∑
i(Wi−E[Wi])

d−→ N(0, IK), due to the Cramer-

Wold device, it suffices to show that ∀µ ∈ RK , µ′Q
−1/2
n

∑
i(Wi−E[Wi])

d−→ µ′N(0, IK). If µ is

a vector of zeroes, then µ′Q
−1/2
n

∑
i(Wi−E[Wi])

d−→ µ′N(0, IK) is immediate. For ||µ|| > 0, it

suffices to show (1/||µ||)µ′Q
−1/2
n

∑
i(Wi − E[Wi])

d−→ (1/||µ||)µ′N(0, IK) = N(0, 1). Without

loss of generality, we can set ||µ|| = 1. For all nonstochastic µ ∈ RK\{0}, let σ2
n(µ) :=

V ar
(∑

i µ
′ (Qn/λn)−1/2 (Wi − E[Wi])

)
, so the following hold:

146



1. E

[(
µ′
(

1
λn
Qn

)−1/2

(Wi − E[Wi])

)]
= 0 and E

[(
µ′
(

1
λn
Qn

)−1/2

(Wi − E[Wi])

)4
]
≤

K0 for all i.

2. 1
σ2
n(µ)

maxc

(
NC

c

)2 → 0.

3. 1
σ2
n(µ)

∑
c(N

C
c )2 ≤ K0.

4.

(
µ′
(

1
λn
Qn

)−1/2

(Wi − E[Wi])

)
⊥⊥
{(

µ′
(

1
λn
Qn

)−1/2

Wj

)}
j /∈Ni

.

5. For observations i, j, k ∈ Ni, l ∈ Nj, if (Ni ∪Nk) ∩ (Nj ∪Nl) = ∅, then

Cov

(
µ′
(

1

λn

Qn

)−1/2

Wiµ
′
(

1

λn

Qn

)−1/2

Wk, µ
′
(

1

λn

Qn

)−1/2

Wjµ
′
(

1

λn

Qn

)−1/2

Wl

)
= 0.

For item 1, since λn := λmin(Qn), all eigenvalues of Qn/λn must be at least 1. Hence,

all eigenvalues of (Qn/λn)−1/2 are bounded above by 1, which implies |µ′(Qn/λn)−1/2| ≤ K1

for some arbitrary constant K1 < ∞. Item 1 then follows from Assumption 2.2(a). Observe

that σ2
n(µ) = µ′(Qn/λn)−1/2Qn(Qn/λn)−1/2µ = λn. Then, Assumption 2.2(b) yields item

2, and Assumption 2.2(c) yields item 3. Item 4 is immediate from Assumption 2.1(a), and

item 5 from Assumption 2.1(b). By applying Lemma 2.1, (1/σn(µ))µ′(Qn/λn)−1/2
∑

i(Wi −

E[Wi])
d−→ N(0, 1). By using σ2

n(µ) = λn, this result is equivalent to µ′Q
−1/2
n

∑
i(Wi −

E[Wi])
d−→ N(0, 1) as required.

Turning to consistent variance estimation, I first show that (1/λn)(Q̂n − Qn)
p−→ 0K×K ,

where 0K×K is a K ×K matrix of zeroes. Since Q̂n −Qn =
∑

i

∑
j∈Ni

WiW
′
j − E[WiW

′
j ], it

suffices to show convergence elementwise. Let Xi and Yi denote scalar components of Wi,
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i.e., Xi = Wim, Yi = Wip, where m, p ∈ {1, 2, · · · , K}. Then,

P

(
1

λn

∑
i

∑
j∈Ni

(XiYj − E[XiYj]) > ϵ

)
≤ 1

ϵ2
1

λ2
n

V ar

(∑
i

∑
j∈Ni

XiYj

)

≤ 1

ϵ2λ2
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

|E[XiXjYkYl] − E[XiYk]E[XjYl]|

≤ K0

λ2
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

(Aij + Ail + Akj + Akl) = o(1).

The inequality in the last line is obtained due to Hölder’s inequality and finite moments.

An argument similar to that of Lemma 2.7 yields the o(1) equality. Then,

µ′(Q−1/2
n (Q̂n −Qn)Q−1/2

n )µ = µ′
0

1

λn

(Q̂n −Qn)µ0
p−→ 0.

where µ0 is a vector whose entries are all bounded above by some arbitrary constant K1 < ∞

by a similar argument as before. Convergence occurs because (1/λn)(Q̂n −Qn)
p−→ 0K×K .

2.B Proof of Propositions

Proof of Proposition 2.1. For (a), take any observation i and its associated clusters g(i), h(i).

Use the permutation function π1(g(i)) = 1 and π2(h(i)) = 1 so the array has the same

distribution as before due to separate exchangeability. Since the array is dissociated, by

setting G0 = H0 = 1, Wi is independent of all observations that are not in g(i) or h(i),

verifying (a).

For (b), take any i and k ∈ Ni. Without loss of generality, suppose that g(i) = g(k).

Consider the case where h(i) ̸= h(k). Use the permutation function π1(g(i)) = 1 and

π2(h(i)) = 1, π2(h(k)) = 2 to get another array that has the same distribution. Since the

array is dissociated, by setting G0 = 1, H0 = 2, (Wi,Wk) is independent of all observations
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that are not in (Ni ∪Nk). Since j, l /∈ (Ni ∪Nk), (Wi,Wk) ⊥⊥ (Wj,Wl), which yields (b). If

h(k) = h(i), set π2(h(k)) = 1 and G0 = 1, H0 = 1. The same argument applies.

For Proposition 2, I first prove a consistency result.

Lemma 2.8. Under Assumptions 2.1, 2.2(a) and 2.2(b), and E[Wi] = 0 ∀i, ||(1/n
∑

i(WiW
′
i−

E[WiW
′
i ]))||

p−→ 0.

Proof. It suffices to show convergence elementwise. Let Xi and Yi denote scalar components

of Wi, i.e., Xi = Wim, Yi = Wip, where m, p ∈ {1, 2, · · · , K}. By Chebyshev’s inequality, and

Assumption 2.2(a) that maxm,k E[W 4
mk] < K0,

P

(
1

n

∑
i

(XiYi − E[XiYi]) > ϵ

)

≤ 1

ϵ2
1

n2
E

(∑
i

∑
j∈Ni

(XiYi − E[XiYi])(XjYj − E[XjYj])

)
≤ K0

ϵ2n2

∑
i

∑
j∈Ni

1.

Hence, it suffices to show (
∑

i

∑
j∈Ni

1)/n2 = o(1). Observe

∑
i

∑
j∈Ni

1

n2
≤ maxiNi

n

(
∑

i 1)

n
,

so it suffices to show maxi Ni/n = o(1). Since

λn ≤
∑
i

∑
j∈Ni

max
m

E[W 2
mk] ≤ n2 max

m
E[W 2

mk],

we have:

(maxi Ni)
2

n2
=

(maxiNi)
2 maxm E[W 2

mk]

n2 maxm E[W 2
mk]

≤ max
m

E[W 2
mk]

(maxiNi)
2

λn

= o(1).

Convergence occurs due to Assumption 2.2(b) and maxm E[W 2
mk] < K0.
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Proof of Proposition 2.2. Since E[u4
i |Xi] ≤ K0, E[u4

iX
4
ik] = E[E[u4

i |Xi]X
4
ik] ≤ K0E[X4

ik] ≤

K2
0 is bounded. By Theorem 2.1, Q

−1/2
n

∑
i Xiui

d−→ N(0, IK).

To complete the normality result, I show that S−1
n Ŝn

p−→ IK , which is the same

as showing that ||S−1
n (Ŝn − Sn)|| p−→ 0. By applying Lemma 2.8, (1/n)(Ŝn − Sn) =

(1/n)
∑

i(XiX
′
i − E[XiX

′
i]) = oP (1). Hence, it suffices that (Sn/n)−1 has bounded

eigenvalues, i.e., λmin(Sn/n) ≥ K1 > 0, which is true by Assumption 2.3(e). Since

β̂ − β = Ŝ−1
n

∑
iXiui, by Slutsky’s lemma, Q

−1/2
n Sn(β̂ − β)

d−→ N(0, IK).

Next, proceed to consistent variance estimation. Showing that ||Q−1
n Q̂n − IK || = oP (1)

is equivalent to showing that, ∀µ ∈ RK , µ′
(
Q

−1/2
n (Q̂n −Qn)Q

−1/2
n

)
µ = oP (1). Expanding

Q̂n,

Q̂n :=
∑
i

∑
j∈Ni

ûiûjXiX
′
j =

∑
i

∑
j∈Ni

(ui −X ′
i(β̂ − β))(uj −X ′

j(β̂ − β))XiX
′
j

=
∑
i

∑
j∈Ni

uiujXiX
′
j − 2

(∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
j

)
+

(∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

)
.

By Theorem 2.1, µ′Q
−1/2
n (

∑
i

∑
j∈Ni

uiujXiX
′
j − Qn)Q

−1/2
n µ = oP (1). Hence, it remains

to show:

∣∣∣∣∣
∣∣∣∣∣Q−1/2

n

[
−2

(∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
j

)
+

(∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

)]
Q−1/2

n

∣∣∣∣∣
∣∣∣∣∣ = oP (1).

Observe that X ′
i(β̂ − β) =

(
X ′

iS
−1
n Q

1/2
n

)(
Q

−1/2
n Sn(β̂ − β)

)
=
(
X ′

iS
−1
n Q

1/2
n

)
(ZK +

1KoP (1)), where 1K is a K-vector of ones and ZK ∼ N(0, IK). Hence, addressing the second
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term,

X ′
i(β̂ − β)X ′

j(β̂ − β) =
(
X ′

iS
−1
n Q1/2

n

)
(ZK + 1KoP (1))(ZK + 1KoP (1))′

(
X ′

jS
−1
n Q1/2

n

)′
=
(
X ′

iS
−1
n Q1/2

n

)
(IKOP (1) + oP (1))

(
X ′

jS
−1
n Q1/2

n

)′
= X ′

iS
−1
n QnS

−1
n XjOP (1).

This equality implies:

Q−1/2
n

∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

Q−1/2
n

= Q−1/2
n

∑
i

∑
j∈Ni

(
X ′

iS
−1
n QnS

−1
n Xj

)
XiX

′
j

Q−1/2
n OP (1)

=
1

n2

(
1

λn
Qn

)−1/2
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

( 1

λn
Qn

)−1/2

OP (1).

The eigenvalues of (Qn/λn) are bounded. To see this, it suffices to show that there

exists K0 < ∞ such that λmax(Qn)/λn ≤ K0. Due to finite moments, Qn := V ar(
∑

i Xi) ≤

K01K×K

∑
c(N

C
c )2. Since (

∑
c(N

C
c )2)/λn ≤ K0 by Assumption 2.3, λnK0 ≥

∑
c(N

C
c )2, which

implies λn ≥ (
∑

c(N
C
c )2)/K0. Hence,

λmax(Qn)

λn

≤
∑

c(N
C
c )2K0∑

c(N
C
c )2 1

K0

= K2
0 .

Recall that (Sn/n)−1 has bounded eigenvalues. The proof of Theorem 2.1 also showed that

(Qn/λn)−1 has bounded eigenvalues. By using Markov and Minkowski inequalities, and the
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same argument as the proof of Theorem 2.1 for µ ∈ RK , ||µ|| = 1,

P

 1

n2
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∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

( 1

λn
Qn

)−1/2

µ

∣∣∣∣∣∣ > ϵ


≤ 1

n2ϵ
E

∣∣∣∣∣∣µ′
(

1

λn
Qn

)−1/2
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

( 1

λn
Qn

)−1/2

µ

∣∣∣∣∣∣


≤ 1
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maxiNi

n

n

n
K0 → 0,

where K0 ∈ R is an arbitrary (finite) constant. Convergence occurs due to Assumption

2.3(b), which implies maxi Ni/n → 0, since maxi

∑
j∈Ni

Ni/n = o(1) in the proof of Lemma

2.8.

Going back to the first term,
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′
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By using Markov and Minkowski inequalities,
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The penultimate inequality occurs due to Hölder’s inequality. Observe that maxiNi/
√
λn =

o(1) if and only if maxc(N
C
c )2/λn = o(1), which is given by Assumption 2.3(b). Convergence

in the last step occurs because maxi Ni/
√
λn = o(1), and the moments are finite.

Hence, it has been shown that Q−1
n Q̂n

p−→ IK . Then, [S−1
n QnS

−1
n ]−1[Ŝ−1

n Q̂nŜ
−1
n ]

p−→ IK by

the continuous mapping theorem.
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Chapter 3

Sensitivity of Policy Relevant

Treatment Parameters to Violations

of Monotonicity1

3.1 Introduction

Since the seminal work of Heckman and Vytlacil (2005), there has been a large literature

that is concerned with identification and inference of policy relevant treatment parameters

(PRTP) in instrumental variable (IV) settings with heterogeneous treatment effects (TE).

PRTP is a general class of objects that includes the local average treatment effect (LATE) and

various TE in counterfactual environments. Existing methods that target the general class

of PRTP rely on the monotonicity assumption that the instrument affects all individuals’

treatment response in the same direction, which is usually imposed through an additively

separable treatment selection equation (e.g., Mogstad et al. (2018)). However, monotonicity

may not be realistic in many applications. Consider the Angrist and Evans (1998) study

that was interested in the effect of having a third child on the mother’s labor supply. They

1This chapter is accepted at the Journal of Applied Econometrics.
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used an indicator for whether the first two kids are of the same sex as an instrument for the

third child. Since parents have a preference for gender balance among their children, families

with two boys or two girls are more likely to have a third child. But some parents may want

two sons or two daughters, so they would violate monotonicity, which rules out families who

would have a third child if their first two children are of the same sex, and would not have a

third child if their first two children are of different sex. Further examples of monotonicity

failure are considered in De Chaisemartin (2017). This observation raises the question of

how much bounds on PRTP would change when monotonicity fails. This paper explicitly

places a bound on the extent that monotonicity fails, which nests approaches that either

impose or drop monotonicity as special cases.

The goal is to place bounds on PRTP while accommodating limited violations of mono-

tonicity. Sensitivity restrictions characterize these violations: I use a sensitivity parameter

that places an upper bound on the proportion of defiers relative to compliers. To obtain

bounds on PRTP, I adapt the setup and linear program in Mogstad et al. (2018) to accommo-

date defiers. PRTP can be written as linear combinations of conditional means of potential

outcomes for subgroups defined by their treatment response to the instrument. Hence, with

appropriate assumptions, the linear program can be retained. The baseline specification of

the constraint set uses mean compatibility restrictions across conditional outcome distribu-

tions, but the method is amenable to additional restrictions researchers may wish to impose.

This procedure yields an identified set that is an interval, and can be modified to incorporate

covariates. Providing this tool for sensitivity analysis of PRTP is the main contribution of

the paper.

As an application of the general theoretical results, I detail a particular type of PRTP

— the treatment effect for compliers under a counterfactual policy environment, which I call

the LATE*. In the Angrist and Evans (1998) study, the estimated effect of a third child on

the mother’s employment status from the IV regression is specific to the policy environment
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surrounding childcare in the dataset. Would we still have the same conclusion when the

government gives a subsidy for childcare? What would the effect of a third child be for

compliers in this counterfactual environment? These are questions answered by LATE*,

which nests LATE as a special case (i.e., when there is no extrapolation). The LATE* is one

way to think about external validity of a study’s conclusions, which researchers are often

interested in (e.g., Muralidharan et al. (2019); Ito et al. (2021)).2

In the counterfactual environment described, the treatment propensity for the entire pop-

ulation changes while the instrument values are the same. To obtain the LATE*, it suffices

to characterize the mass of various treatment response groups in the original environment

becoming compliers in the counterfactual environment. At a high level, (partial) identifi-

cation of the LATE* is possible because the data places some restrictions on the means of

potential outcomes, and objects of interest merely reweight these potential outcome means.

If we are willing to put bounds on the fraction of people who respond to the instrument in

the counterfactual environment relative to the original, meaningful bounds can be obtained.

The same logic applies to other PRTP.

The procedure is implemented in the Angrist and Evans (1998) example. An instrument

is used because it is believed that the OLS estimand is downward-biased: due to unobserved

factors, women who are less likely to work are also those who are more likely to have a third

kid. Hence, when the lower bound of the IV estimand reaches the OLS estimand, the bounds

are no longer informative. I find that the bounds are informative only for small violations of

monotonicity. Consider a counterfactual environment where a childcare subsidy is available.

When the mass of defiers is more than 20% the mass of compliers, the lower bound for the

2When calculating policy effects in counterfactual environments, parametric models of Brinch et al. (2017)
and Kline and Walters (2019) are often used. However, these approaches are less useful when thinking of
LATE* as a means to check external validity: since identification of heterogeneous treatment effects are
often done without a parametric model, it seems desirable to avoid parametric models when evaluating the
robustness of results.
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LATE* falls from -0.103 under monotonicity to below the OLS benchmark of -0.134. Hence,

the informativeness of the counterfactual estimates depends crucially on monotonicity.

This paper relates to several strands of literature. First, it is related to a literature on the

failure of monotonicity in IV settings. Some papers that address violation of monotonicity

include reinterpreting the estimand for the LATE (De Chaisemartin, 2017), using weaker

monotonicity assumptions (Small et al., 2017; Heckman and Pinto, 2018; Kamat, 2018; Dahl

et al., 2023) or alternative assumptions (Klein, 2010), and testing if it is indeed a concern

(Kitagawa, 2015). Another common approach is the put bounds on the ATE or the LATE

either using worst-case bounds or through some form of sensitivity analysis (Manski, 1989;

Balke and Pearl, 1997; Horowitz and Manski, 2000; Noack, 2021; Kitagawa, 2021). There

is also a literature that place bounds on further populations (e.g., compliers, defiers, never

takers and always takers) (Richardson and Robins, 2010; Huber and Mellace, 2015; Huber et

al., 2017; Ding and Lu, 2017). By targeting the PRTP, this paper not only covers bounds on

these subpopulations, but also contributes bounds on extrapolated objects in counterfactual

environments without monotonicity. Nonetheless, the approach in this paper does not have

sharpness guarantees or closed-form solutions like in much of the existing literature.

Second, this paper is related to the literature on extrapolation and external validity in

IV settings. In counterfactual environments, parametric models are often used (Brinch et

al., 2017; Kline and Walters, 2019). Papers that target PRTP without a parametric model

rely on a separable selection equation (Heckman and Vytlacil, 2005; Mogstad et al., 2018).

The approach used in this paper neither uses a parametric model nor a separable selection

equation — the latter cannot hold by construction when allowing for defiers. In light of the

numerical equivalence between selection equations and the group primitives (Heckman and

Vytlacil, 2005; Kline and Walters, 2019), this paper additionally contributes an example of

how group primitives map to some nonseparable equation that permits extrapolation when

monotonicity fails.
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The rest of this paper discusses the proposed method and its applications. Section

3.2 explains the general framework in forming bounds for PRTP; Section 3.3 applies the

framework to LATE*. Section 3.4 applies the procedure to the Angrist and Evans (1998)

example. Section 3.5 concludes.

3.2 Framework for Identification without Monotonic-

ity

3.2.1 Setting

We observe random variables (T, Z, Y ), denoting treatment, instrument, and outcome re-

spectively. We are interested in the effect of the endogenous T on Y in a counterfactual en-

vironment. Outcome Y can be discrete or continuous; instrument Z ∈ Z = {0, 1, · · · , k− 1}

takes one of k < ∞ discrete values, and treatment T ∈ {0, 1} is binary. Although the

setup can be adapted to multivalued T , I focus on the binary case for simplicity. Let T (z)

denote the potential treatment when given instrument z, and let Y (t) denote the potential

outcome when given treatment t, which assumes that Y is not affected by Z directly. Let

T ∗(z∗) denote the potential treatment when given instrument z∗ ∈ Z∗ in the counterfactual

environment, where Z∗ is the set of values that the instrument can take in the counterfac-

tual environment. Without loss of generality, the instrument values are ordered such that

Pr(T (z) = 1) is increasing in z.3 Then, the observed T and Y are Y = Y (T ) and T = T (Z).

Treatment response groups g ∈ G are characterized by the vector of potential

treatments, i.e., ((T (z))z∈Z , (T
∗(z∗))z∗∈Z∗). G is the set of all possible combinations of

((T (z))z∈Z , (T
∗(z∗))z∗∈Z∗): with a binary treatment, k instrument values, and Z∗ = Z,

we have |G| = 22k. Without extrapolation, the counterfactual environment is the original

3There is a bijection from any set Z ′ with k discrete values to Z such that for any z, z′ ∈ Z such
that z > z′, Pr(T (z) = 1) ≥ Pr(T (z′) = 1). Hence, beyond having k discrete values for the instrument,
assumptions on Z ⊂ N and the ordering of the values are without loss of generality.
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environment. Then, Z∗ = Z and T (z) = T ∗(z), ∀z ∈ Z. In general, the mass of each group

in the population is

qg := Pr(g).

Let q denote a vector that stacks all qg values that are nonzero. In applications, there may

be groups with qg = 0. Hence, the dimension of q, dq, is defined as the number of groups

with nonzero mass, so dq ≤ |G|.

For example, consider an environment with binary treatment, k = 2 instrument values

and Z = Z∗. Using terminology in the literature (e.g, Angrist et al. (1996)), the 4 response

groups in the original environment are always-takers (A) with T (0) = T (1) = 1, compliers

(C) with T (0) = 0 and T (1) = 1, defiers (D) with T (0) = 1 and T (1) = 0 and never-takers

(N) with T (0) = T (1) = 0. Then, |{((T (z))z∈Z , (T
∗(z∗))z∗∈Z∗)}| = 22×2 = 16. If we are

not interested in the extrapolated environment, then T (z) = T ∗(z), so we only have dq = 4

groups.

Define the conditional mean for each group as follows:

µgt := E[Y (t)|g].

Similarly, let µ be the vector that stacks the µgt values, and let dµ := dim(µ) denote the

dimension of µ. It is implicitly assumed that these µgt objects are well-defined. When

treatment is binary, dµ = 2dq.

Following Huber et al. (2017), it suffices to have mean independence of the potential

outcomes across groups instead of full independence:

Assumption 3.1. E[Y (t)|g, z] = E[Y (t)|g] and Pr(g|z) = Pr(g) for all g, z.

These groups are the primitives of the setup. Random assignment of the instrument Z

satisfies Assumption 1. In addition to Assumption 1, following Angrist and Imbens (1994),
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many papers also assume monotonicity, the assumption that the instrument weakly affects

treatment in the same direction for all individuals.

Assumption 3.2. For all z1, z2 ∈ Z either Pr(T (z1) ≥ T (z2)) = 1 or Pr(T (z1) ≤ T (z2)) =

1. For z∗1 , z
∗
2 ∈ Z∗, either Pr(T ∗(z∗1) ≥ T ∗(z∗2)) = 1 or Pr(T ∗(z∗1) ≤ T ∗(z∗2)) = 1.

Assumption 2 implies there are particular groups g with qg = 0, which, in the environment

without extrapolation, reduces number of treatment response types with nonzero mass from

2k to k + 1. This paper conducts sensitivity analysis for the failure of this assumption, so it

relaxes Assumption 2. Since this assumption is a statement about the potential treatment

response, sensitivity analysis involves careful consideration of the masses qg of various groups.

The object of interest is the PRTP, defined as any estimand that can be written as:

β =
∑
g,t

cgt(q)µgt = c(q)′µ. (3.1)

where cgt(q)’s denote the weights on each of the µgt’s, and these coefficients can depend

on q. The equality requires the object of interest to be linear in µ. c(q) is the coefficient

vector, with c : [0, 1]dq → Rdµ transforming the vector of proportions into weights on the

conditional expectations. Once q is known, c(q) is known. Objects of interest like the

LATE and the average treatment effect (ATE) can be written in this form. For example,

the ATE uses c(q) = q ⊗ (1,−1)′, the average treatment effect on the treated (ATT) uses

c(q) = (qA,−qA, qC ,−qC , qD,−qD, 0, 0)′/(qA+qC+qD), and the LATE* is explained in Section

3.3. This β can be viewed as a discretized version of the PRTP defined in Mogstad et al.

(2018).

The relationship between β and the target object in Mogstad et al. (2018) warrants fur-

ther discussion. Mogstad et al. (2018) assumed monotonicity, so treatment can be written

as T = 1[ν̃(Z) ≥ u], for unobserved u ∼ U [0, 1]. The primitives of their model are marginal

treatment responses E[Y (t) | u], and their target parameter integrates a weighted average of
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E[Y (t) | u] over u. In the monotonic setting, u has a natural interpretation as a treatment

propensity, where high values of u correspond to N, middle values to C, and and low values

to A for a binary instrument. However, when monotonicity fails, the treatment equation be-

comes nonseparable with T = 1[ν(Z, u) ≥ 0]. Then, the interpretation of u is unclear unless

a researcher has a particular ν(Z, u) in mind. Nonetheless, the groups remain well-defined

in general. The unobserved u is meaningful in the target object insofar as it defines the

groups that we are interested in. Hence, this paper uses the unobserved groups g to charac-

terize conditional means, and characterizes the target object in terms of E[Y (t) | g] instead

of E[Y (t) | u]. The relationship between this group characterization and a nonseparable

selection equation will be further clarified in Section 3.3.2 through an example.

3.2.2 Constraints on mu and q

The method places bounds on objects of interest by using the researcher’s input for a sen-

sitivity parameter. To explain this method, I first explain the constraints on µ implied by

Assumption 1 in Section 3.2.2, where it is assumed that the vector q is known. Then, Sec-

tion 3.2.2 shows how a single sensitivity parameter that affects q captures the extent that

monotonicity is violated.

Constraint Set for µ

M(q) denotes the set of µ that satisfies defined equality and inequality constraints. These

constraints may depend on q, and may include ex ante restrictions and features of the data.

The researcher can specify what these constraints are, but I require these constraints to be

linear in µ and the set M(q) to be convex.

One example of M(q) is a set of mean compatibility constraints implied by Assumption

1. In Y |T = t, Z = z, the mean of the various structural µgt such that T (z) = t, weighted

by their proportions, is equal to the reduced-form mean E[Y |T = t, Z = z]. Hence, where
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ptz := Pr(T = t|Z = z), for all z, t, these constraints take the form:

∑
g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z]. (3.2)

Observe that (3.2) is a function of the q vector, so q parameterizes the constraint set

M(q). Without ex ante restrictions, the set of µ that satisfies mean compatibility is in

Equation (3.3). This set is denoted Mm(q) to avoid confusion with the general constraint

set M(q):

Mm(q) :=

µ ∈ Rdµ :
∑

g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z] ∀z ∈ Z, t ∈ {0, 1}

 . (3.3)

The constraints in set Mm(q) do not exploit all distributional information, but nonethe-

less make the problem tractable, so Mm(q) can be used as a default. With binary outcomes,

µgt ∈ [0, 1] should be used as a constraint. Without binary outcomes, we may consider

additional constraints implied by Assumption 1, such as the trimming bounds of Lee (2009).

Additional restrictions that the researcher may impose include selection into treatment (e.g.,

Roy (1951)).

Sensitivity Parameter

To form a sensitivity parameter for violation of Assumption 2, I first define compliers and

defiers. For z > z′, define sets of defiers and compliers respectively as:

Sd
(z,z′) := {g : T (z) < T (z′)}, and

Sc
(z,z′) := {g : T (z) > T (z′)}.

Since Pr(T (z) = 1) is increasing in z, Pr(g ∈ Sd
(z,z′)) ≤ Pr(g ∈ Sc

(z,z′)). Assumption 2 is

equivalent to having no defiers, so the sensitivity parameter should control the proportion
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of defiers, which then affects the q vector. Hence, the sensitivity parameter λ imposes the

restriction that, for all pairs (z, z′),

∑
g∈Sd

(z,z′)

qg ≤ λ
∑

g′∈Sc
(z,z′)

qg′ . (3.4)

I refer to the inequality restriction (3.4) imposed by λ as a “sensitivity restriction”.4 I

also place an analogous sensitivity restriction on the counterfactual environment with T ∗(.).

In particular, for Sd∗
(z,z′) := {g : T ∗(z) < T ∗(z′)} and Sc∗

(z,z′) := {g : T ∗(z) > T ∗(z′)}, the

sensitivity restriction is
∑

g∈Sd∗
(z,z′)

qg ≤ λ
∑

g′∈Sc∗
(z,z′)

qg′ . It is possible to have a different

sensitivity parameter for every pair (z, z′) in nonbinary settings — this does not change the

method, but increases the number of sensitivity parameters. To keep the exposition simple,

I work with a single sensitivity parameter λ. When λ = 0, there is no pair of instrument

values for which there are defiers.

With Q(λ) denoting the general constraint set, the proportion vector satisfies q ∈ Q(λ).

As in the treatment of M(q), the researcher can specify additional restrictions, but I propose

the minimal set of restrictions. Namely, the proportions chosen must be compatible with

the observed ptz. Assumption 1 implies ∀t, z,

∑
g:T (z)=t

qg = ptz. (3.5)

The set Q(λ) may be empty for some choices of λ. Due to Proposition 1 of Noack

(2021), there are bounds imposed on qD by the data, so if λ is too small, the set will be

empty. Notably, Noack (2021) assumes full independence rather than mean independence

that is assumed in this paper, so if we assume full independence, tighter bounds on qD

4This sensitivity parameter was earlier proposed in Ding and Lu (2017) for the case with a binary
instrument and binary treatment when targeting subpopulations in the sample.
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can be obtained from her method.5 The sensitivity restriction thus describes monotonicity

violations that are not detectable by the data. Even if qD = 0 is rejected by the data, the

existing tests can construct a confidence interval for qD that can feature as a restriction in

Q(λ), which can still be used to bound the PRTP.

The minimal constraint set satisfies (3.4) and (3.5), so it takes the form Q(λ) = Qm(λ):

Qm(λ) :=

q ∈ [0, 1]dq :
∑

g∈Sd
(z′,z′′)

qg ≤ λ
∑

g′∈Sc
(z′,z′′)

qg′ ,
∑

g∈Sd∗
(z′,z′′)

qg ≤ λ
∑

g′∈Sc∗
(z′,z′′)

qg′ ,
∑

g:T (z)=t

qg = ptz,∀(z′, z′′), t, z

 .

(3.6)

Observe that
∑

g qg = 1 is implied by the condition that
∑

g:T (z)=t qg = ptz,∀t, z. Follow-

ing Mogstad et al. (2018), define our identified set for PRTP:

Bλ = {b ∈ R : b = c(q)′µ for some µ ∈ M(q), q ∈ Q(λ)}. (3.7)

More precisely, Bλ is the set identified by constraints in M and Q.

Remark 3.1. Due to the generality of the framework, several extensions can be accommo-

dated. First, we can extend the analysis to multivalued treatments. With |T | treatment

values, we can analogously define G so that |G| = |T |2|Z|. The object of interest remains

as a linear combination of group-specific average potential outcomes. Second, we can extend

the analysis to multiple binary instruments. With b binary variables, |Z| = 2, and we have

|G| = 22|Z|b groups. Then, we may conduct sensitivity analysis with respect to partial mono-

tonicity (Mogstad et al., 2021) or limited monotonicity (van’t Hoff et al., 2023) by imposing

inequality (3.4) only with respect to their affected groups rather than all pairs.

5Bounds on qD are obtained from implications on the outcome distribution. With full independence, the
entire outcome distribution can be used to obtain the bounds, but with mean independence, we can only
use the conditional means of the outcome distribution.
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3.2.3 Theoretical Properties

This subsection presents the main identification result of the paper, that the identified set

is an interval. The method for finding bounds on PRTP solves an optimization problem in

light of the constraints on µ and q from the previous subsection. Since obtaining the upper

and lower bounds of the interval involves optimizing over µ and q, it is helpful to break

the optimization problem into an inner problem that optimizes over µ given q and an outer

problem that optimizes over q. Write the inner optimization problem as:

R(q) := min
µ∈M(q)

c(q)′µ, and R(q) := max
µ∈M(q)

c(q)′µ. (3.8)

These inner optimization problems are linear programs by assumption, given q. This

rewriting is convenient because linear programs are computationally cheap. The linearity

of the general program conditional on q is similar to the generic framework presented in

Mogstad et al. (2018), which did not allow for monotonicity violations. Assumption 3.3

below provides sufficient conditions for the identified set to be an interval.

Assumption 3.3. For a given λ ∈ [0, 1), the following hold:

(a) For all g ∈ G, if qg > 0, then µgt is well-defined and finite ∀t ∈ {0, 1}.

(b) Restrictions in M(q) can be written as a system of linear inequalities in µ such that

M(q) = {µ : A(q)µ ≤ b(q)} is continuous in (A(q), b(q)), and M(q) is convex.6

Hyperparameters A(q) and b(q) of the linear program are continuous in q.

(c) c(q) is continuous in q.

(d) Q(λ) is a nonempty convex set.

6The set M is continuous in (A, b) if it is lower and upper hemi-continuous in (A, b). In general, M is
not lower hemi-continuous. For a counterexample, consider t = (A, b) and K(t) = {x : Ax ≤ b, x ≥ 0}. The
sequence tν = (A = ν−1, b = ν−1) converges to t∗ = (0, 0). Observe that K(tν) = [0, 1]. The point 2 ∈ K(t∗)
cannot be reached by any sequence {xν , ν = 1, · · · } with xν ∈ [0, 1].
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Theorem 3.1. (Identified Set). Suppose Assumption 1 and 3 hold for some λ. Then, either

M(q) is empty for all q ∈ Q(λ) and hence Bλ is empty, or the closure of Bλ is equal to the

interval [β
λ
, βλ], where

β
λ

= min
q∈Q(λ)

R(q), and βλ = max
q∈Q(λ)

R(q). (3.9)

The theorem claims that the identified set is an interval, so every point in the interval

is achievable by some µ ∈ M(q), q ∈ Q(λ). This property is not immediately obvious

when optimizing over (q, µ): when we optimize over q, the objective function is potentially

nonconvex, since c(q) is nonlinear in q. Continuity of functions and convexity of sets are

hence required for the result. Proof details are in Appendix 3.D. Notably, even if Assumption

3 fails, (3.9) still yields valid bounds, albeit conservative.

Generally, when using Mm(q) and Qm(λ), the bounds are not sharp in that the (q, µ)

pair that solves the problem need not be compatible with the data. The non-sharpness

arises from two problems. The first problem is that not all q ∈ Qm(λ) is compatible: for

instance, it is known in the literature that there are tests for monotonicity (e.g., Richardson

and Robins (2010); Kitagawa (2015); Huber et al. (2017); Noack (2021)), so qD = 0 need not

be compatible with the data. The second problem occurs because we have only used infor-

mation on the means across distributions, and we have not yet exploited all distributional

information. If outcomes are discrete, sharp bounds can be obtained by parameterizing the

entire joint distribution of (Y (0), Y (1), g), which is the approach taken by Balke and Pearl

(1997). If the outcome is binary and all q ∈ Qm are compatible, then we have sharp bounds,

since Mm(q) ∪ [0, 1]dµ contains all distributional information.

The sensitivity parameter also has a nice feature stated in Theorem 3.2, which reduces

the number of inequality constraints.
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Theorem 3.2. Let z0, z, z
′ ∈ Z. If

∑
g∈Sd

(z0,z0+1)
qg ≤ λ

∑
g′∈Sc

(z0,z0+1)
qg′ for all z0 ∈ Z\{k −

1}, then
∑

g∈Sd
(z,z′)

qg ≤ λ
∑

g′∈Sc
(z,z′)

qg′ for any instrument value pair (z, z′).

This theorem implies that we do not need to consider all instrument pairs — it suffices

to consider adjacent instrument pairs. For intuition, when there are no defiers at both the

(z, z + 1) and (z + 1, z + 2) margins, it must be that there are no defiers at the (z, z + 2)

margin, because the defiers at the (z, z + 2) margin must switch at either margin. In light

of this result, we only have to check k − 1 instead of
(
k
2

)
constraints.

Remark 3.2. The property in Theorem 3.2 is a feature of defining the sensitivity parameter

in this way. If we had instead defined the sensitivity parameter as an upper bound on the

proportion of defiers as done in Noack (2021), we no longer have this property. To see this,

suppose we have three discrete instrument values {0, 1, 2}. Sensitivity parameter η is such

that q(1,0,0) + q(1,0,1) ≤ η∗ and q(0,1,0) + q(1,1,0) ≤ η∗ at the (0, 1) and (1, 2) margin of the

instrument respectively. In the worst case, we will have q(1,0,0) = η∗ and q(1,1,0) = η∗. Then,

at the (0, 2) margin, q(1,0,0) + q(1,1,0) = 2η∗, which is not bounded above by η∗.

Remark 3.3. Constructing the sensitivity restriction as qD/qC ≤ λ makes λ interpretable

across applications. Suppose we have qD = 0.01 — if qC = 0.5, then the violation of mono-

tonicity is relatively small; but if qC = 0.02, the violation would be rather large. λ reflects the

difference, despite having the same qD. Nonetheless, if making an assumption on qD directly

instead of qD/qC is more interpretable in a particular application, a constraint of the form

qD ≤ λD can be used in Q without loss.

3.2.4 Implementation

To implement the procedure proposed in the paper, we can simply use the sample analog.

We observe data (Yi, Ti, Zi) for i = 1, · · · , n. An implementable algorithm is:
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1. Estimate probability objects ptz by p̂tz =
∑n

i=1 1[Ti=t,Zi=z]∑n
i=1 1[Zi=z]

. Use sample analog Ê[Y |T =

t, Z = z] = 1
ntz

∑
i:Ti=t,Zi=z Yi for E[Y |T = t, Z = z], ntz :=

∑n
i=1 1[Ti = t, Zi = z].

2. For given q ∈ Q(λ),

(a) Plug in Ê[Y |T = t, Z = z] and q into (3.2).

(b) Set up the objective function and solve the linear program in (3.8). Output the

value of the objective function R(q).

3. For given λ, optimize output of Step 2 over q in the outer loop as in (3.9) using the

sample analog.

Denote the estimators obtained from the sample (β̂
λ
, β̂λ) for the lower and upper bounds

respectively for the problem in (3.9). These estimators can be shown to be consistent by

applying the Glivenko-Cantelli theorem to iid data, for instance, and applying the continuous

mapping theorem after proving continuity in the program. Inference can be done by the

projection method, and details are in Appendix 3.B. In empirical applications, the instrument

may be valid only conditional on covariates, so Appendix 3.C extends the procedure to

incorporate covariates.

While the above procedure suffices for the numerical results in this paper, as Section

3.3.1 shows how Step 3 can be reduced to a one-dimensional optimization problem, Step 3

may be unwieldy in general as the dimension of q can be large. To address this concern,

Steps 2 and 3 can be combined into a bilinear program so we jointly optimize over (q, µ).

Most objective functions considered can be written as linear fractionals of q, i.e., c(q)′µ =

q′Aµ/d′q, for some conformable matrix A and vector d, with d′q > 0 and linear constraints

on (µ, q), say Bq ≤ b, Cµ ≤ c. Applying the Charnes-Cooper transformation by defining

t := 1/d′q, r := q/t, the program is equivalent to optimizing r′Aµ over (r, t, µ) such that

d′r = 1, Br ≤ Bt, Cµ ≤ c. Then, standard algorithms for bilinear programs (Dutz et al.,

2021; Shea, 2022) can be applied.
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3.3 Identification of LATE*

The method in Section 3.2 is general, and allows partial identification of any combination

of treatment response groups. Nonetheless, researchers often care about compliers. Hence,

this section discusses and interprets LATE*, which is defined as the TE on compliers in

counterfactual policy environments.7

For ease of exposition, I consider a binary instrument using the (A,C,D,N) notation

as discussed in Section 3.2. The response groups in the counterfactual environment

{A∗, C∗, D∗, N∗} can be defined on T ∗(z) analogously. Using G ∈ {A,C,D,N} and

G∗ ∈ {A∗, C∗, D∗, N∗} =: Gcf to denote response in the original and counterfactual en-

vironments respectively, qGG∗ = Pr(G,G∗) denotes the proportion who were G in the

original environment and G∗ in the new environment. Conditional probabilities are denoted

qG∗|G := Pr(G∗|G) = qGG∗/(
∑

H∗∈Gcf
qGH∗). Using the definition that the LATE* is the TE

for the counterfactual compliers, and µGG∗t := E[Y (t) | G,G∗],

LATE∗ =

∑
G qGC∗ (µGC∗1 − µGC∗0)∑

G qGC∗
.

The LATE* is useful for several reasons. First, the counterfactual environment could

differ in place or time. Since the Angrist and Evans (1998) used US data, if we believe that

the Canadian population is similar to the US, and its only difference is that it has better

childcare, then the LATE* is what the LATE in Canada would be. For extrapolation over

time, the study used 1990 data, but the current policy environment has changed since then,

so the LATE* tells us what the LATE is now. Second, the LATE* is as useful to the policy

7LATE in Angrist and Imbens (1994) is defined under monotonicity as the TE for the subpopulation
who respond (i.e., change their treatment status) to the instrument, which is equivalent to the TE on
compliers (TEC). In the presence of defiers, the TE on the marginal population (TEM) and TEC are no
longer equivalent. Since LATE was defined on a subpopulation with a particular treatment response status,
it is sensible to define it as the TEC when there are defiers present. Hence, I define LATE* in the rest of this
paper as the TEC in the counterfactual environment. We could also instead calculate TEM*, but I focus on
LATE* to be concrete.
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maker as the LATE. If LATE features in the policy function, then so must the LATE* once

the policy is implemented because the environment would have changed. For example, if

the policy maker wishes to give a $2000 subsidy in two tranches, once the first $1000 has

been rolled out, the “LATE” would have changed, and we cannot expect the second $1000

to yield the same effect. This occurs because people no longer stick to their original groups.

Such a setting is relevant when policy makers only have old studies or surveys available to

inform current policy implementation. Third, the LATE* is useful in calibration. Parameter

values in a model may be calibrated by using estimates from other studies. Then, the

approach in this paper gives an explicit way of thinking about how the study at hand differs

from the original study that the parameter value was calibrated from, and consequently the

appropriate bounds on these values. Fourth, even though the LATE* is not point-identified,

it is useful in policy choice when the social planner has a min/max objective function. The

policy-maker can then choose policy rules by using the worst-case bounds obtained. Finally,

since LATE* identifies the TE for a subpopulation, it is useful for assessing the robustness

of conclusions on TE.

Since the object of interest is the LATE*, when considering policy changes that do not

change the potential outcomes and unobservables, it suffices to characterize the proportions

of original groups becoming C∗ in the counterfactual environment. Hence, the counterfactual

policy environment is characterized by the four extrapolation parameters qC∗|G, denoting the

proportion of the original groups switching into our group C∗ of interest. Using this setup,

LATE and ATE are special cases of the LATE*: LATE is the LATE* without extrapo-

lation, and ATE is the LATE* when everyone switches into C∗.8 Nonetheless, in many

counterfactual policies of interest, such as increasing the instrument strength or increasing

8Observe that there is no gain in using sensitivity analysis for ATE, as observed by Kitagawa (2021),
because the bounds are the widest when the proportion of defiers is the smallest.
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treatment propensity, only qC∗|N and qC∗|C matter, as these counterfactual environments

imply qC∗|A = 0 and qC∗|D = 0.9 I provide two examples.

Example 3.1. (Changing Instrument Value). In Duflo and Saez (2003), people were ran-

domly given a letter that gave them $20 if they attended the meeting, but they could have

been given $30 instead. This counterfactual corresponds to changing the instrument value

(Z), say from 1 to 2. Researchers were interested in the effect of the meeting (T) on taking

up a pension plan (Y). Here, T ∗(0) = T (0). The counterfactual compliers are those with

T ∗(2) = 1, T ∗(0) = 0. Groups with T (0) = 0 are the original compliers and never-takers, so

only C and N can become the counterfactual C∗ group.

Example 3.2. (Changing Treatment Propensity). A policy may subsidize childcare in the

Angrist and Evans (1998) context: regardless of a couple’s gender preference, the probability

of having a third child increases, i.e., T ∗(z) ≥ T (z). Researchers were interested in the effect

of a third child (T) on labor force participation (Y), and T is instrumented by first two kids

having the same sex (Z). The counterfactual compliers are those with T ∗(1) = 1, T ∗(0) = 0.

Since the policy weakly incentivizes treatment, individuals in C∗ must have had T (0) = 0 in

the original environment, which can only include the original C and N groups.

While we have not seen people respond to the counterfactual incentives, we have seen

people respond to other incentives. If we put bounds on the fraction of people who respond to

the counterfactual environment but not the original, we can make progress. To bound such

fractions, some economic reasoning is required for how the environment maps to the fraction:

in Duflo and Saez (2003), we require a mapping from the financial incentive to fraction of

9Recent literature that deal with counterfactual environments as in Carneiro et al. (2010), Carneiro et al.
(2011) and Mogstad et al. (2018) consider three counterfactual policies. These policy counterfactuals are in
the class considered by Heckman and Vytlacil (2005), which involves policies that do not affect the marginal
treatment response of T on Y . Their policy counterfactuals include (i) Additive α change in propensity score
with the same instrument value (ii) Proportional 1+α change in propensity score with same instrument (iii)
Additive α shift of the jth component of Z, so Z∗ = Z + αej and p∗(x, z) = p(x, z). Changing the value of
the instrument corresponds to policy type (iii) and monotonically changing the probability of being treated
corresponds to (i) and (ii), so I group the first two together.
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people changing their behavior; in Angrist and Evans (1998), we require a mapping from the

subsidy amount to the fraction.

Remark 3.4. (Relation to extrapolation in Marginal Treatment Effects framework). Without

monotonicity, T = 1[ν(Z, u) ≥ 0] for some ν(.). The counterfactual policies map to (1)

Change the value of the instrument so T ∗ = 1[ν(Z∗, u) ≥ 0]; and (2) Change the threshold

for everyone so T ∗ = 1[ν(Z, u) ≥ −α], increasing treatment propensity. I defer details to

Section 3.3.2.

The objective is hence LATE∗ = E[Y (1)−Y (0)|g ∈ {CC∗, NC∗}], which can be written

as a linear function of µGG∗ . The sensitivity restrictions may be constructed analogously,

where λ restricts the proportion in both the original and counterfactual environments. For

instance, when increasing the treatment propensity, the defier restrictions are:

qDD∗ + qDA∗ ≤ λ(qCC∗ + qCA∗), and

qDD∗ + qND∗ ≤ λ(qCC∗ + qNC∗).

(3.10)

This problem can then be written in the form of the linear program in Section 3.2,

which uses an inner linear program R(q) that is cheap, and an outer problem that optimizes

over q. The implementation for the threshold crossing counterfactual is explained in the

next subsection; the implementation for changing the instrument value is analogous, and is

explained in Appendix 3.A.1.

3.3.1 Treatment Propensity Implementation

To show how the framework of Section 3.2 applies, it suffices to specify the following: (i)

the objective function (ii) what the groups g are (iii) linear restrictions for µ in the inner

problem (iv) the constraint set for q in the outer optimization problem. Item (i) is LATE*,

so the rest of this subsection explains the other items.
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In our policy counterfactual, A will still be A∗. C can remain C∗, or they can become

A∗ when the policy is strong enough to shift their Z = 0 treatment to T = 1. The same

argument applies to D. Finally, consider the N group. If the policy is weak, they would

remain N∗. The policy may affect the outcome for only either Z = 0 or Z = 1, which

changes their response behavior to D∗ or C∗. The policy may also be strong enough to get

the N group to T = 1 regardless of the instrument. Then, N can change their behavior to

N∗, C∗, D∗, or A∗.

Although there are 9 response types, if the researcher does not wish to impose restrictions

on qGG∗ that affects the sensitivity inequalities, we can essentially deal with 6 response groups

(A,CA∗, CC∗, D,NC∗, NC ′∗), where NC ′∗ denotes the set of groups that switch from N to

anything but C∗ in the counterfactual policy environment, and D is the cell that collects

all types who were defiers in the original environment. To be precise, define the following

objects when there are 9 treatment response groups:

LATE∗ =
qCC∗(µCC∗1 − µCC∗0) + qNC∗(µNC∗1 − µNC∗0)

qCC∗ + qNC∗
,

q = (qA, qCA∗ , qCC∗ , qDA∗ , qDA, qNA∗ , qNC∗ , qND∗ , qNN∗)′,

R
TC

(q) := max
µ∈MTC

m (q)
LATE∗, and

MTC
m (q) :=

µ ∈ [0, 1]18 :
∑

g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z] ∀z ∈ {0, 1}, t ∈ {0, 1}

 .
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When there are 6 treatment response groups,

R̃(q̃) := max
µ̃∈M̃m(q̃)

LATE∗,

q̃ := (qA, qCC∗ , qCC′∗ , qD, qNC∗ , qNC′∗)′,

µ̃ := (µA1, µA0, µCC∗1, µCC∗0, µCC′∗1, µCC′∗0, µD1, µD0, µNC∗1, µNC∗0, µNC′∗1, µNC′∗0)
′, and

M̃m(q̃) =

µ ∈ [0, 1]12 :
∑

g:T (z)=t

q̃gµgt = ptzE[Y |T = t, Z = z] ∀z ∈ {0, 1}, t ∈ {0, 1}

 .

Proposition 3.1. Consider q = (qA, qCA∗ , qCC∗ , qDA∗ , qDA, qNA∗ , qNC∗ , qND∗ , qNN∗)′. If

qCC′∗ = qCA∗, qD = qDA∗ + qDA, and qNC′∗ = qNA∗ + qND∗ + qNN∗, then R
TC

(q) = R̃(q̃).

Proposition 3.1 tells us that the bound for our object of interest does not change when we

solve the 6 response group problem instead of the 9 response group problem, as long as we

use the minimal constraint set MTC
m (q) for µ. The proof proceeds by using the observation

that LATE∗ is a function of (qCC∗ , qNC∗ , µCC∗1, µCC∗0, µNC∗1, µNC∗0). Then, it remains to

argue that both optimization problems place the same restrictions on those parameters.

Finally, we can consider the constraint set on q. There are two restrictions in the form of

(3.5); two restrictions based on the chosen qC∗|C , qC∗|N as qC∗|G = qGC∗/(
∑

H∗∈Gcf
qGH∗); and

probabilities must sum to one. In addition to the five linear equality restrictions, sensitivity

restrictions (3.10) must be satisfied. By using the linear equality restrictions, we only need

to optimize over a single parameter in the outer problem with q. To see this result, there

are 5 linearly independent restrictions involving q, and we can also write qD = qD as a

trivial relationship. Hence, using a system of 6 equations and 6 unknowns in q, for a given

environment, once we know qD, we know the rest of the q vector. Details are in Appendix

3.A.2. Consequently, bounds on LATE* can be obtained by solving a cheap linear program

in µ in the inner loop with a one-dimensional optimization over qD in the outer loop.
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Figure 3.3.1: Separable Selection Equation

The next subsection gives examples of selection equations that justify treatment response

groups. It can be skipped without loss of continuity.

3.3.2 Example of Selection Equations

In counterfactual environments, we could augment ν(Z, u) in Mogstad et al. (2018) to account

for defiers, but it is difficult to do so without more structure on how defiers feature in the

selection equation. Since characterizing the counterfactual environment based on groups

is new, it is instructive to consider how this approach relates to selection equations. In

particular, I show how selection equations under monotonicity with a binary instrument

maps to groups in the counterfactual environment. I then use that intuition to explain

what happens with a nonseparable selection equation. To begin, I consider the case without

defiers, so the selection equation is given by T = 1[ν̃(Z) ≥ u], where u ∼ U [0, 1]. Since Z is

binary, ν̃(Z) can only take two values, and the environment is illustrated in Figure 3.3.1.
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Figure 3.3.2: Nonseparable Selection Equation

In Figure 3.3.1, panel (i) illustrates the original environment, so low values of u are

always-takers, those with middle values of u are compliers and those with high values of u

are never-takers. Since u is uniformly distributed, qA = ν̃(0), qC = ν̃(1)− ν̃(0), qN = 1− ν̃(1).

In panel (ii), we have a counterfactual environment where the threshold is shifted by α such

that T ∗ = 1[ν̃(Z) + α ≥ u]. Consequently, the A∗, C∗, N∗ groups are defined by the new

cutoffs at ν̃(0) + α and ν̃(1) + α. Panel (iii) combines the groups from panels (i) and (ii):

for instance, the CA∗ group are observations with u ∈ [ν̃(0), ν̃(0) + α], as they would have

been compliers in the original environment, but always-takers in the new environment. With

monotonicity, α has a natural interpretation in that propensity for treatment is increased

by α. With the existing illustration, there is no NA∗ group, because α is small. When α

is large enough, we will have a scenario like panel (iv), where, by doing a similar analysis

as before, an NA∗ group exists, but we no longer have a CC∗ group. A corollary is that,
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under monotonicity, we can only either have NA∗ or CC∗, but not both. In the empirical

application, I have a relatively small α, so I have the CC∗ group.

When monotonicity fails, we have a nonseparable selection equation T = 1[ν(Z, u) ≥ 0],

u ∼ U [0, 1]. One possible ν(.) function that can generate a nontrivial proportion of defiers

(though not unique or interpretable) is as follows:

ν(Z, u) = 1

[
u ≤ 2

3

]
sin

(
3uπ − 3

2
Zuπ

)
+ 1

[
u >

2

3

]
sin (6uπ − 6π − Z (3uπ − 3π)) .

(3.11)

The ν(Z, u) is application-specific. The goal here is not to argue for the empirical relevance

of any particular ν(Z, u), but to show that there exists such a function that rationalizes the

group formulation. This function is more clearly illustrated in Figure 3.3.2 in panel (i). The

solid nu0 line plots ν(0, u) while the dashed nu1 line plots ν(1, u). For u < 1/3, both the

solid and dashed lines are above 0, so they form the A group. For u ∈ [1/3, 2/3], only the

dashed line is above zero, so they would be treated when Z = 1 and untreated when Z = 0,

so they are the C group. By doing the same analysis, u ∈ [2/3, 5/6] are the defiers and

u ∈ [5/6, 1] are the never-takers. Panel (ii) illustrates the counterfactual environment where

T ∗ = 1[ν(Z, u) + α ≥ 0], which shifts the ν function up by α = 0.5, but the shape remains

unchanged. In this non-monotonic environment, α is less interpretable. By looking at the

regions where the dashed and solid lines are above or below 0, we can work out the new

A∗, C∗, D∗, N∗ groups. Panel (iii) combines the old and new groups from the previous panels

to illustrate the region of u values that form the 9 treatment response groups. Unlike the

separable case, it is possible to generate all 9 groups simultaneously.

If the researcher has a selection function ν in mind, such as (3.11), then it is possible

to analytically derive the intercepts of the relevant curves and hence the q vector. With q

known, bounds can be obtained conveniently using the linear program. Instead of estimating

ν(Z, u) or imposing additional assumptions on ν, the approach in this paper transparently

makes assumptions on the q vector by using qC∗|C , qC∗|N as extrapolation parameters.
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3.4 Empirical Application

In the Angrist and Evans (1998) problem, we are interested in the effect of a third child (T)

on women’s labor force participation (Y), and the instrument is whether the first two kids

are of the same sex (Z). All variables are binary. Defiers are parents who have a preference

for either two boys or two girls. Following Angrist and Evans (1998), I focus on the 1990

IPUMS data for mothers.10 This empirical application illustrates how sensitivity analysis

bridges the two extremes of monotonicity and worst-case bounds for LATE and LATE*,

giving bounds at intermediate values of λ. The bounds vary continuously with λ, and are

sensitive to failures of monotonicity. As a benchmark, De Chaisemartin (2017) argues that

5% of defiers is a conservative upper bound, which translates to λ = 0.44. Further, qD = 0

is in the confidence interval constructed by Noack (2021).

We have n = 380007 observations and the proportions are given by P̂r(Z = 1) = 0.504,

P̂r(T = 1|Z = 1) = 0.402 and P̂r(T = 1|Z = 0) = 0.339. Hence, the first stage is

0.063. Suppose we are interested in a counterfactual environment where there is a childcare

subsidy that has a marginal effect on the probability of a third child. Here, LATE∗ =

E[Y (1)−Y (0)|C∗] is the TE for people who used to be C and remain C∗, and people who were

N but become C∗ when there is a childcare subsidy. The units in the CC∗ group have very

strong preference for gender balance, and are hence unmoved by the subsidy, and the units

in the NC∗ group may be interpreted as those with weak preference for gender balance, but

need a sufficient financial incentive to have a third child. Since existing papers (e.g., Carneiro

et al. (2010)) calculate counterfactual effects at the margin i.e., qC∗|C → 1, qC∗|N → 0, I use

qC∗|C = 0.99, qC∗|N = 0.01 to mimic their approach. This environment can also be interpreted

as a 1% change in the relevant proportions.

10The baseline implementation follows their Table 5 where no additional covariates were included. The
implementation with covariates follows their Table 8(2).
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Figure 3.4.1: Plot of LATE∗ = E[Y (1) − Y (0)|C∗] bounds against λ without covariates

Impose −0.3 ≤ µg1 − µg0 ≤ 0 for all g. LATE has qC∗|C = 1, qC∗|N = 0 so there is no extrap-
olation; LATE* has qC∗|C = 0.99, qC∗|N = 0.01. The red horizontal line is the OLS benchmark of
-0.134.

Figure 3.4.1 presents the main result for sensitivity analysis. I impose the condition that

−0.3 ≤ µg1 − µg0 ≤ 0 for all g, which is reasonable when the researcher believes that the

TE for all groups is negative, and the data informs us how negative this TE is. With the

OLS benchmark of −0.134, TE of −0.3 (which is more than twice the OLS benchmark)

is a conservative a priori lower bound. Since the intersection of convex sets is convex, the

additional a priori restriction of µg1 − µg0 ∈ [−0.3, 0] satisfies the conditions of Theorem

3.1.11 Only estimated bounds are presented, and issues on inference are omitted.

The OLS estimate of −0.134 is a benchmark for how informative the bounds are. In-

struments are used in this context because we believe that OLS is downward biased: there

are unobservable characteristics where people who are more likely to have a third child are

also those who are less likely to work. Since IV is used to correct this downward bias,

11µg1 − µg0 ∈ [−0.3, 0] is the intersection of half planes, which is convex.
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Figure 3.4.2: Plot of LATE∗ = E[Y (1) − Y (0)|C∗] bounds against λ with covariates

Impose −0.3 ≤ µg1 − µg0 ≤ 0 for all g. LATE has qC∗|C = 1, qC∗|N = 0 so there is no extrap-
olation; LATE* has qC∗|C = 0.99, qC∗|N = 0.01. The red horizontal line is the OLS benchmark of
-0.164. Covariates include age of mother, age at first birth, gender of the first two kids, and race
indicators for white, black, and hispanic.

when the lower bound of the identified set hits the OLS estimate, the procedure is no longer

informative about correcting the downward bias.

The curve labeled LATE is the original policy environment (i.e., no extrapolation). At

λ = 0, there is point identification, resulting in the original LATE of −0.083. It is evident

here that, even without extrapolating, bounds can be very wide (and uninformative) when

monotonicity does not hold, but sensitivity analysis allows us to obtain the intermediate

points. The lower bound of the LATE is above OLS for λ ≤ 0.2, but it becomes uninformative

for λ ≥ 0.25. Hence, we can conclude that the LATE bounds are informative only for small

values of λ. In the special case where the minimal constraint set Mm is imposed, the LATE

bounds are linear in λ, a result in Noack (2021).

The counterfactual environment labeled LATE* with qA∗|C = 0.01, qC∗|N = 0.01 incen-

tivizes both groups into treatment. When qNC∗ is nonzero, the worst-case bounds of {−0.3, 0}
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are imposed for µNC∗1−µNC∗0, and the bounds are no longer linear in λ. When monotonicity

holds, the identified set is [−0.103,−0.0737], which is informative; the bounds become unin-

formative for λ ≥ 0.2. When we relax the sensitivity parameter, the upper bound eventually

gets close to the trivial upper bound of 0. The numerical bounds on LATE* depend on the

extrapolated environment: if we had extrapolated more, the LATE* at λ = 0 can be much

wider than LATE at λ = 0.1. Hence, the bounds are informative only for small violations of

monotonicity, and a counterfactual environment that differs locally.

The curve in Figure 3.4.2 uses the same set of covariates as in Angrist and Evans (1998).

Implementing the procedure in Section 3.C yields the curve in Figure 3.4.2. The result is

qualitatively similar to Figure 3.4.1, but the magnitudes differ when controls are included.

When there is no extrapolation and monotonicity holds, we point identify the TSLS estimand

from the original study. As we extrapolate the environment and allow λ to increase, we obtain

bounds on the LATE* that widen. The λ required before the result is uninformative is also

higher than the setting without covariates.

3.5 Conclusion

This paper shows how policy relevant treatment parameters, including LATE and LATE*,

can be partially identified with a sensitivity parameter that controls the extent monotonicity

fails. Identification uses assumptions on proportions of the population that have a particular

response to the instrument instead of assumptions on the outcome function. This paper

impacts empirical practice by providing a novel tool: sensitivity analysis of PRTP to failures

of monotonicity, even for various treatment effects in extrapolated environments and when

covariates are present. Depending on the empirical application, it may be more sensible to

construct some structural model on selection ν(Z, u) (e.g., Chan et al. (2022)) instead of

parameterizing the problem based on E[Y (d)|g]. Having a structural model is application-

specific and left for future work.
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Appendix

3.A Details on LATE*

3.A.1 Changing Instrument Value

Suppose we have a counterfactual instrument value Z∗. For illustration, I extrapolate the

instrument rightward: in the original study, we have Z ∈ {0, 1}, but now we have Z∗ = 2.

The reasoning is similar if we wish to interpolate the instrument, or extrapolate leftward.12

For every original group G ∈ {A,C,D,N}, individuals can have two possible responses at

Z∗ = 2, resulting in 8 treatment response groups, given by (T (0), T (1), T ∗(2)).

LATE* is the TE for the compliers in the counterfactual environment. Since LATE is

defined on an instrument pair, we have to consider which instrument pair the researcher

is referring to. In the right-extrapolation exercise, one of the instrument values is Z = 2

that we do not have data for, so the LATE* can be defined either at the (0, 2) pair or the

(1, 2) pair. In the Duflo and Saez (2003) running example, we ask what the LATE of the

experiment would have been if we had given people $30 instead of $20. This corresponds

to the (0, 2) pair, because the control group still did not receive any financial incentive,

and the treatment group simply received a larger incentive. Hence, T ∗(0) = T (0). In

the right-extrapolation setup, compliers are those who switch their treatment status from

12Interpolation in Duflo and Saez (2003) with a $20 incentive would ask what the LATE is if $10 had
been offered.
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0 to 1 at the 0-2 instrument margin. This would be groups (0,0,1) and (0,1,1). Thus,

LATE∗ = E[Y (1)−Y (0)|g ∈ {(0, 0, 1), (0, 1, 1)}]. We can write this using the c(q)′µ notation

for the objective function:13

LATE∗ = E[Y (1) − Y (0)|g ∈ {(0, 0, 1), (0, 1, 1)}] =
∑
g,t

cgt(q)µgt = E[Y (1) − Y (0)|C∗].

The four observed distributions will now each be a mixture of four extrapolated groups.

Namely, in T = 0, Z = 0, we originally had N and C. When extrapolating rightward, the

original N consists of (0, 0, 0) = NN∗ and (0, 0, 1) = NC∗ while the original C consists of

(0, 1, 1) = CC∗ and (0, 1, 0) = CN∗. Groups such as NA∗ cannot exist in this environment.

Hence, the distribution Y |T = 0, Z = 0 now contains a mixture of four groups (0,0,0), (0,0,1),

(0,1,1) and (0,1,0). Given q, M(q) is well defined by mean compatibility as before, specialized

to our binary context, and using only the information from the original environment that

we have data for:

MEx
m (q) :=

µ ∈ [0, 1]16 :
∑

g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z] ∀z ∈ {0, 1}, t ∈ {0, 1}

 .

(3.A.1)

It remains to consider what Q(λ) is with extrapolation. For the extrapolation parameter,

observe that qC∗|A = qC∗|D = 0 by construction, so we only have to consider qC∗|C and qC∗|N .

To make the extrapolated environment comparable with and without monotonicity, we can

set qN∗|C = 0, so qC∗|C = 1. This rules out the (0, 1, 0) group, which has defiers at the 1-2

margin. Hence, the only extrapolation parameter is qC∗|N = Pr((0, 0, 1)|N). At the 0-1 and

13The interpretation for the LATE* is the TE of the meeting for people who are somewhat sensitive
to financial incentives: this group includes (0,0,1) who are less sensitive to the incentive than the original
compliers who are (0,1,1). The coefficient takes the form:

cgt(q) =


(−1)1−tq(0,0,1)
q(0,0,1)+q(0,1,1)

if g = (0, 0, 1)
(−1)1−tq(0,1,1)
q(0,0,1)+q(0,1,1)

if g = (0, 1, 1)

0 otherwise

.
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1-2 instrument margins, sensitivity restrictions are:

q(1,0,0) + q(1,0,1) ≤ λ(q(0,1,1) + q(0,1,0)), and

q(0,1,0) + q(1,1,0) ≤ λ(q(0,0,1) + q(1,0,1)).

(3.A.2)

Hence, the constraint set is:

QEx
m (λ; qC∗|N) =

{
q : Eq. (3.5) and (3.A.2),

q(0,0,1)
q(0,0,1) + q(0,0,0)

= qC∗|N , q(0,1,0) = 0

}
. (3.A.3)

Corollary 3.1. Suppose µgt is finite for all g, t. Then, using M(q) = M∗
m(q) and Q(λ) =

QEx
m (λ), the identified set for the LATE* is an interval.

Extrapolation is characterized by q, so the analysis here does not depend on the value

of Z. Regardless of whether the counterfactual Z is 1.1 or 100, the same argument from

extrapolating rightward applies. Instead, the approach parameterizes the extent of extrapo-

lation by the q vector. Namely, Z = 1.1 is an environment that is very similar to the original

policy, so we expect qC∗|N close to zero. In contrast, with Z = 100, or a very different

propensity score, it is analogous to a large extrapolation with qC∗|N close to 1. For instance,

this could be a monetary incentive, so having a large incentive would move all N into taking

up treatment.

Remark 3.5. When LATE* is defined as the TE on some subpopulation, we can use the

same method to obtain TE on other subpopulations that are potentially more interesting.

For instance, (1,0,1) is the group that are defiers at the $0-$20 margin, and compliers at

the $20-$30 margin in Duflo and Saez (2003). Behavioral studies on fund raisers in Gneezy

and Rustichini (2000) show such behavior exist, where giving a bit of financial incentive

disincentivises intrinsic effort, but offering a large financial incentive increases their effort.

LATE* answers: For people with such behavioral responses, what is their take-up rate of a

pension plan?
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Remark 3.6. (Overpowering Experiments). Having a large incentive, say $100 in the Duflo

and Saez (2003) experiment, can incentivize many people into treatment (the meeting). But

this also includes people who go just for the money rather than because they are interested

in the pension plan. If the incentive were $5 instead, the LATE of information on taking up

the pension plan is likely larger, since this excludes the people who are not interested in the

plan. Exercise in extrapolation places bounds on what the results of the experiment would

have been if it had been designed differently.

3.A.2 Unified Econometric Approach

This section explains how the multi-dimensional optimization in the outer loop over the

vector q in the two different counterfactual environments can be simplified into a one-

dimensional optimization problem in the outer loop. The inner loop is then a function

of this one-dimensional parameter, and solves a linear program. Hence, estimation of the

bounds is tractable. The treatment propensity counterfactual is explained in Section 3.3.1.

There is an analogous result in the counterfactual that changes the instrument value. For

right extrapolation, with MEx
m (q) as defined in (3.A.1), define:

R
Ex

(q) = max
µ∈MEx

m (q)
LATE∗ = max

µ∈MEx
m (q)

q(0,0,1)(µ(0,0,1),1 − µ(0,0,1),0) + q(0,1,1)(µ(0,1,1),1 − µ(0,1,1),0)

q(0,0,1) + q(0,1,1)
.

Lemma 3.1. Consider q = (q(0,0,0), q(0,0,1), q(0,1,0), q(0,1,1), q(1,0,0), q(1,0,1), q(1,1,0), q(1,1,1)). If

qA = q(1,1,0) + q(1,1,1), qCC∗ = q(0,1,1), qCC′∗ = q(0,1,0), qD = q(1,0,0) + q(1,0,1), qNC∗ = q(0,0,1), and

qNC′∗ = q(0,0,0), then R
Ex

(q) = R̃(q̃).

With Proposition 3.1 and Lemma 3.1 telling us that the inner loop of the two counter-

factual programs can be solved using a 6-parameter problem, the main result of this section

is:
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Theorem 3.3. With scalar qD, there exists an invertible matrix J and vector v(qD) that are

known functions of (qD, ptz, qC∗|G) such that:

max
q∈QTC

m (λ)
R

TC
(q) = max

qD∈QTC
d (λ)

R̃(J−1v(qD)), and (3.A.4)

max
q∈QEx

m (λ)
R

Ex
(q) = max

qD∈QEx
d (λ)

R̃(J−1v(qD)), (3.A.5)

where

QTC
d (λ) =

{
qD ∈ [0, 1] : qD ≤ λ(p00 + p11 − 1)

1− λ

}
, and (3.A.6)

QEx
d (λ) = QTC

d (λ) ∩
{
qD :

1− (p00 + p11 − qD)(1− qC∗|C)− 2qC∗|C

−2 + qC∗|C
≤ λ

(
qD +

−1 + p11 + qC∗|N + qD

−2 + qC∗|N

)}
.

(3.A.7)

The result for the minimum is analogous.

The upshot of Theorem 3.3 is that bounds on the object of interest such as maxq∈QTC
m (λ) R

TC
(q)

can be obtained by solving a one-dimensional optimization problem in qD instead of a multi-

dimensional problem. Observe that we are using the same R̃, J , and v(qD) in both problems,

so the inner problem is econometrically identical. Further, R̃(q̃) is a linear program in µ̃, so

it can be solved efficiently. To prove this result, first use the previous two lemmas to obtain

equivalence in the inner program. Then, observe that there are 5 linearly independent

equality constraints in the q̃ problem, so once qD is known, q̃ = J−1v(qD) is known. Their

expressions are provided in the proof in Appendix 3.D. The remaining constraint set for qD

comes from sensitivity restrictions that have been set up differently.
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3.B Inference

Using Theorem 3.3, there are six groups when using Mm and Qm: (A,CA∗, CC∗, D,NC∗, NC ′∗).

Proportion restrictions on ptz yield:

E[(qCC∗ + qCA∗ + qNC∗ + qNC∗′ − (1 − T ))(1 − Z)] = 0, and

E[(qCC∗ + qCA∗ + qA − T )Z] = 0.

(3.B.8)

Mean compatibility constraints are:

E

[(
qNC∗µNC∗0 + qNC′∗µNC′∗0 + qCC∗µCC∗0 + qCA∗µCA∗0

qNC∗ + qNC′∗ + qCC∗ + qCA∗
− Y

)
(1 − T )(1 − Z)

]
= 0,

E

[(
qAµA1 + qDµD1

qA + qD
− Y

)
T (1 − Z)

]
= 0,

E

[(
qNC∗µNC∗0 + qNC′∗µNC′∗0 + qDµD0

qNC∗ + qNC′∗ + qD
− Y

)
(1 − T )Z

]
= 0, and

E

[(
qAµA1 + qCA∗µCA∗1 + qCC∗µCC∗1

qA + qCA∗ + qCC∗
− Y

)
TZ

]
= 0.

(3.B.9)

Finally, there are inequality constraints imposed by a binary outcome, and further re-

strictions on the q’s imposed by the sensitivity parameter:

0 ≤ µgt ≤ 1, 0 ≤ qg ≤ 1, qD ≤ λ(qCC∗ + qCA∗),
∑
g

qg = 1,

qCC∗

qCC∗ + qCA∗
= qC∗|C , and

qNC∗

qNC∗ + qNC′∗
= qC∗|N .

(3.B.10)

In general, with moment equalities and inequalities, algorithms such as Andrews and

Soares (2010) can be applied. In this application, uncertainty from the data only features in

moment equalities of (3.B.8) and (3.B.9), so I proceed only with moment equalities.

Parameters are denoted θ := (q′, µ′)′. Let m(θ) = 0 denote the moment conditions of

(3.B.8) and (3.B.9), where m(θ) is the vector of expectations, and let m̂(θ) be the sample ana-
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log. Under standard CLT assumptions,
√
n(m̂(θ)−m(θ))

d−→ N(0,Ω), where Ω is the variance

covariance matrix for the moment conditions. Since m(θ) = 0, T (θ) := nm̂(θ)′Ω−1m̂(θ)
d−→ χ2

6

for the test statistic T (θ). The χ2 distribution has 6 degrees of freedom because there are 6

moment conditions. We do not reject θ if T (θ) ≤ χ2
6(1 − α) =: cα for a size α test, where cα

denotes the critical value. Since Ω can be consistently estimated, plug in the sample analog

Ω̂ to use feasible test statistic T̂ (θ) := nm̂(θ)′Ω̂−1m̂(θ)
d−→ χ2

6 for inference.

Finally, to calculate the upper bound for the confidence interval, solve the following

problem:

max
θ:=(q′,µ′)′

c(q)′µ s.t. T̂ (θ) ≤ cα, and θ satisfies Eq. (3.B.10). (3.B.11)

Calculating the lower bound is analogous. This problem corresponds to having a partially

identified θ that is in confidence set Cθ, and we are interested in the confidence set (CS) of

g(θ) = c(q)′µ, and in particular the extremum of the CS of g(θ). The procedure described

here is identical to the projection method described in Dufour (1997) Section 5.2 for obtaining

a CS for g(θ). These optimization problems can be implemented using canned packages.

3.C Extension to Incorporate Covariates

In many situations, the instrument is valid only conditional on covariates, and hence re-

searchers may wish to incorporate covariates into their model. Covariates W feature in

the model through Assumption 1, which would be: E[Y (t)|g, z,W ] = E[Y (t)|g,W ] and

Pr(g|z,W ) = Pr(g | W ) for all g, z,W . There are at least two ways that they can be in-

corporated. One way mimics Noack (2021, appendix A3): we can run the aforementioned

procedure at every covariate level w, then reweigh the bounds by the covariate masses. While

this procedure yields more restrictions and hence tighter bounds, it is computationally in-

tensive, requires the researcher to make an assumption on defier bounds and extrapolation
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parameters for every covariate value, and does not nest the two-stage least squares (TSLS)

estimand in general. It is also cumbersome when W is continuous. Without further assump-

tions, this is the only procedure available to the best of my knowledge.

Instead, I propose a second approach for the LATE*. With covariates and without

extrapolation, researchers run the TSLS regression as a standard practice. Hence, a goal

of the procedure is to nest TSLS with covariates as a special case without extrapolation

and when monotonicity holds, and I provide conditions under which such a procedure is

reasonable. This procedure allows some dependence of µgt and qg on W , and augments the

existing linear program.

Without extrapolation and with monotonicity, parametric assumptions are already re-

quired to interpret TSLS with heterogeneous treatment effects when there are covariates

(e.g., Blandhol et al. (2022)). In particular, theory has developed around interpreting TSLS

as some weighted average of LATE’s (i.e., weighted average of treatment effect of compliers

at different covariate values), but it is often not obvious why that particular weighting is the

most interesting. To circumvent the issue of which weighted average of LATE’s should be

targeted, I consider the environment where the treatment effect for compliers is the same at

all covariate values, motivating the assumption below.

To be clear on notation, linear regressions are run with a constant, and W does not

include the intercept term. T and Z are binary. Assume the following:

Assumption 3.4. (a) For g ∈ {CA∗, CC∗, NC∗, D}, qg = Pr (g|W1) = Pr (g|W2) for

all W1,W2, while for g ∈ {NC ′∗}, qg = αint
g + α′

gW . qA can depend on W flexibly.

q ∈ [0, 1]dq .

(b) µDt(W ) = ηDt + ξD (W ); for g ∈ {CA∗, CC∗, NC∗}, µgt(W ) = ηgt + ξ′gW ; for g ∈

{NC ′∗} µgt(W ) = ηgt + ξ′gtW . Finally, µAt(W ) can depend on W flexibly.

(c) E [Z|W ] = ξ̃int + ξ̃′W ∈ [0, 1].
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There are three parts to the assumption. Part (a) makes restrictions on the q vector; part

(b) makes restriction on the µ vector; part (c) ensures that linear projections are interpretable

as conditional expectations.

In Assumption 3.4(a), we cannot have qCA∗ , qCC∗ , qD depend on W so that the TSLS esti-

mand does not depend on W . When we are interested in the LATE*, we additionally cannot

have qNC∗ depend on W so that the target object LATE* does not depend on W . qNC′∗ is

linear in W so that the conditional expectation of Y |Z = 0, T = 0,W is quadratic in W .

Other parametric forms may be possible, but the expression of the conditional expectation

has to match accordingly. qA is allowed to depend on W flexibly, as it is differenced out in

the procedure.

The TE for g ∈ {CA∗, CC∗, NC∗, D} must be constant for all covariate values so that

the LATE* and the TSLS estimand do not depend on W . This requirement is denoted in

Assumption 3.4(b) as having the same ξg for treated and untreated potential outcomes so

that the treatment effect ηg1 − ηg0 does not depend on W . Having the same TE is required

even without extrapolation and with monotonicity so that TSLS identifies the unique LATE.

The functional form in µ(W ) is required in this paper’s framework so that we can match

coefficients and obtain a linear program. ξD (W ) can depend flexibly on W because it is not

used in coefficient matching. In contrast, for g ∈ {CA∗, CC∗, NC∗}, µgt(W ) is linear in W so

that the conditional expectation of Y |Z = 0, T = 0,W is quadratic in W . For g ∈ {NC ′∗},

µgt(W ) allows ξgt to vary by potential treatments, and its linearity is required for coefficient

matching. No restriction is required for µAt(W ).

Once qD and the extrapolation parameters qC∗|C and qC∗|N are fixed, the rest of the q

vector and α’s are point-identified. Details are in Appendix 3.D.3. With α and q point

identified, and p00(W ) := Pr [T = 0|Z = 0,W ], the assumption implies:

p00(W ) = αint
NC′∗ + α′

NC′∗W + qNC∗ + qCC∗ + qCA∗ ,
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and hence

p00(W )E [Y |Z = 0, T = 0,W ] = αint
NC′∗ηNC′∗0 + qNC∗ηNC∗0 + qCC∗ηCC∗0 + qCA∗ηCA∗0

+
(
ηNC′∗0α

′
NC′∗ + αint

NC′∗ξ′NC′∗0 + qNC∗ξ′NC∗ + qCC∗ξ′CC∗ + qCA∗ξ′CA∗
)
W + α′

NC′∗Wξ′NC′∗0W.

(3.C.12)

The object of interest can then be written as:

LATE∗ =
1

qCC∗ + qNC∗
(qCC∗ηCC∗1 + qNC∗ηNC∗1 − qCC∗ηCC∗0 − qNC∗ηNC∗0) .

Then, the proposed algorithm for finding LATE* uses the following steps (S):

S1. Run TSLS regression with the full set of controls W to obtain the TSLS estimand β.

S2. Calculate the sample analogs of q and α based on the identification argument of Ap-

pendix 3.D.3 to construct p00(W ). Using the partition on T = 0, Z = 0, run the

regression of p00(W )Y on 1, W , and (α′
NC′∗W )W . Denote the intercept as γ0.

S3. Set up the linear program, whose objective is LATE*, optimizing over parameters

η and appropriate a priori linear restrictions. Additionally, use the following linear

restrictions:

(a) β (qCA∗ + qCC∗ − qD) = qCC∗ (ηCC∗1 − ηCC∗0)+qCA∗ (ηCA∗1 − ηCA∗0)+qD (ηD0 − ηD1),

and

(b) γ0 = αint
NC′∗ηNC′∗0 + qNC∗ηNC∗0 + qCC∗ηCC∗0 + qCA∗ηCA∗0.

To see how this procedure is reasonable, first observe that S1 and S2 merely calculates

objects used in S3, so it suffices to motivate S3. When there is no extrapolation, the TSLS

estimand without covariates is given by [qC(ηC1−ηC0) + qD(ηD0−ηD1)]/(qC − qD). Since the

assumptions are constructed such that the TSLS estimand does not depend on W , S3(a) uses

an analogous expression for the TSLS that accommodates the counterfactual environment.
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S3(b) is motivated by (3.C.12). By regressing the left-hand side on W and a quadratic term,

the intercept term γ0 must match the structural objects described.

Due to the constraint in S3(a), the proposed algorithm collapses exactly to TSLS without

extrapolation and under monotonicity. We also use covariate information through S3(b).

3.D Proof of Results

3.D.1 Proofs for Section 3.2

Let b denote the target object, so for a given q, the set of feasible values in the inner problem

is:

B(q) = {b ∈ R : b = c(q)′µ for some µ ∈ M(q)}. (3.D.1)

Lemma 3.2. Under Assumption 1, suppose that M(q) is convex for some fixed q. Then,

either M(q) is empty and hence B(q) is empty, or the closure of B(q) is equal to the in-

terval [R(q), R(q)], defined in (3.8). Further, if M(q) can be written as a system of linear

inequalities in µ, both optimization problems are linear programs.

Proof of Lemma 3.2. Convex M(q) is either empty or nonempty. If M(q) is empty, then by

definition B(q) = ∅. Next, consider a nonempty M(q). Since a linear mapping of a convex

set also yields a convex set, and c(q)′µ is a linear map of µ, it follows that B(q) is a convex

set. Thus, any b ∈ [R(q), R(q)] must also be in B(q). Proving that optimization problems are

indeed linear programs is straightforward from its construction. The constraints are linear

in µ and the objective function is a linear function of µ.

Proof of Theorem 3.1. Proof for an empty Bλ is identical to the proof in Lemma 3.2. Only

consider nonempty M(q). The objective is to show that any b ∈ [β
λ
, βλ] is achievable for

some q ∈ Q(λ). For this, I first show first show that R(q) and R(q) are continuous in q.

Continuity of these objects can then be used to complete the argument.
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Apply Theorem 2 from Wets (1985) that the objective value of a linear program is con-

tinuous in its hyperparameters. The sufficient condition for the theorem is that the feasible

set in both the primal and dual linear programs are continuous in the hyperparameters. For

the dual problem, it is assumed that M(q) is bounded by Assumption 3(a), so Corollary

11 from Wets (1985) implies that the feasible set of the dual problem is continuous in the

hyperparameters. Turning to the primal problem, continuity in the hyperparameters is given

by Assumption 3(b). The conditions for the Wets (1985) theorem is hence satisfied. Then,

using Theorem 2 from Wets (1985), and the fact that the composition of continuous func-

tions is continuous, with c(q) continuous in q due to Assumption 3(c), R(q) and R(q) are

continuous in q.

It remains to show that any b ∈ [β
λ
, βλ] is achievable for some q ∈ Q(λ). Pick a point

q0 ∈ Q(λ) such that M(q0) is nonempty. This is guaranteed to exist because because we

work in the environment where ∃q ∈ Q(λ) s.t. M(q) is nonempty. Using Lemma 3.2, any

r ∈ [R(q0), R(q0)] can be satisfied by some µ ∈ M(q0). Since an analogous argument can

be made for [β
λ
, R(q0)], it suffices to show that for all b ∈ [R(q0), βλ], there exists some

q ∈ Q(λ) such that b = R(q). If R(q0) = βλ, the desired conclusion is immediate, so I focus

on R(q0) < βλ.

Let q be the q that achieves βλ i.e., βλ = R(q). With slight abuse of notation, let

[q0, q] denote the set of convex combinations on Rdq between q0 and q, so it is a convex

set. Since by Assumption 3(d) Q(λ) is convex, any q ∈ [q0, q] must also lie in Q(λ) and is

hence feasible. Since convex sets are connected, [q0, q] is connected. Using the fact that the

image of a connected set is connected for a continuous mapping, R([q0, q]) is a connected

set. Since R(q0) and R(q) are both feasible, and R(.) ∈ R, [R(q0), R(q)] ⊆ R([q0, q]). Hence,

∃q ∈ [q0, q] ⊆ Q(λ) such that R(q) ∈ [R(q0), R(q)].

The following lemma is used to prove Theorem 3.2.
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Lemma 3.3. Suppose that for any z, z′ ∈ Z ⊂ N , z > z′ implies Pr(T (z) = 1) ≥ Pr(T (z′) =

1). For any n1, n2 ∈ Z+ with n2 > n1 and z + n2 ∈ Z, if
∑

g∈Sd
(z,z+n1)

qg ≤ λ
∑

g′∈Sc
(z,+n1)

qg′

and
∑

g∈Sd
(z+n1,z+n2)

qg ≤ λ
∑

g′∈Sc
(z+n1,z+n2)

qg′, then
∑

g∈Sd
(z,z+n2)

qg ≤ λ
∑

g′∈Sc
(z,+n2)

qg′.

Proof of Lemma 3.3. The defiers at the (z, z + n2) margin switch exactly once: either at

(z, z +n1) or (z +n1, z +n2). Individuals who switch twice are either always takers or never

takers when looking at the (z, z + n2) margin. It also means that they will be compliers at

either one of the two margins and defiers at the other margin. This implies

S2 := Sd
(z,z+n2)

⊂ Sd
(z,z+n1)

∪ Sd
(z+n1,z+n2)

=: S1.

To be precise, S2 consists of defiers who switch exactly once, and S1\S2 consists of defiers

who switch twice, resulting in their being compliers at one margin.

Let q(.) be the probability measure on sets. By assumption, q(Sd
(z,z+n1)

) ≤ λq(Sc
(z,z+n1)

)

and q(Sd
(z+n1,z+n2)

) ≤ λq(Sc
(z+1,z+n2)

). Due to binary treatment, the sets Sd
(z,z+n1)

, Sd
(z+n1,z+n2)

are disjoint. Similarly, the sets Sc
(z,z+n1)

, Sc
(z+n1,z+n2)

are also disjoint. Summing the inequal-

ities,

q(S1) = q(Sd
(z,z+n1)

) + q(Sd
(z+n1,z+n2)

) ≤ λ(q(Sc
(z,z+n1)

) + q(Sc
(z+n1,z+n2)

)).

Consider the set Sc
(z,z+n1)

∪ Sc
(z+n1,z+n2)

. This set consists of compliers at the (z, z + n2)

margin (which implies Sc
(z,z+n2)

is a subset), and S1\S2. Namely, Sc
(z,z+n1)

∪ Sc
(z+n1,z+n2)

=

(S1\S2)∪Sc
(z,z+n2)

. Observe that Sc
(z,z+n2)

is the set of compliers who switch their treatment
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status exactly once in the correct direction. Then, the summed inequality is:

q(S2) + (q(S1) − q(S2)) ≤ λ(q(Sc
(z,z+n2)

) + q(S1) − q(S2))

⇒ q(S2) ≤ λq(Sc
(z,z+n2)

) − (1 − λ)(q(S1) − q(S2))

⇒ q(Sd
(z,z+n2)

) ≤ λq(Sc
(z,z+n2)

).

Proof of Theorem 3.2. The condition of Lemma 3.3 is satisfied due to how Z is defined. For

z′ > z, we can write z′ = z + l with l > 0. Thus, it is sufficient to show that
∑

g∈Sd
(z,z+l)

qg ≤

λ
∑

g′∈Sc
(z,z+l)

qg′ for any l ∈ Z+.

Prove by induction. Apply Lemma 3.3, using n1 = 1, n2 = 2. Since
∑

g∈Sd
(z,z+1)

qg ≤

λ
∑

g′∈Sc
(z,z+1)

qg′ and
∑

g∈Sd
(z+1,z+2)

qg ≤ λ
∑

g′∈Sc
(z+1,z+2)

qg′ , obtain
∑

g∈Sd
(z,z+2)

qg ≤ λ
∑

g′∈Sc
(z,z+2)

qg′ .

Suppose
∑

g∈Sd
(z,z+l)

qg ≤ λ
∑

g′∈Sc
(z,z+l)

qg′ , and we want to show
∑

g∈Sd
(z,z+l+1)

qg ≤

λ
∑

g′∈Sc
(z,z+l+1)

qg′ due to adjacency. Apply Lemma 3.3 with n1 = l, n2 = l + 1 to ob-

tain the result.

Proof of Proposition 3.1. The objective is to show maxµ∈MTC
m (q) LATE

∗ = maxµ̃∈M̃m(q̃) LATE
∗,

where LATE∗ is a function of (qCC∗ , qNC∗ , µCC∗1, µCC∗0, µNC∗1, µNC∗0).

Let h(µ) = µ4 := (µCC∗1, µCC∗0, µNC∗1, µNC∗0)
′ denote the function that extracts the

subvector µ4 from a higher-dimensional vector µ ∈ R18. Then, since LATE∗ only contains

µ4, maxµ∈MTC
m (q) LATE

∗ = maxµ4∈MTC
4 (q) LATE

∗, where

MTC
4 (q) =

{
µ4 : µ4 = h(µ), µ ∈ MTC

m (q)
}
.

Let h̃(.) similarly extract µ4 from µ̃ ∈ R12. Then, maxµ∈M̃m(q̃) LATE
∗ = maxµ4∈M̃4(q̃)

LATE∗:

M̃4(q̃) =
{
µ4 : µ4 = h̃(µ), µ ∈ M̃m(q̃)

}
.
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Hence, it is sufficient to show that M̃4(q̃) = MTC
4 (q) to obtain the result. Do change

of variables for MTC
m (q), with the given substitution for q. Then, the respective µ’s can be

redefined:

µNC′∗t =
1

qNC′∗
[qNA∗µNA∗t + qND∗µND∗t + qNN∗µNN∗t],

µDt =
1

qD
[qDA∗µDA∗t + qDD∗µDD∗t], and

µCC′∗t = µCA∗t.

Then, equality constraints characterized by
∑

G:T (z)=t qGµGt = ptzE[Y |T = t, Z = z]

are identical to those of M̃m(q̃). Since the counterfactual µ’s are weighted averages of the

original µ’s, the counterfactual µ’s in µ̃ must also lie in [0, 1], so MTC
4 (q) ⊆ M̃4(q̃). Then,

it is sufficient to show M̃4(q̃)\MTC
4 (q) = ∅. The set M̃4(q̃)\MTC

4 (q) contains values of µ4

where the µ’s in µ̃ are in [0, 1], but the individual components that construct the averages,

such as µDD∗t need not be in [0, 1]. However, restrictions on µ4 only occur through the

averages in the equality constraints, in addition to µ4 ∈ [0, 1]4. Thus, since the averages in

M̃4(q̃) and in MTC
4 (q) face the same constraints, µ4 face the same constraints in both sets.

Hence, M̃4(q̃)\MTC
4 (q) = ∅, which then implies M̃4(q̃) = MTC

4 (q).

3.D.2 Proofs for Appendix 3.A

Proof of Corollary 3.1. The condition satisfies Assumption 3(a). It is sufficient to check

other conditions of Assumption 3, then apply Theorem 3.1. Continuity of c(q) is immediate.

MEx
m (q) is convex because it is intersection of linear subspaces. To see that Q(λ) = QEx

m (λ)

satisfies convexity, take any two elements q0, q1 ∈ QEx
m (λ) with q0 ̸= q1. Form convex

combination q∗ = αq0 + (1 − α)q1, with α ∈ (0, 1). Taking the weighted sums of the

constraints on q0 and q1, q∗ ∈ QEx
m (λ) is immediate.
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Proof of Lemma 3.1. By redefining groups as stated, the proof is analogous to Proposition

3.1.

Proof of Theorem 3.3. By defining q̃ appropriately and applying Proposition 3.1 and Lemma

3.1, R
TC

(q) = R̃(q̃) and R
Ex

(q) = R̃(q̃).

Then, consider equality restrictions in QTC
m (λ) and QEx

m (λ). In both constraint sets,

there are 5 linearly independent restrictions, with 2 from p11 and p00, 1 from the fact that

probabilities sum to 1, and 2 from the extrapolation parameters. We can also write qD = qD

as a trivial relationship. Writing these 6 equations in matrix form, we have Jq̃ = v(qD),

where

J =



0 1 1 0 1 1

1 1 1 0 0 0

1 1 1 1 1 1

0 qC∗|C − 1 1 0 0 0

0 0 0 0 qC∗|N − 1 0

0 0 0 1 0 0


, and

v(qD) = (p00, p11, 1, qC∗|C , qC∗|N , qD)′.

Note that det(J) = 4 − 2qC∗|C − 2qC∗|N + qC∗|CqC∗|N = (2 − qC∗|N)(2 − qC∗|C) ̸= 0. Since

J is invertible, q̃ = J−1v(qD).

It remains to consider the inequality restrictions imposed by sensitivity parameters. In

MEx
m (q), the specific choice of qDD∗ and qND∗ makes restrictions on qCC∗ and qNC∗ . Since

qCC∗ and qNC∗ are arguments in the optimization problem, the optimum is found by using the

least restrictive setting for qCC∗ and qNC∗ . Due to Proposition 3.1, setting qDD∗ = qND∗ = 0

is innocuous. Then, qDD∗ + qND∗ ≤ λ(qCC∗ + qNC∗) is automatically satisfied. The only

relevant sensitivity restriction is qD = qDD∗ + qDA∗ ≤ λ(qCC∗ + qCA∗). Using the substitution
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in Proposition 3.1, and q̃ = J−1v(qD), the constraint set results. This constraint set will give

us the optimum, because the objective value has to perform weakly better with one fewer

constraint.

Turning now to QEx
m (λ), use the least restrictive values as before. One can set q(1,0,0) = 0

so qD = q(1,0,1), and upper bound at the 0-2 margin is the largest possible, while the inner

problem does not change. Then, the constraint at the 0-1 margin will be qD ≤ λ(p00+p11−1)
1−λ

by using the relevant substitutions and q̃ = J−1v(qD). With the relevant substitutions, and

setting q(1,1,0) = 0 (to create the most flexible constraint), the constraint at the 1-2 margin is

qCC′∗ ≤ λ(qNC∗ +qD). Finally, substitute q̃ = J−1v(qD) to obtain the required inequality.

3.D.3 Derivations for Appendix 3.C

p00(W )E [Y |Z = 0, T = 0,W ]

=
(
αint
NC′∗ + α′

NC′∗W
)

(ηNC′∗0 + ξ′NC′∗0W ) + qNC∗ (ηNC∗0 + ξ′NC∗W )

+ qCC∗ (ηCC∗0 + ξ′CC∗W ) + qCA∗ (ηCA∗0 + ξ′CA∗W )

= αint
NC′∗ηNC′∗0 + qNC∗ηNC∗0 + qCC∗ηCC∗0 + qCA∗ηCA∗0

+
(
ηNC′∗0α

′
NC′∗ + αint

NC′∗ξ′NC′∗0 + qNC∗ξ′NC∗ + qCC∗ξ′CC∗ + qCA∗ξ′CA∗

)
W

+ α′
NC′∗Wξ′NC′∗0W

First Stage Identification. Let the first-stage regression be T = πZ + θ0 + θ′W + v.

Then, the first stage estimand is:

π =
E [T (Z − E∗ [Z|W ])]

E
[
(Z − E∗ [Z|W ])2

]
=

E [E [Z|W ] (1 − E [Z|W ]) (E [T |Z = 1,W ] − E [T |Z = 0,W ])]

E [E [Z|W ] (1 − E [Z|W ])]
.
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Using Assumption 3.4(a),

E [T |Z = 1,W ] − E [T |Z = 0,W ] = qA(W ) + qCA∗ + qCC∗ − qD − qA(W )

= qCA∗ + qCC∗ − qD = π.

For a given qD and an extrapolation parameter qC∗|C , since π is identified, qCA∗ , qCC∗ , qD

are all identified. Since E [T |Z = 0,W ] − qD = qA(W ) = αint
A + α′

AW , by regressing T − qD

in the partition with Z = 0 on W , αint
A and αA are identified. Conversely,

1 − E [T |Z = 1,W ] = qNC∗ + qNC′∗ (W ) + qD

1 − E [T |Z = 1,W ] − qNC∗ − qD, and = qNC′∗ (W ) = αint
NC′∗ + α′

NC′∗W.

Observe that 1−E [T |Z = 1] = qNC∗ +E [qNC′∗ (W )]+qD. Since qD and qC∗|N are known,

qNC∗ is identified. Then, by regressing 1− T − qNC∗ − qD in the partition with Z = 1 on W ,

αint
NC′∗ and αNC′∗ are identified.

TSLS Estimand. Due to Assumption 3.4(c), the TSLS estimand is given by

β =
E [Y (Z − E∗ [Z|W ])]

E [T (Z − E∗ [Z|W ])]

=
E [E [Z|W ] (1 − E [Z|W ]) (E [Y |Z = 1,W ] − E [Y |Z = 0,W ])]

E [E [Z|W ] (1 − E [Z|W ]) (E [T |Z = 1,W ] − E [T |Z = 0,W ])]
.
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Then, due to Assumptions 3.4(a) and 3.4(b),

E [Y |Z = 1,W ] − E [Y |Z = 0,W ]

= qCC∗ (µCC∗1(W ) − µCC∗0(W )) + qCA∗ (µCA∗1(W ) − µCA∗0(W ))

+ qD (µD0(W ) − µD1(W ))

= qCC∗ (ηCC∗1 − ηCC∗0) + qCA∗ (ηCA∗1 − ηCA∗0) + qD (ηD0 − ηD1) , and

β =
qCC∗ (ηCC∗1 − ηCC∗0) + qCA∗ (ηCA∗1 − ηCA∗0) + qD (ηD0 − ηD1)

qCA∗ + qCC∗ − qD
.
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