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Abstract

This paper considers inference in a linear instrumental variable regression model with many

potentially weak instruments and heterogeneous treatment effects. I first show that existing test

procedures, including those that are robust to only either weak instruments or heterogeneous

treatment effects, can be arbitrarily oversized in this setup. Then, I propose a valid inference

procedure based on a score statistic and a leave-three-out variance estimator. To establish this

procedure’s validity, this paper proves that the score statistic is asymptotically normal and the

variance estimator is consistent. With heterogeneity, the score test is also the uniformly most

powerful unbiased test in the asymptotic distribution.

1 Introduction

Many empirical studies in economics involve instrumental variables (IV) models with many in-

struments. A prominent example is the judge design: several studies argue that judges or case

workers are as good as randomly assigned and can affect the treatment status, so they are used

as instruments to study the effects of foster care (Doyle, 2007), incarceration (Aizer and Doyle,

2015), detention (Dobbie et al., 2018), disability benefits (Autor et al., 2019), and prosecution

(Agan et al., 2023), among others. When the IV is a vector of indicators for judges, the number

of instruments can be large. Another example of many IV is a single instrument interacted with

discrete covariates. For instance, when Angrist and Krueger (1991) used the quarter of birth as

an instrument to study the returns to education, interacting the quarter of birth with the state of

birth can generate 150 instruments.

Recent econometrics research also suggests that many instruments should be used. With covari-

ates, Blandhol et al. (2022) show that the standard two-stage least squares (TSLS) estimator puts

negative weights on local average treatment effects (LATE), unless there is a parametric model or

the regression is fully saturated (i.e., where instruments are fully interacted with covariates). Fur-

ther, with a saturated regression, several jackknife estimators recover a positively weighted average
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of LATE’s. (Evdokimov and Kolesár, 2018; Chao et al., 2023; Boot and Nibbering, 2024) Unless

there are a few (or no) discrete covariates, fully interacting the instrument with covariates creates

many instruments, which further motivates the many IV setting.

Despite the pervasiveness and importance of this setting, there does not yet exist an inference

procedure that is robust to both heterogeneous treatment effects and weak instruments, which is

a gap this paper aims to fill. Weak instruments refers to a setting where no consistent estimator

for the object of interest exists; and heterogeneous treatment effects refers to a setting where

different subsets of the many IV may estimate different LATE’s. It is well-understood the standard

TSLS estimator for IV is inconsistent and its t-statistic test is invalid for inference in the many-

instrument environment (e.g., Bekker (1994); Bound et al. (1995); Donald and Newey (2001)).

While the jackknife IV estimator (JIVE) (e.g., Phillips and Hale (1977); Angrist et al. (1999);

Chao et al. (2012)) addresses the estimation problem, its t-statistic test does not solve the over-

rejection problem of TSLS due to weak IV. There are several recent proposals (Crudu et al., 2021;

Mikusheva and Sun, 2022; Matsushita and Otsu, 2022) that are robust to weak IV, but they assume

constant treatment effects. A separate literature (Evdokimov and Kolesár, 2018) proposed variance

estimators for the JIVE that are robust to heterogeneous treatment effects, but its t-statistic test

is still not robust to weak IV. While it is clear that weak IV can lead to substantial distortions in

inference (e.g., Staiger and Stock (1997)), it is less obvious if procedures developed under constant

treatment effects that are robust to weak IV are still valid with heterogeneous treatment effects.

In this paper, I first show that neglecting either heterogeneity or weak instruments can result

in substantial distortions in inference. Section 2 presents a simple simulation that has both weak

instruments and heterogeneous treatment effects. For a nominal 5% test, using the procedure

from Mikusheva and Sun (2022) (henceforth MS22) that is robust to weak instruments but not

heterogeneity can result in 100% rejection under the null, because their test statistic is not centered

correctly when there is heterogeneity. This result is attributed to how their test is a joint test of both

the parameter value and the null of no heterogeneity. Similarly, the procedure from Evdokimov and

Kolesár (2018) (henceforth EK18), which is robust to heterogeneity but not weak instruments, can

be severely oversized. Additionally, this section documents how an empirically common practice of

constructing a “leniency measure” that combines the many instruments and then using weak IV

robust procedures from the just-identified IV literature is invalid.

Given the stark simulation results, Section 3 proposes a procedure for valid inference. Following

the many instruments literature, the JIVE estimand is the object of interest — this estimand

can be interpreted as a weighted average of treatment effects when there is heterogeneity (e.g.,

EK18). Using weak identification asymptotics, I show that the Lagrange Multiplier (LM) (i.e.,

score) statistic, earlier proposed by Matsushita and Otsu (2022) under constant treatment effects,

is mean zero and asymptotically normal even with treatment effect heterogeneity. In fact, I prove

a stronger normality result that a set of jackknife statistics that includes the LM is jointly normal,

which is the first technical challenge of this paper. This normality implies that, as long as the

variance of LM is consistently estimable, a t-statistic can be calculated and critical values from the
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standard normal distribution are valid for inference. I prove that a leave-three-out (L3O) variance

estimator, motivated by the procedure in Anatolyev and Sølvsten (2023) for the OLS problem with

many covariates, is consistent. Consistency of L3O is the second technical challenge of this paper.

Even in an environment where the reduced-form coefficients are not consistently estimable, this

variance estimator consistently estimates the LM variance. Due to the generality of the setting

considered, beyond its robustness to weak IV and heterogeneity, the procedure proposed in this

paper is also robust to (i) heteroskedasticity, (ii) potentially few observations per instrument, and

(iii) potentially many covariates, so it retains the advantages of existing procedures in the literature.

Section 4 argues that the proposed LM procedure is powerful. In the environment with a fixed

reduced-form covariance matrix, I focus on a class of tests that are functions of a natural set of

statistics. Then, I show theoretically in the asymptotic distribution that the one-sided LM test

is the most powerful test for testing the null against any alternative from a well-defined set, and

that the two-sided LM test is the uniformly most powerful unbiased test for the interior of the

alternative space. Beyond the scope of the theory, numerical results also suggest that LM is close

to a power envelope in an empirical application.

Section 5 shows how the test can be inverted to construct a confidence set that can be expressed

in closed form. Simulation results in Section 6 suggest that the procedure is robust even with a small

number of instruments, and it is reasonably powerful. I also implement my proposed procedure

in the Angrist and Krueger (1991) quarter of birth application in Section 6, and show that the

confidence interval is wide, but their result is nonetheless significant.

This paper contributes to the following strands of literature. First, this paper contributes to a

growing literature on many weak instruments. There is a strand of literature dealing with many

instruments (e.g., Chao and Swanson (2005); Chao et al. (2012)) and another separate strand on

weak instruments (e.g., Staiger and Stock (1997); Stock and Yogo (2005); Lee et al. (2023)). While

recent work accommodates both simultaneously (e.g., Crudu et al. (2021); Mikusheva and Sun

(2022); Matsushita and Otsu (2022); Yap (2023); Lim et al. (2024)), its focus has been on the

linear IV model with constant treatment effects. This paper augments their setup by allowing for

heterogeneity in treatment effects.

Second, this paper contributes to the literature on heterogeneous treatment effects (e.g., Kolesár

(2013); Evdokimov and Kolesár (2018); Blandhol et al. (2022)). These papers provide conditions

where the coefficient of interest can be consistently estimated, and exploit that consistency to

conduct inference. In this paper, I operate in the (more general) weak IV environment so the object

of interest may not be consistently estimated, but I still have sufficient conditions for inference.

One paper that allows weak IV and heterogeneity is contemporaneous work in Boot and Nibbering

(2024), who study a single discrete instrument interacted and saturated with many covariates. Their

setup is a special case of the environment considered in this paper and the many weak instruments

literature, so it is unclear if their procedure generalizes to many instruments without covariates

(e.g., judges). Additionally, I characterize power properties of the score statistic.

Third, this paper contributes to a literature on inference when coefficients cannot be consis-
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tently estimated. The difficulty in having such a general robust inference procedure lies in consistent

variance estimation when the number of coefficients is large. Recent literature that has made sub-

stantial progress in a different context. In doing inference in OLS with many covariates, Cattaneo

et al. (2018) and Anatolyev and Sølvsten (2023) proposed consistent variance estimators that are

robust to heteroskedasticity, which involve inverting a large (n by n, where n is the sample size)

matrix (similar to Hartley et al. (1969)) and a L3O approach respectively. Boot and Nibbering

(2024) adapt the Cattaneo et al. (2018) variance estimator for inference. In contrast, this paper

adapts the approach from Anatolyev and Sølvsten (2023) that does not require an inversion of an

n by n matrix, and whose L3O implementation is fast when using matrix operations.

Fourth, this paper contributes to a literature on optimal tests. While the uniformly most

powerful unbiased (UMPU) test for just-identified IV has been established since Moreira (2009b),

obtaining a UMPU test in the over-identified IV environment has thus far been more challenging.

There has been a large literature numerically comparing various valid tests and characterizing

various forms of optimality (e.g., Moreira (2003); Andrews (2016); Andrews et al. (2019); Van de

Sijpe and Windmeijer (2023); Lim et al. (2024)). By imposing heterogeneity in the environment,

the problem (somewhat surprisingly) simplifies, which allows me to obtain a UMPU result.

In the rest of this paper, Section 2 explains how existing procedures are invalid using a simple

simulation. Section 3 proposes a valid inference procedure. Section 4 discusses the power prop-

erties of the score statistic; Section 5 discusses implementation issues; Section 6 presents further

simulation results and an empirical application; Section 7 concludes. Implementation code can be

found at: https://github.com/lutheryap/mwivhet.

2 Challenges in Conventional Practice

This section explains the challenges faced in conventional practice by considering a simple potential

outcomes model without covariates that exhibits weak instruments and heterogeneity in treatment

effects. This model is a special case of the model in Section 3, which presents an inference procedure

that is valid for a general model that also accommodates potentially many covariates, heteroskedas-

ticity, and distributions of residuals that are not normal. A simulation from the model shows how

weak instruments and heterogeneity can lead to substantial distortions in inference. A common

empirical practice of constructing a leave-one-out instrument and then applying inference methods

for the instrument as if it is not constructed also has high rejection rates. In contrast, the method

proposed in this paper has a rejection rate that is close to the nominal rate.

2.1 Setting for Simple Example

The simple example uses the canonical latent variable framework of Heckman and Vytlacil (2005).

We are interested in the effect ofXi ∈ {0, 1} (e.g., incarceration) on some outcome Yi, for i = 1, · · ·n
that indexes individuals. To instrument for Xi, we use a vector of judges indicators: Zi is a (K+1)-

dimensional vector of indicators for judges, indexed 1, · · · ,K +1, each with c = 5 individual cases,
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Table 1: Parameter Values for Simple Example

λk
1
2 − s 1

2 − 1
2s

1
2

1
2 + 1

2s
1
2 + s

βk β − h
s β + 2h

s NA β − 2h
s β + h

s

so the vector takes value 1 for the kth component when individual i is matched to judge k, and 0

elsewhere. Let Yi(0) and Yi(1) denote the untreated and treated potential outcomes respectively,

and we observe Yi = Yi(Xi). The treatment status given some instrument value z is Xi(z), and we

observe Xi(Zi). The model is:

Xi(z) = 1{z′λ > vi}, and Yi(x) = xf(vi) + εi, (1)

where 1{·} is an indicator function that takes the value 1 if the argument is true and 0 otherwise.

Here, Z ′
iλ = λk(i), where k(i) is the judge that individual i is matched to. With individual unob-

servable vi ∼ U [0, 1], the probability of treatment (i.e., Xi = 1) given judge k is λk. I set λk = 1/2

for the base judge, and evenly split all other K judges to take 4 different values of λk denoted in

Table 1. Potential outcomes are Yi(0) = εi and Yi(1) = f(vi) + εi so Yi(1) − Yi(0) = f(vi) is the

treatment effect. The individual-specific residuals vi and εi are allowed to be arbitrarily correlated.

Let βk denote the local average treatment effect (LATE) when comparing judge k to the base judge:

for instance, when λk > 1/2, βk = 1
λk−1/2

∫ λk

1/2 f(v)dv. The βk values for the 4 groups of judges are

also given in Table 1. The function f(v) that delivers these parameters and further details of this

example are in Appendix A.2.

The λk and βk values are parameterized by objects s and h, which control the IV strength and

heterogeneity in the model respectively. The impact of these parameters are better illustrated in

Figure 1 that plots the point masses for the four groups of judges in reduced-form. Parameter s

controls how far E[X | Z] are spread across judges, which then affects the instrument strength.

Parameter h controls the distance between the mass points and a line with slope β — this slope is

the object of interest. If the impact of X on Y is homogeneous, then h = 0, and all mass points

must lie on a line — this implication is falsifiable by the data.

The simulation designs vary the values of s and h through the following parameters:

CS =
√
K(c− 1)s2, and CH =

√
K(c− 1)h2. (2)

Using Staiger and Stock (1997) asymptotics, CS is the parameter that determines whether there

is strong or weak identification. Where C is some positive arbitrary constant, CS → ∞ is an

environment with strong identification where the object of interest can be estimated consistently,

and CS → C < ∞ is an environment with weak identification where no consistent estimator exists.

For every design, I generate data under the null and calculate the frequency that each inference

procedure rejects the null of β0 = 0. These procedures include the standard TSLS, procedures that

are robust to weak instruments, procedures that are robust to heterogeneity, and procedures that
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Figure 1: IV Strength and Heterogeneity in Reduced Form
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Table 2: Rejection rates under the null for nominal size 0.05 test

TSLS EK MS MO JIVEC ARC L3O LMorc

CH = 2
√
K,CS = 2

√
K 0.900 0.066 1.000 0.103 0.100 0.101 0.055 0.053

CH = 2
√
K,CS = 2 1.000 0.033 1.000 0.285 0.076 0.271 0.045 0.045

CH = 2
√
K,CS = 0 0.998 0.024 1.000 0.308 0.055 0.297 0.051 0.048

CH = 3,CS = 3
√
K 0.996 0.066 1.000 0.042 0.043 0.044 0.039 0.048

CH = 3,CS = 3 1.000 0.101 1.000 0.101 0.181 0.141 0.056 0.057
CH = 3,CS = 0 1.000 0.141 1.000 0.133 0.242 0.192 0.069 0.054

CH = 0,CS = 2
√
K 1.000 0.145 0.048 0.064 0.074 0.074 0.064 0.052

CH = 0,CS = 2 1.000 0.248 0.043 0.063 0.217 0.105 0.046 0.057
CH = 0,CS = 0 1.000 0.378 0.044 0.066 0.337 0.128 0.064 0.050

Notes: The table displays rejection rates of various procedures (in columns) for various designs (in rows).
Details of the data generating process are in Appendix A.2. Simulations use K = 400, c = 5, β = 0 with
1000 simulations. TSLS implements the standard two-stage-least-squares procedure for an over-identified IV
system. EK implements the procedure in Evdokimov and Kolesár (2018). MS uses the statistic in Mikusheva
and Sun (2022) with an oracle variance of their statistic. MO uses the variance estimator proposed in
Matsushita and Otsu (2022). JIVEC uses a constructed instrument and runs TSLS for a just-identified IV
system. ARC uses the AR procedure for a just-identified system using a constructed instrument. L3O uses
the variance estimator proposed in this paper. LMorc is the infeasible theoretical benchmark that uses an
LM statistic with an oracle variance.
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use a constructed instrument. The results are presented in Table 2, which I will refer to in the

remainder of this section.

2.2 Issue with Weak Instruments

If we simply run TSLS for an over-identified model, inference is invalid, a fact already known in the

literature. This fact is also evident in Table 2, where TSLS has 100% rejection in many designs.

In TSLS, the first stage regresses X on Z to get a predicted X̂ = Zπ̂, where π̂ is the estimated

coefficient; the second stage regresses Y on X̂. With constant treatment effects, the asymptotic bias

of TSLS depends on
∑

i εiX̂i/
∑

i X̂
2
i . When every judge only has c = 5 cases, the influence of vi on

π̂k(i) and hence X̂i is non-negligible. Since εi and vi can be arbitrarily correlated, the numerator is

biased. If the instruments are weak such that the denominator
∑

i X̂
2
i does not diverge sufficiently

quickly, the asymptotic bias can be large. Hence, the problem arises from using Xi to estimate π̂.

A natural solution to the bias in the TSLS estimator is to use the JIVE to estimate β. Instead

of using X̂i = Z ′
iπ̂ in the second stage, we instead use X̃i = Z ′

iπ̂−i, where π̂−i is the coefficient from

the first-stage regression that leaves out observation i. I will also call this the leave-one-out (L1O)

coefficient. With P = Z (Z ′Z)−1 Z ′ denoting the projection matrix, X̃i = Z ′
iπ̂−i can be written as

X̃i =
∑

j ̸=i PijXj . Then, the JIVE is:

β̂ =

∑
i Yi

(∑
j ̸=i PijXj

)
∑

iXi

(∑
j ̸=i PijXj

) . (3)

In the many IV context with constant treatment effects, the asymptotic distribution of the

t-statistic of the JIVE is the same as the distribution of the t-statistic of the TSLS estimator in the

just-identified environment (Mikusheva and Sun, 2022; Yap, 2023) — it is a ratio of two normally

distributed random variables. It is well-known that, in the just-identified IV context with weak

instruments, the rejection rate of the standard t-statistic can be up to 100% for a nominal 5% test

(e.g., Dufour (1997); Staiger and Stock (1997)). Hence, like the just-identified IV context, by using

a structural model that has sufficiently weak instruments and high covariance, the simulation can

deliver high rejection rates.

EK18 have a procedure that is robust to heterogeneity, but not weak instruments, so even

if we use their variance estimator for the t-statistic, this problem is not alleviated. This fact is

evident in the EK column of Table 2, where, with a sufficiently large correlation in the individual

unobservables, rejection rates can be large. Further, Example 1 in Appendix A.3 can yield 100%

rejection under the null (see Table 7). Hence, ignoring the issue of weak instruments can lead to

substantial distortions in inference. In fact, even with strong instruments, there is no guarantee

that EK18 achieves the nominal rate, because their variance estimation method requires consistent

estimation of the first-stage coefficients π̂. A condition for consistent variance estimation is that

the number of cases per judge is large, which is not c = 5.

Remark 1. In the literature, there have been several definitions of weak instruments in this context,
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which I clarify in this remark. Using Equation (2), there are three asymptotic regimes, ordered

from the strongest to the weakest: (i) 1√
K
CS → ∞, (ii) CS → ∞, and (iii) CS → C < ∞. Regime

(i) is a necessary condition for the TSLS estimator to be consistent, so 1√
K
CS → C < ∞ is what

Stock and Yogo (2005) would refer to as weak instruments. Regime (ii) is a necessary condition for

the JIVE to be consistent (e.g., Chao et al. (2012); Evdokimov and Kolesár (2018)). Regime (iii)

is where no estimator is consistent (e.g., Mikusheva and Sun (2022)). If K is fixed, then (i) and

(ii) are the same asymptotically, and (iii) is the relevant weak-identification asymptotic regime. If

K → ∞, then there is more ambiguity in what weakness means: Chao et al. (2012) and Evdokimov

and Kolesár (2018) who assume (ii) are robust to weak instruments when defined in the Stock and

Yogo (2005) sense, because s can converge to 0, albeit at a slower rate than
√
K. In this paper, I

follow the Staiger and Stock (1997) standard of weak identification where no consistent estimator

exists, which corresponds to (iii) that EK18 is not robust to.

2.3 Issue with Heterogeneity

Next, we consider proposals for inference that are developed for contexts with many weak in-

struments. MS22 (and Crudu et al. (2021)) propose using an Anderson-Rubin (AR) statistic

Tee = 1√
K

∑
i

∑
j ̸=i Pijeiej , for ei := Yi − Xiβ0 where β0 is the hypothesized null value. This

statistic is motivated by how ei is the null-imposed residual: if the instrument is orthogonal to

the residual, then E[Z ′e] = 0. Then, Tee is the L1O analog for the quadratic form that tests the

moment E[Z ′e] = 0. Since observations are independent, the critical value for the test is obtained

from a mean-zero normal distribution. In this model, E [Tee] =
√
K(c− 1)h2.1 Hence, when there

are constant treatment effects such that h = 0 for all k, the statistic is unbiased. However, in the

setup with heterogeneity, the test statistic in MS22 can be biased: in fact, when h does not converge

to zero, E[Tee] diverges. Further, there does not exist any estimand β0 such that E [Tee] = 0, as

shown in Lemma 3 of Appendix A.2. In the simulation, when h does not coverge to 0, the bias is

large enough to generate 100% rejection.

Another proposal in the literature that is robust to many weak instruments is Matsushita

and Otsu (2022) (henceforth MO22) who use the statistic TeX = 1√
K

∑
i

∑
j ̸=i PijeiXj . Since

TeX = 1√
K

∑
i

∑
j ̸=i PijeiXj = 1√

K

∑
i eiX̃i, this statistic can be interpreted as the LM (or score)

statistic that uses the moment E[eX̃] = 0. They propose the following variance estimator Ψ̂MO:

Ψ̂MO :=
∑
i

∑
j ̸=i

PijXj

2

e2i +
∑
i

∑
j ̸=i

P 2
ijXieiXjej . (4)

While TeX has zero mean, the variance is constructed under constant treatment effects, so the

variance estimand differs from the true variance. In particular, it is shown in Appendix A.1 that

E
[
Ψ̂MO

]
̸= Var (TeX), and Ψ̂MO is inconsistent in general, so when it is used to construct the

1This result can be obtained as a special case of Theorem 1 in Section 3 and using the fact that
∑

i

∑
j ̸=i P

2
ij =∑

i

∑
j ̸=i

(
1/c2

)
=

∑
i
c−1
c2

=
∑

k
c−1
c

.
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t-statistic of TeX , the normalized statistic is not distributed N(0, 1) asymptotically. Consequently,

by constructing a DGP where Ψ̂MO underestimates the variance, it is possible to get over-rejection

of the MO22 procedure, as in the cases of Table 2 where CH diverges. As expected, when there is

no heterogeneity such that h = 0, the rejection rate of MO22 and MS22 are close to the nominal

rate. MS22 is closer to the nominal rate than MO22 because I used an oracle variance for MS22

and an estimated variance for MO22.

2.4 Issue with a Constructed Instrument

In light of problems with weak identification and heterogeneity, a possible response is to transform

a many instruments environment into a just-identified single-IV environment. With a single IV,

the Anderson and Rubin (1949) procedure (among others) is robust to both weak identification

and heterogeneity. However, this subsection will argue that such an approach is invalid.

Due to how the JIVE is written, there are several empirical papers that treat X̃i =
∑

j ̸=i PijXj

as the “instrument” so that β̂ =
∑

i YiX̃i/
∑

iXiX̃i, and proceed with inference as if X̃i is not

constructed, but is an observed scalar instrument, usually referred to as the leniency measure.

While the resulting estimator is numerically identical to JIVE, there are distortions in inference

because the variance estimators do not account for the variability in constructing X̃i.

If the TSLS t-statistic inference is used as if X̃i is the instrument, then its rejection rates in

designs with heterogeneity are somewhat worse than rejection rates of EK18 that accounts for the

variance accurately, by comparing the JIVEC and EK columns in Table 2.

Even if the weak-instrument robust AR procedure for just-identified IV were used, there can

still be distortion in inference (see the ARC column of Table 2). To see how the distortion

arises, the AR t-statistic is tARC :=
∑

i eiX̃i/
√
V̂ , where V̂ =

∑
i X̃

2
i ε̂

2
i /
(∑

i X̃
2
i

)2
and ε̂i =

ei − X̃i

(∑
i eiX̃i

)
/
(∑

i X̃
2
i

)
. Even though tARC is mean zero and asymptotically normal, the

variance estimand is inaccurate, much like MO22. In particular, when β = 0, the leading term of

the variance estimand is E
[∑

i X̃
2
i e

2
i

]
, whose expression is derived in Appendix A.2, and it does

not converge to the true variance derived in Section 3 in general. Hence, using the just-identified

AR procedure with a constructed instrument results in over-rejection.

As a preview, the L3O procedure proposed in this paper has rejection rates close to the nominal

rate while the other procedures can over-reject.

3 Valid Inference

In light of how existing procedures are invalid in an environment with many weak instruments

and heterogeneity as documented in the previous section, this section describes a novel inference

procedure and shows that it is valid. I set up a general model, then show that an LM statistic is

asymptotically normal and a feasible variance estimator is consistent, which suffices for inference.
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3.1 Setting: Model and Asymptotic Distribution

The general setup mimics Evdokimov and Kolesár (2018). With an independently drawn sample of

individuals i = 1, . . . , n, we observe each individual’s scalar outcome Yi, scalar endogenous variable

Xi, instrument Zi, and covariatesWi, where dim (Zi) = K. For every instrument value z, there is an

associated potential treatment Xi (z), and we observe Xi = Xi (Zi). Similarly, potential outcomes

are denoted Yi (x), with Yi = Yi (Xi). Let Ri = E [Xi | Zi,Wi] and RY i = E [Yi | Zi,Wi], and these

are assumed to be linear. The model, written in the reduced-form and first-stage equations, is:

Yi = RY i + ζi, where RY i := Z ′
iπY +W ′

iγY , E [ζi | Zi,Wi] = 0, and

Xi = Ri + ηi, where Ri := Z ′
iπ +W ′

iγ, E [ηi | Zi,Wi] = 0.

The setup implicitly conditions on Zi,Wi, so Ri, RY i are nonrandom.2 This model implies

linearity in Z and W , which is not necessarily restrictive when there is full saturation or when K

is large, because any nonlinear function of the instruments can be arbitrarily well-approximated

by a spline with a large number of pieces or a high-order polynomial. Moreover, the arguments in

this paper could presumably be extended to a linear approximation of nonlinear functions as long

as there are regularity conditions to ensure that higher-order terms are asymptotically negligible.

Define ei := Yi −Xiβ, where β is some estimand of interest that we want to test, and ei is an

associated linear transformation. Further, let R∆i := RY i−Riβ and νi := ζi−ηiβ. These definitions

imply that ei = R∆i + νi and R∆i = Z ′
i(πY − πβ) +W ′

i (γY − γβ). Since E [νi|Zi,Wi] = 0 from the

model, E [ei|Zi,Wi] = R∆i, which need not be zero. For data matrix A, let HA = A (A′A)−1A′

denote the hat (i.e., projection) matrix and MA = I − HA its corresponding annihilator matrix.

With Z,W denoting the corresponding data matrices of the instrument and covariates, let Q =

(Z,W ), P = HQ, and M = I − P . C denotes arbitrary constants.

Remark 2. While E [ei|Zi,Wi] = R∆i need not be zero under heterogeneous treatment effects,

E [ei|Zi,Wi] = R∆i = 0 under constant treatment effects. Since R∆i = Z ′
i(πY −πβ)+W ′

i (γY −γβ)

for all i, constant treatment effects with E[Yi−Xiβ | Zi,Wi] = 0 also implies πY = πβ and γY = γβ

outside of edge cases (e.g., when Zi,Wi are always 0). These R∆ objects hence capture the impact

of having heterogeneous treatment effects in the many instruments model.

The (conditional) object of interest and its corresponding estimator are:

βJIV E :=

∑
i

∑
j ̸=iGijRY iRj∑

i

∑
j ̸=iGijRiRj

, and β̂JIV E =

∑
i

∑
j ̸=iGijYiXj∑

i

∑
j ̸=iGijXiXj

,

where G is an n × n matrix that can take several forms. As the leading cases, if there are no

covariates, using the projection matrix G = HZ = P is the standard JIVE, and when there are

covariates, I use the unbiased JIVE “UJIVE” (Kolesár, 2013) with G = (I − diag (HQ))
−1HQ −

2If we are interested in a superpopulation where Z is random, then the estimands would be defined as the
probability limit of the conditional objects. Then, it suffices to have regularity conditions to ensure that the conditional
object converges to the unconditional object.
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(I − diag (HW ))−1HW .3 In an environment with a binary instrument and many covariates inter-

acted with the instrument, the saturated estimand “SIVE” (Chao et al., 2023; Boot and Nibbering,

2024) uses G = PBN −MQDBNMQ, where PBN = MWZ (Z ′MWZ)−1 Z ′MW and DBN is defined

as a diagonal matrix with elements such that PBN,ii = [MQDBNMQ]ii. With constant treatment

effects, the estimand is the same for all the estimators: RY i = Riβ so βJIV E = β. Depending

on the application, the estimand is usually interpretable as some weighted average of treatment

effects when using JIVE without covariates or UJIVE with covariates with a saturated regression.4

(Evdokimov and Kolesár, 2018) The focus of this paper is on inference, so I will not discuss the

estimand in detail. The results for valid inference in the paper are established for any G that

satisfies properties that will be formally stated in the theorem.

This paper restricts its attention to the following statistics:

(Tee, TeX , TXX)′ :=
1√
K

∑
i

∑
j ̸=i

Gij (eiej , eiXj , XiXj)
′ . (5)

These T objects are observed because the ei objects can be calculated by using the null-imposed β.

It suffices to focus on (Tee, TeX , TXX) for inference as they correspond to a linear transformation of

the leave-one-out analog of a maximal invariant — details are in Section 4.1. Tee is the (unnormal-

ized) AR statistic used by MS22 for inference, and TeX is the LM (score) statistic used by MO22.

TXX corresponds to a first-stage F statistic.

The asymptotic behavior depends on the following object:

rn :=
∑
i

∑
j ̸=i

GijRj

2

+
∑
i

∑
j ̸=i

GijR∆j

2

+
∑
i

∑
j ̸=i

G2
ij . (6)

Asymptotic theory in this paper uses rn/
√
K → ∞, which nests the environments of EK18, MS22,

and MO22. EK18 assume
∑

i

(∑
j ̸=iGijRj

)2
/
√
K → ∞, which implies rn/

√
K → ∞. The

condition that
∑

i

(∑
j ̸=iGijRj

)2
/
√
K → ∞ implies strong identification, but rn/

√
K → ∞ can

also be achieved if either of the latter terms in Equation (6) diverges. MS22 and MO22 assume

K → ∞. Without covariates, G = P , so
∑

i

∑
j ̸=iG

2
ij = O(K), and hence rn/

√
K → ∞. Hence,

to apply the asymptotic theory in this paper, it suffices to have either strong identification, or

K → ∞. The only case ruled out is where K is fixed, and there is weak identifcation in that∑
i

(∑
j ̸=iGijRj

)2
/
√
K does not diverge.

The following assumption states sufficient conditions for joint asymptotic normality.

3Even if Z includes full interaction of a discrete instrument (say quarter of birth) and W , there is still value
in partialling out W . The main difference is that, if for a given covariate group, all observations have the same
instrument value, then UJIVE will not incorporate those observations at all. In contrast, merely using Z will still
incorporate these observations.

4In the judge example without covariates above, we have G = P and πY k = βkπk where βk is the local average

treatment effect (LATE) between judge k and the base judge, so βJIV E =
∑

k πY kπk∑
k π2

k
=

∑
k π2

kβk∑
k π2

k
is a weighted average

of LATE’s.
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Assumption 1. (a) There exists C < ∞ such that E[η4i ] + E[ν4i ] ≤ C for all i.

(b) E
[
ν2i
]
and E

[
η2i
]
are bounded away from 0 and |corr (νi, ηi) | is bounded away from 1.

(c) There exists c > 0 such that for any c1, c2, c3 that are not all 0,

1
rn

∑
i

(
c3
∑

j ̸=i (Gij +Gji)Rj + c2
∑

j ̸=iGjiR∆j

)2
+ 1

rn

∑
i

(
c1
∑

j ̸=i (Gij +Gji)R∆j + c2
∑

j ̸=iGijRj

)2
+

1
rn

∑
i

∑
j ̸=i

(
G2

ij +GijGji

)
≥ c.

(d) 1
r2n

∑
i

((∑
j ̸=iGijRj

)4
+
(∑

j ̸=iGijR∆j

)4
+
(∑

j ̸=iGjiRj

)4
+
(∑

j ̸=iGjiR∆j

)4)
→ 0.

(e) || 1
rn
GLG

′
L||F+|| 1

rn
GUG

′
U ||F → 0, whereGL is a lower-triangular matrix with elements GL,ij =

Gij1 {i > j} and GU is an upper-triangular matrix with elements GU,ij = Gij1 {i < j}.

Assumption 1 states high-level conditions that mimic EK18 so that a central limit theorem

(CLT) can be applied. These conditions hence accommodate the G that EK18 consider with

covariates. Having bounded moments in (a) is standard. Conditions (b) and (c) are sufficient to

ensure that the variance is non-zero asymptotically. In particular, (b) rules out perfect correlation:

in the simulation, corr(ηi, νi) = −1 is the pathological case that makes the variance zero, but

corr(ηi, νi) = 1 still allows non-zero variance. Conditions (d) and (e) ensure that the weights

placed on the individual stochastic terms are not too large.

The conditions on G are satisfied when G = P is a projection matrix. For (c), any rank K

projection matrix satisfies
∑

i

∑
j P

2
ij = K. Due to Lemma B3 of Chao et al. (2012), under weak IV

asymptotics where Pii ≤ C < 1, Assumption 1(e) is satisfied, as ||GLG
′
L||F ≤ C

√
K. Mechanically,

if there is weak IV and fixed K, then || 1
rn
GLG

′
L||F = 1

KO(
√
K) ̸= o(1), so (e) fails when rn/

√
K

does not diverge. Notably, the conditions do not require Pii → 0 so the π, πY coefficients need not

be consistently estimated.

Theorem 1. Under Assumption 1, let SK = 1√
K

∑
i

∑
j ̸=iGijRiRj. Then,

β̂JIV E − βJIV E =

1√
K

(∑
i

∑
j ̸=iGij (R∆iηj + νiRj + νiηj)

)
SK + 1√

K

∑
i

∑
j ̸=iGij (Riηj +Rjηi + ηiηj)

=
TeX

TXX
,

and for some variance matrix V , as rn/
√
K → ∞,

V −1/2


Tee − 1√

K

∑
i

∑
j ̸=iGijR∆iR∆j

TeX

TXX − 1√
K

∑
i

∑
j ̸=iGijRiRj

 d−→ N


 0

0

0

 , I3

 . (7)

Theorem 1 states a numerical equivalence on the difference between β̂JIV E and βJIV E . SK is

the concentration parameter corresponding to the instrument strength. In the model of Section 2,

the mapping to the reduced-form π can be found in Appendix A.2, so the concentration parameter
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is given by SK = 1√
K

∑
k(c− 1)π2

k = 5
8

√
K(c− 1)s2. If the instruments are strong, then SK → ∞,

so β̂JIV E − βJIV E
d−→ 0. With weak IV, SK converges to some constant C < ∞.

The asymptotic distribution follows from establishing a quadratic CLT that may be of inde-

pendent interest: it is proven by rewriting the leave-one-out sums as a martingale difference array,

and then applying the martingale CLT. While there are existing quadratic CLT available, they do

not fit the context exactly. Chao et al. (2012) Lemma A2 requires G to be symmetric, which works

without covariates as it is just a projection matrix, but G for UJIVE is not symmetric. EK18

Lemma D2 is established for scalar random variables, so I extend it to random vectors.

This theorem implies that, under weak identification, comparing the JIVE t-statistic with the

standard normal distribution leads to invalid inference even in large samples. The theorem also

states that the asymptotic distribution is a ratio of two normals, which is identical to the distribution

of the just-identified TSLS estimator. While Yap (2023) and MS22 have observed this result in part

with many weak instruments, their results are restricted to the case with constant treatment effects.

Here, I show that the distribution holds even with heterogeneous treatment effects. Theorem 1 also

states that TeX is mean zero and asymptotically normal in this general environment. Hence, if we

have access to the oracle variance of TeX , we can simply use the statistic TeX/
√
Var(TeX) for testing

because it has a standard normal distribution under the null. Obtaining a consistent estimator is

an issue addressed in the next subsection.

A corollary from Theorem 1 is that Tee is normal and mean zero under constant treatment

effects, but its mean is shifted when R∆ ̸= 0. Consequently, one could test for heterogeneity by

comparing the Tee and TeX statistics.

3.2 Variance Estimation

To test the null that H0 : β = β0, we can calculate TeX using the null-imposed β0 and an estimator

for the variance of
√
KTeX , V̂LM , defined later in this section. Then, reject if KT 2

eX/V̂LM ≥
Φ (1− α/2)2 for a size α test where Φ(.) is the standard normal CDF. This procedure is valid when

TeX is asymptotically normal with mean zero as we have established in the previous section, and

when V̂LM is consistent.

Before stating the variance estimator, I first decompose the variance expression in the equation

below, which follows from substituting ei = R∆i + νi and Xi = Ri + ηi into the variance. It is

shown in Appendix B that, for VLM := Var
(∑

i

∑
j ̸=iGijeiXj

)
,

VLM =
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
ν2i
]
GijGikRjRk +

∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj ]

+ 2
∑
i

∑
j ̸=i

∑
k ̸=i

E [νiηi]GijGkiRjR∆k +
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
η2i
]
GjiGkiR∆jR∆k.

(8)

With constant treatment effects, only the first line appears in the variance. With G = P ,
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the expression for Var
(∑

i

∑
j ̸=i PijeiXj

)
matches the expression in EK18 Theorem 5.3, but their

variance estimator cannot be used directly as they required consistent estimation of reduced-form

coefficients. By adapting the leave-three-out (L3O) approach of Anatolyev and Sølvsten (2023)

(henceforth AS23), an unbiased and consistent variance estimator can be obtained. Let τ := (π′, γ′)′

and τ∆ := ((πY − πβ)′, (γY − γβ)′)′ denote the coefficients on Q when running the regression of X

and e respectively. In the following, let M = MQ. The variance estimator is:

V̂LM := A1 +A2 +A3 +A4 +A5, (9)

with

A1 :=
∑
i

∑
j ̸=i

∑
k ̸=i

GijXjGikXkei
(
ei −Q′

iτ̂∆,−ijk

)
,

A2 := 2
∑
i

∑
j ̸=i

∑
k ̸=i

GijXjGkiekei
(
Xi −Q′

iτ̂−ijk

)
,

A3 :=
∑
i

∑
j ̸=i

∑
k ̸=i

GjiejGkiekXi

(
Xi −Q′

iτ̂−ijk

)
,

A4 := −
∑
i

∑
j ̸=i

∑
k ̸=j

G2
jiXiM̌ik,−ijXkej

(
ej −Q′

j τ̂∆,−ijk

)
,

A5 := −
∑
i

∑
j ̸=i

∑
k ̸=j

GijGjieiM̌ik,−ijXkej
(
Xj −Q′

j τ̂−ijk

)
,

where

τ̂−ijk :=

 ∑
l ̸=i,j,k

QlQ
′
l

−1 ∑
l ̸=i,j,k

QlXl,

τ̂∆,−ijk :=

 ∑
l ̸=i,j,k

QlQ
′
l

−1 ∑
l ̸=i,j,k

Qlel,

Dij := MiiMjj −M2
ij , and

M̌ik,−ij :=
MjjMik −MijMjk

Dij
= −Q′

i

∑
l ̸=i,j

QlQ
′
l

−1

Qk.

Following AS23, I make an assumption to ensure that the L3O estimator is well-defined.5

Assumption 2. (a)
∑

l ̸=i,j,k QlQ
′
l is invertible for every i, j, k ∈ {1, · · · , n}.

(b) maxi ̸=j ̸=k ̸=iD
−1
ijk = OP (1), where Dijk := MiiDjk −

(
MjjM

2
ik +MkkM

2
ij − 2MjkMijMik

)
.

Assumption 2(a) corresponds to AS23 Assumption 1 and Assumption 2(b) corresponds to AS23

5If these conditions are not satisfied, then we can follow the modification in AS23 so that the variance estimator
is conservative.
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Assumption 4. For consistent variance estimation, we additionally require regularity conditions that

are stated in Assumption 3 of Appendix A.1. These conditions are satisfied when G is a projection

matrix. With these conditions, Theorem 2 below claims that the variance estimator is consistent.

Theorem 2. Under Assumptions 1-2, and Assumption 3 in Appendix A.1, E
[
V̂LM

]
= VLM and

the variance estimator is consistent, i.e., V̂LM/VLM
p−→ 1.

With many instruments and potentially many covariates, the main difficulty is that the reduced-

form coefficients π, πY , γ, γY are not consistently estimable. The usual approach to constructing

variance estimators calculates residuals by using the estimated coefficients, but this approach no

longer works when these estimated coefficients are inconsistent. To be precise, applying Chebyshev’s

inequality for any ϵ > 0 yields:

Pr

(∣∣∣∣∣ V̂LM − VLM

VLM

∣∣∣∣∣ > ϵ

)
≤ 1

ϵ2

V ar
(
V̂LM

)
V 2
LM

+
1

ϵ2

(
E
[
V̂LM

]
− VLM

)2
V 2
LM

. (10)

Without an unbiased estimator and when reduced-form coefficients cannot be consistently esti-

mated, the second term in (10) is not necessarily asymptotically negligible. To overcome this

problem, I use an unbiased variance estimator so that the second term is exactly zero. Then, it

suffices to show that the variance of individual components of the variance are asymptotically small

compared to V 2
LM , so that the first term in (10) is o(1) by applying the Cauchy-Schwarz inequality.

To obtain an unbiased estimator, I use estimators for the reduced-form coefficients π, πY , γ, γY

that are unbiased and independent of objects that they are multiplied with, which helps to construct

an unbiased variance estimator. The leave-three-out (L3O) approach provides this unbiasedness for

linear regressions: when leaving three observations out in the inner-most sum of the A expressions,

the estimated coefficient τ̂−ijk is independent of i, j, k and is unbiased for τ . Then, when taking

the expectation through a product of random variables of i, j, k and τ̂−ijk, τ can be used in place of

the τ̂−ijk component, and the expectations of individual components can be isolated. For instance,

E

∑
i

∑
j ̸=i

∑
k ̸=i,j

GijXjGikXkei
(
ei −Q′

iτ̂∆,−ijk

) =
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijE [Xj ]GikE [Xk]E
[
ei
(
ei −Q′

iτ̂∆,−ijk

)]
=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijRjGikRkE
[
ν2i
]
,

which recovers the triple sums in the VLM expression of Equation (8). An analogous argument

applies to other components of V in (7). Assuming that the residuals have zero mean conditional

on Q is crucial: if we merely have E[Qζ] = 0, this argument can no longer be applied.

Remark 3. While the proposed V̂LM is motivated by AS23, the contexts and estimators are

different. First, the statistic that we are estimating the variance for is different: AS23 demeaned

their F statistic using ÊF , where ÊF is estimated using L1O, so they are interested in the variance of

F − ÊF that is mean zero; I use a mean-zero L1O statistic directly in TeX . Second, the expectation
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of their variance estimator takes the form of their (9), which is analogous to the sum of A1 and A4

using the notation above, so repeated applications of their estimator is insufficient to recover all

five terms exactly. Hence, to adjust for the A4 and A5 terms here, I additionally require another

estimator, and its form is similarly motivated by a L3O reasoning.

4 Power Properties

This section characterizes power properties of the valid LM procedure. To do so, I first argue that

we can restrict our attention to three statistics that are jointly normal. Since the reduced-form

covariance can be consistently estimated, the remainder of the section focuses on the 3-variable

normal distribution with a known covariance matrix. With this asymptotic distribution, I qualify

some theoretical optimality results on one-sided and two-sided LM tests. Namely, the one-sided

LM test is the most powerful test against alternatives within a subset and the two-sided LM test

is the uniformly most powerful unbiased test within the interior of the parameter space.

4.1 Sufficient Statistics and Maximal Invariant

As is standard in the literature, I consider the canonical model without covariates where the

reduced-form errors are normal and homoskedastic (e.g., Andrews et al. (2006); Moreira (2009a);

Mikusheva and Sun (2022)). In this environment, I derive a maximal invariant and its associ-

ated distribution for the reduced-form model without covariates. Suppose (η, ζ) in the model of

Section 3.1 are jointly normal with known variance. To be precise,(
ζi

ηi

)
∼ N (0,Ω) = N

(
0,

[
ωζζ ωζη

ωζη ωηη

])
. (11)

Define: (
s1

s2

)
:=

(
(Z ′Z)−1/2 Z ′Y

(Z ′Z)−1/2 Z ′X

)
.

I restrict attention to tests that are invariant to rotations of Z, i.e., transformations of the form

Z → ZF ′ where F is a K ×K orthogonal matrix. In particular, an invariant test ϕ(s1, s2) is one

for which ϕ(Fs1, Fs2) = ϕ(s1, s2) for all K × K orthogonal matrices F . If we focus on invariant

tests, then the maximal invariant contains all relevant information from the data for inference.

Lemma 1. (s′1, s
′
2)

′ are sufficient statistics for (π′
Y , π

′)′. Further, for transformations of the form

Z → ZF ′ where F is a K ×K orthogonal matrix, (s′1s1, s
′
1s2, s

′
2s2) is a maximal invariant, and(

s1

s2

)
∼ N

((
(Z ′Z)1/2 πY

(Z ′Z)1/2 π

)
,Ω⊗ IK

)
.

The derivation for Lemma 1 mimics Moreira (2009a) Proposition 4.1. After demeaning appro-

priately, the maximal invariant (s′1s1, s
′
1s2, s

′
2s2) is jointly normal.
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Proposition 1. With Equation (11), K → ∞ and 1√
K
(π′

Y Z
′ZπY , π

′Z ′ZπY , π
′Z ′Zπ) → (CY Y , CY , CS),

1√
K

 s′1s1 −Kωζζ − CY Y

s′1s2 −Kωζη − CY

s′2s2 −Kωηη − CS

 d−→ N


 0

0

0

 ,Σ

 (12)

for some variance matrix Σ. If CY Y , CY , CS < ∞,

Σ =

 2ω2
ζζ 2ωζηωζζ 2ω2

ζη

2ωζηωζζ ωζζωηη + ω2
ζη 2ωζηωηη

2ω2
ζη 2ωζηωηη 2ω2

ηη

 .

The proof of Proposition 1 relies on K → ∞ because objects like s′1s1 can be written as a sum

of K objects. With an appropriate representation to obtain independence, a central limit theorem

can be applied to yield normality. Compared to MS22, Proposition 1 does not require constant

treatment effects and characterizes the distribution without orthogonalizing the sufficient statistics.

Nonetheless, the form of the covariance matrix is similar to MS22.

Considering the leave-one-out (L1O) analog of the maximal invariant is attractive in this context

because it removes the need to subtract the variance objects on the left-hand side of Equation (12).

Without covariates such thatG = P , I define (TY Y , TY X , TXX) := 1√
K

∑
i

∑
j ̸=i Pij(YiYj , YiXj , XiXj).

This (TY Y , TY X , TXX) is the L1O analog of the maximal invariant (s′1s1, s
′
1s2, s

′
2s2).

6 This L1O

analog also relates to JIVE directly because β̂JIV E = TY X/TXX . As a corollary of Theorem 1, since

(TY Y , TY X , TXX) is a linear transformation of (Tee, TeX , TXX) that is jointly normal, (TY Y , TY X , TXX)

is also jointly normal.7 Since (TY Y , TY X , TXX) is the L1O analog and has the same distribution as

the maximal invariant, I restrict our attention to tests that are functions of (TY Y , TY X , TXX).

While validity results in Section 3 apply even when K is small, the optimality results here do

not apply. Based on Proposition 1, the distribution of the maximal invariant is approximately

normal when K is large. When K is fixed, the distribution of the maximal invariant is different

from the distribution of L1O statistics, and focusing on the L1O statistics is not justified.

4.2 Discussion of Asymptotic Problem

The asymptotic problem involving (TY Y , TY X , TXX) is:

 TY Y

TY X

TXX

 ∼ N (µ,Σ) , µ =


1√
K

∑
i

∑
j ̸=i PijRY iRY j

1√
K

∑
i

∑
j ̸=i PijRY iRj

1√
K

∑
i

∑
j ̸=i PijRiRj

 ,Σ =

 σ11 σ12 σ13

· σ22 σ23

· · σ33

 . (13)

6To see this, s′1s2 = Y ′Z(Z′Z)−1Z′X = Y ′PX =
∑

i

∑
j PijYiXj .

7To see that (TY Y , TY X , TXX) is a linear transformation, use the fact that e = Y +Xβ. Then, (TY Y , TY X , TXX) :=
1√
K

∑
i

∑
j ̸=i Pij((ei +Xiβ)(ej +Xjβ), (ei +Xiβ)Xj , XiXj) = (Tee + 2TeXβ + TXXβ2, TeX − TXXβ, TXX).
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There are several natural restrictions in the µ vector, which is assumed to be finite. Since P is a

projection matrix,
∑

i

∑
j ̸=i PijRiRj =

∑
iRi(

∑
j PijRj−PiiRi) =

∑
iMiiR

2
i . Since the annihilator

matrix M has positive entries on its diagonal, we obtain µ3 ≥ 0 and a similar argument yields

µ1 ≥ 0. Further, with µ2 =
∑

i

∑
j ̸=i PijRY iRj =

∑
iMiiRY iRi, the Cauchy-Schwarz inequality

implies µ2
2 ≤ µ1µ3. Notably, constant treatment effects implies µ2

2 = µ1µ3, which is a special case of

the environment here. These properties do not contradict the joint normality: even though µ3 ≥ 0,

TXX can still be negative when using the L1O statistic.

Beyond the necessary restrictions that µ1, µ3 ≥ 0 and µ2
2 ≤ µ1µ3, there is also a question of

whether Σ places further restrictions on µ, which can give more information about βJIV E = µ2/µ3.

While Σ is uninformative when we have normal homoskedastic reduced-form errors, it is less obvious

if there exists any structural model where this result still holds when β features in Σ. With more

structure, there can be more restrictions on µ, but if there is no structural model where Σ is

uninformative, then any necessary restriction should be accounted for in the asymptotic problem.

Hence, Appendix A.3.1 establishes that there exists a structural model where Σ is uninformative

about µ, and µ1, µ3 ≥ 0, so µ2
2 ≤ µ1µ3 are the only restrictions on µ.8 While the result establishes

that there exists a structural model where there are no further restrictions, for any given structural

model, there can still be further restrictions.

4.3 Analytic Results

Using the asymptotic problem of Equation (13), testing H0 : µ2/µ3 = β∗ is identical to testing

H0 : µ2−β∗µ3 = 0. Since β∗ is fixed, and I consider alternatives of the form: HA : µ2−β∗µ3 = hA.

The LM statistic corresponds to TY X − β∗TXX , so it can be used to test the null directly. I focus

on the most common case of β∗ = 0, and it is analogous to extend the argument for β∗ ̸= 0. Having

β∗ = 0 simplifies the argument because it suffices to focus on testing the null of µ2 = 0. Further,

(TY Y , TY X , TXX) = (Tee, TeX , TXX). Let µA denote the mean under the alternative and µH under

the null. The remainder of this section presents theoretical results for power, and numerical results

beyond the environment covered by theory are relegated to Appendix A.3.2.

The one-sided and two-sided LM tests are defined in the following manner. With a size α test,

the one-sided LM test against the alternative that µ2 > 0 rejects when TeX/
√

Var(TeX) > Φ(1−α).

When testing against the alternative that µ2 < 0, it rejects when TeX/
√
Var(TeX) < Φ(α). The

two-sided LM test against the alternative that µ2 ̸= 0 rejects when T 2
eX/Var(TeX) > Φ(1− α/2)2.

The one-sided test is the most powerful test for testing against a particular subset of alter-

natives S :=
{(

µA
1 , µ

A
2 , µ

A
3

)
: µA

1 − σ12
σ22

µA
2 ≥ 0, µA

3 − σ23
σ22

µA
2 ≥ 0

}
. While S may not be empirically

interpretable, this set is constructed so that standard Lehmann and Romano (2005) arguments

can be applied to conclude that the one-sided LM test is the most powerful test. The proposition

makes no statement about alternative hypotheses that are not in S. A more powerful test can be

constructed when µA
2 is large and covariance σ23, σ12 are large.

8Since the model in Section 2 is binary, it is insufficient for such a general result, and a continuous X is required,
so the example is relegated to Appendix A.3.1.
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Proposition 2. The one-sided LM test is the most powerful test for testing any alternative hy-

pothesis
(
µA
1 , µ

A
2 , µ

A
3

)
∈ S in the asymptotic problem of Equation (13).

For a given
(
µA
1 , µ

A
2 , µ

A
3

)
in the alternative space, LM (which just uses the second element) is

justified as being most powerful because it is identical to the Neyman-Pearson test when testing

against a point null µH with µH
1 = µA

1 − σ12
σ22

µA
2 , µ

H
2 = 0 and µH

3 = µA
3 − σ23

σ22
µA
2 . The inequalities

in S are imposed so that µH
1 , µH

3 ≥ 0, ensuring that µH is in the null space. If these constraints

hold, then LM is the most powerful test. In contrast, if the inequalities fail in the alternative space,

then (µA
1 − σ12

σ22
µA
2 , 0, µ

A
3 − σ23

σ22
µA
2 ) is not in the null space, and the Lehmann and Romano (2005)

argument cannot be applied.

Turning to two-sided tests, I consider the theoretical benchmark of a uniformly most powerful

unbiased test (e.g., Lehmann and Romano (2005); Moreira (2009b)).

Proposition 3. Consider a restriction of the alternative µ space to the interior i.e., µ1, µ3 > 0

and µ2
2 < µ1µ3. Then, the two-sided LM test is the uniformly most powerful unbiased test in the

asymptotic problem of Equation (13).

The argument for optimality applies a standard optimality result from Lehmann and Romano

(2005) on the exponential family, which includes the normal distribution. To apply the Lehmann

and Romano (2005) result, we require a convex parameter space and the the existence of alternative

values above and below the null value.9 It can be verified that the restricted parameter space is still

convex, and the restriction to the interior ensures the latter condition is satisfied. The proposition

claims optimality within the class of unbiased tests, and makes no statement about tests that are

biased (i.e., where the power at some point in the alternative space can be lower than the size).

Remark 4. With the characterized asymptotic distribution, there are several other tests that are

valid. (1) We can implement a Bonferroni-type correction that constructs a 99% confidence set

for both µ1 and µ3, then a 97% test for LM. (2) VtF from Yap (2023) can also be implemented,

because the asymptotic distribution does not rely on homogeneous treatment effects. There is

evidence that it can lead to shorter confidence intervals from Lee et al. (2023). (3) With a given

structural model, the the algorithm from Elliott et al. (2015) can also be applied by using a grid

on structural parameters.

Studying optimality in the over-identified IV environment has thus far been complicated. In

the constant treatment effects environment considered by the existing literature, s′1s1 and s′1s2 are

informative of the object of interest β. In this context, constant treatment effects implies µ1 = β2µ3.

However, once we impose µ1 > 0 under the null that β = 0, we rule out constant treatment effects

by focusing on the interior of the alternative space. Then, the statistic associated with µ1 is no

longer directly informative of β. Imposing heterogeneity is hence the key to obtaining this UMPU

result.

9Technically, it suffices to have µ1, µ3 > 0 and µ2
2 ≤ µ1µ3 when using the null that µ2 = 0.
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5 Implementation

Expressions for the test are given in Section 3, which can be feasibly implemented using matrix

operations. Inverting the test to obtain a confidence set is also straightforward in this procedure,

as the bounds of the confidence set are derived in closed-form in this section.

To invert the LM test to obtain a confidence set, use ei = Yi − Xiβ0 and expand the A

expressions in Equation (9) so that they are written in terms of X and Y . The two-sided test

rejects:
(∑

i

∑
j ̸=iGijeiXj

)2
/V̂LM ≥ q = Φ(1 − α/2)2. Let PY X :=

∑
i

∑
j ̸=iGijYiXj . Then,∑

i

∑
j ̸=iGijeiXj = PY X − PXXβ0, so squaring it results in a term that is quadratic in β2

0 . With

V̂LM = C0+C1β0+C2β
2
0 quadratic in β0, where C0, C1, C2 are coefficients derived in Appendix D,

the analysis for the shape of the confidence intervals is similar to the AR procedure for just-identified

IV (e.g., Lee et al. (2022)). Coefficients can be calculated in a manner similar to L3O.

Lemma 2. The test does not reject when
(
P 2
XX − qC2

)
β2
0−(2PY XPXX + qC1)β0+

(
P 2
Y X − qC0

)
≤

0. Let D := (2PY XPXX + qC1)
2 − 4

(
P 2
XX − qC2

) (
P 2
Y X − qC0

)
. If D ≥ 0 and P 2

XX − qC2 ≥ 0,

then the upper and lower bounds of confidence set are:

(2PY XPXX + qC1)±
√
D

2
(
P 2
XX − qC2

) .

If D < 0 and P 2
XX − qC2 < 0, then the confidence set is empty. Otherwise, the confidence set is

unbounded.

Due to +qC1,−qC2 in the expression of the upper and lower bounds, the confidence set is not

necessarily centered around β̂JIV E = PY X/PXX .

6 Numerical Illustrations

6.1 Simulations

The general model in Section 3 can be justified by several structural models. In this section, I focus

on the simple example from Section 2. There are two sets of simulations that assess the size: I

generate data under the null and assess how close the rejection rates of various procedures are to the

nominal rate. One set of size simulations uses a large K while the other a small K. I also report one

set of simulations that assess power: I generate data under some alternative and assess the rejection

rates across procedures. There are more simulation results using several different structural models

in Appendix A.4, including settings with continuous treatment X, and with covariates.

Table 2 in Section 2 reports rejection rates under the null for a relatively large number of judges

with K = 400, each with a small number of cases at c = 5. L3O performs well across various

designs, while existing procedures can substantially over-reject in at least one design. The LMorc

column is included as an infeasible theoretical benchmark that uses an oracle variance: this should
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Table 3: Rejection rates under the null for nominal size 0.05 test

TSLS EK MS MO JIVEC ARC L3O LMorc

CH = .5c,CS = .5c 0.325 0.050 1.000 0.318 0.324 0.323 0.056 0.051
CH = .5c,CS = 2 0.575 0.012 1.000 0.820 0.277 0.833 0.040 0.047
CH = .5c,CS = 0 0.501 0.005 1.000 0.856 0.335 0.881 0.061 0.050

CH = 2,CS = .5c 0.082 0.057 0.604 0.081 0.073 0.082 0.065 0.060
CH = 2,CS = 2 0.485 0.013 0.625 0.348 0.326 0.466 0.109 0.046
CH = 2,CS = 0 0.461 0.011 0.624 0.341 0.349 0.497 0.107 0.047

CH = 0,CS = .5c 0.064 0.045 0.043 0.044 0.046 0.051 0.055 0.043
CH = 0,CS = 2 0.437 0.102 0.048 0.040 0.296 0.134 0.066 0.042
CH = 0,CS = 0 0.590 0.181 0.049 0.029 0.431 0.163 0.059 0.045

Notes: K = 4, c = 200, and designs are otherwise identical to Table 2.

have nominal size when normality holds because the variance is not estimated. The difference

between LMorc and L3O is attributed to the variance estimation procedure.

Table 3 reports rejection rates under the null for a small number of judges with K = 4 and a

large number of cases at c = 200. Based on the theory in Section 3, L3O should be valid when

the instrument is strong, i.e., in the cases with CS = .5c, which is what we observe. Notably, even

when CS = 2 or CS = 0, the over-rejection for L3O is not too severe. EK performs very well in the

cases with CS = .5c as expected in their theory. In contrast, MS and MO can over-reject severely

with strong instruments.

Table 4 reports rejection rates under the alternative. When CS = 0, the instrument should be

completely uninformative about the true parameter, so we should have 0.05 rejection rate for a

valid test, which is what we observe for L3O. When CS = 2
√
K, all procedures, including L3O, are

very informative. Looking at the case with CH = 0, CS = 2, L3O is less powerful than MO in small

samples, but we should expect both procedures to converge to the same variance in larger samples.

L3O is a lot less powerful than MS for CH = 0, CS = 2, suggesting that this data-generating process

favors MS with constant treatment effects.

6.2 Empirical Application

Angrist and Krueger (1991) were interested in the effect of education (X) on wages (Y). They

instrument for education using the quarter of birth (QOB) and report several specifications that

interact QOB with covariates such as the state of birth. Motivated by the recent econometrics

literature that argue for full saturation, I implement UJIVE with full interaction (with 1530 instru-

ments), and construct a confidence interval (CI) using the L3O procedure proposed in this paper.

I report the CI in Table 5 with the CI reported in several existing papers. The UJIVE is 0.1027

(vs 0.0831 in Table VII(6) of Angrist and Krueger (1991)). With a CI of [0.022, 0.210], the result

remains statistically significant, albeit wider than Angrist and Krueger (1991), but is comparable
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Table 4: Rejection rates under the alternative for nominal size 0.05 test

TSLS EK MS MO JIVEC ARC L3O LMorc

CH = 2
√
K,CS = 2

√
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH = 2
√
K,CS = 2 0.449 0.100 1.000 0.463 0.044 0.452 0.179 0.153

CH = 2
√
K,CS = 0 0.825 0.028 1.000 0.305 0.063 0.298 0.050 0.043

CH = 3,CS = 3
√
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH = 3,CS = 3 0.322 0.491 1.000 0.881 0.150 0.889 0.737 0.752
CH = 3,CS = 0 1.000 0.080 1.000 0.138 0.196 0.177 0.052 0.057

CH = 0,CS = 2
√
K 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CH = 0,CS = 2 0.881 0.400 0.978 0.776 0.075 0.812 0.692 0.752
CH = 0,CS = 0 1.000 0.366 0.046 0.049 0.322 0.092 0.061 0.049

Notes: K = 100, β = 0.1, c = 5, and designs are otherwise identical to Table 2.

Table 5: Returns to education with 1530 instruments

Method Confidence Interval

Angrist and Krueger (1991) [0.064,0.102]
Matsushita and Otsu (2022) [0.025,0.123]
Mikusheva and Sun (2022) [-0.047,0.202]
This paper [0.022,0.210]

to MS22. MO22 argue that their procedure has more power than MS22 for local alternatives, but

in light of my results, this advantage is lost when there is heterogeneity.

7 Conclusion

This paper has documented how both weak instruments and heterogeneity can interact to invalidate

existing procedures in the many instruments environment. To address both problems simultane-

ously, this paper contributes a feasible method for valid inference. The procedure is shown to be

valid as the limiting distribution of commonly-used statistics, including the LM statistic, in an

environment with many weak instruments and heterogeneity, is normal, and a leave-three-out vari-

ance estimator is consistent for obtaining the variance of the LM statistic. Further, the associated

confidence set can be derived in closed form. Beyond its validity, the LM test is also optimal as

it is the uniformly most powerful unbiased test in the asymptotic distribution for the interior of

the alternative space. In light of the broader econometrics literature on the value of saturated

regressions and how many instruments can arise from it, this paper presents a highly applicable,

robust, and powerful inference procedure for IV.
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A Additional Details

A.1 Supplementary Material

Assumption 3 states high-level conditions for consistency of the variance estimator. To ease notation, let
Rmi stand for either R∆i or Ri. Denote R̃i :=

∑
j ̸=i GijRj and R̃∆i :=

∑
j ̸=i GijR∆j . Let h4 (i, j, k, l) be a

product of any number of Gi1i2 , i1 ̸= i2, M̌j1j2 , j1 ̸= j2, and Rmk1 with i1, i2, j1, j2, k1 ∈ {i, j, k, l} such that
every index in {i, j, k, l} occurs at least once as an index of either Gi1i2 or M̌j1j2 . For instance, h4(i, j, k, l)
could be GijM̌ik,−ilM̌lj,−ijk. Define h3 (i, j, k) and h2 (i, j) in a similar manner. Let

∑n
i ̸=j =

∑
i

∑
j ̸=i so

that those without the n superscript are still sums of individual indices, but those with an n superscript
involves the sum over multiple indices. Objects like

∑n
i ̸=j ̸=k and

∑n
i ̸=j ̸=k ̸=l are defined in a similar manner.

When I refer to the p-sum, I refer to the sum over p non-overlapping indices. For instance, a 3-sum is∑n
i ̸=j ̸=k. Let F stand for either G or G′. 1{·} is an indicator function that takes the value 1 if the argument

is true and 0 otherwise. I {·} is a function that takes value 1 if the argument is true and -1 if false.

Assumption 3. For some C < ∞,

(a)
∑

j G
2
ij ≤ C,

∑
j G

2
ji ≤ C,

∑n
j ̸=k

(∑
i ̸=j,k GijFik

)2
≤
∑n

j ̸=k G
2
jk,
∑n

j ̸=k

(∑
i ̸=j,k GjiGki

)2
≤
∑n

j ̸=k G
2
jk,and

|Rmi| ≤ C.

(b)
∑n

i ̸=j ̸=k

(∑
l ̸=i,j,k h4 (i, j, k, l)Rml

)2
≤ C

∑
i R̃

2
mi,
∑n

i ̸=j

(∑
k ̸=i,j

∑
l ̸=i,j,k h4 (i, j, k, l)Rml

)2
≤ C

∑
i R̃

2
mi,

and
∑

i

(∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k h4 (i, j, k, l)Rml

)2
≤ C

∑
i R̃

2
mi.

(c)
∑n

i ̸=j

(∑
k ̸=i,j h3 (i, j, k)Rmk

)2
≤ C

∑
i R̃

2
mi and

∑
i

(∑
j ̸=i

∑
k ̸=i,j h3 (i, j, k)Rmk

)2
≤ C

∑
i R̃

2
mi.

(d)
∑

i

(∑
j ̸=i h2 (i, j)Rmj

)2
≤ C

∑
i R̃

2
mi.

The first condition requires the row and column sums of the squares of the G elements to be bounded.
Assumption 1(e) is insufficient because it does not rule out having Gii = K for some i and 0 elsewhere in the
G matrix. These remaining conditions can be interpreted as (approximate) sparsity conditions on M and G
as the p-sum of entries of M̌ and G cannot be too large. Note that other elements of the covariance matrix
can be analogously shown to be consistent using the same strategy by using the lemmas from Appendix B
by using R̃Y i in place of R̃∆i where required.

The judges example in Section 2 satisfies this assumption when there are no covariates and G = P and R

values are bounded. For condition (a),
∑

j P
2
ij = Pii ≤ C and, since P is idempotent,

∑n
j ̸=k

(∑
i̸=j,k PijPik

)2
=∑n

j ̸=k (
∑

i PijPik − PjjPjk − PkkPjk)
2
=
∑n

j ̸=k (Pjk − PjjPjk − PkkPjk)
2
=
∑n

j ̸=k (1− Pjj − Pkk)
2
P 2
jk ≤∑n

j ̸=k P
2
jk. For any M̌ij and Gij , these elements are nonzero only when i and j share the same judge p.

Further, Rmi = πmp(i), where πmp can denote πpor π∆p in the model. Due to how the h functions are
defined, when every judge has at most c cases,

∑
i

∑
j ̸=i

h2 (i, j)Rmj

2

=
∑
i

 ∑
j∈Np(i)\{i}

h2 (i, j)Rmp(i)

2

=
∑
p

∑
i∈Np

 ∑
j∈Np\{i}

h2 (i, j)πmp

2

=
∑
p

∑
i∈Np

 ∑
j∈Np\{i}

h2 (i, j)πmp

2

π2
mp ≤ C

∑
p

∑
i∈Np

(c− 1)
2
π2
mp = C

∑
i

R̃2
mi.

The same argument applies for the other components. For instance, in other extreme case,

∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

h4 (i, j, k, l)Rml

2

=
∑
p

π2
mp

∑
i∈Np

 ∑
j∈Np\{i}

∑
k∈Np\{i,j}

∑
l∈Np\{i,j,k}

h4 (i, j, k, l)

2
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≤ C
∑
p

∑
i∈Np

π2
mp (c− 1)

2
(c− 2)

2
(c− 3)

2 ≤ C
∑
i

R̃2
mi.

The Matsushita and Otsu (2022) variance estimator presented in Equation (4) is biased in general. In
particular, it can be shown that the model of Section 3.1 implies:

E
[
Ψ̂MO

]
=
∑
i

M2
iiR

2
iR

2
∆i +

∑
i

M2
iiR

2
iE
[
ν2i
]
+
∑
i

∑
j ̸=i

P 2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

P 2
ijR

2
∆iE

[
η2j
]

+
∑
i

∑
j ̸=i

P 2
ij (RiR∆iRjR∆j + E [ηiνi]RjR∆j +RiR∆iE [ηjνj ] + E [ηiνi]E [ηjνj ]) .

(14)

If the R∆’s are zero, then Ψ̂MO is unbiased, by comparing the expression E
[
Ψ̂MO

]
with Equation (8).

Heterogeneity results in many excess terms in the expectation of the variance estimator, generating bias
and inconsistency in general. However, Ψ̂MO can be consistent when forcing weak identification and
weak heterogeneity. If it is assumed that 1√

K

∑
i MiiR

2
i → CS < ∞ and 1√

K

∑
i MiiR

2
∆i → C < ∞

with weak identification and weak heterogeneity, then the excess terms in 1
KE

[
Ψ̂MO

]
can be written as

1√
K

1√
K

∑
i MiiR

2
i = 1√

K
O(1) = o(1) and 1√

K
1√
K

∑
i MiiR

2
∆i = o(1). However, when identification or het-

erogeneity is strong, 1
K

∑
i MiiR

2
i or

1
K

∑
i MiiR

2
∆i is nonnegligible and the variance estimator is inconsistent.

The variance estimator adapted from MS22 has similar properties. In contrast, the L3O variance estimator
is robust regardless of whether the identification is weak or strong.

A.2 Details for Section 2

Lemma 3. Consider the model of Section 2. Suppose h ̸= 0 and Ks2 > 0. Then, E [Tee] ̸= 0 for all real β0.

Data Generating Process. Data is generated from an environment with E[εi] = 0, and
∫ 1

0
f(v)dv =

β. To run a regression on judge indicators (without an intercept) in the reduced-form system, I make a
transformation X̌ = 2X − 1 so that the reduced-form equations can be written as:

X̌i = Z ′
iπ + ηi, and Yi = Z ′

iπY + ζi,

so πk = πY k = 0 for the base judge. The reduced-form errors are: ηi = I
{
λk(i) − vi ≥ 0

}
− πk(i) and

ζi = 1
{
λk(i) − vi ≥ 0

}
f (vi)+εi−πY k(i) respectively. With π∆k = πY k−πkβ, the reduced-form parameters

for the groups of judges are derived in Table 6. The f(v) that delivers the parameters in Table 6 is

f (v) =



−sβ + h v ∈ [0, 1
2 − s]

1
s (1− s)

(
− 1

2sβ − h
)
− 1

s (1− 2s) (−sβ + h) v ∈ ( 12 − s, 1
2 − 1

2s]
1
s (1− s)

(
1
2sβ + h

)
v ∈ ( 12 − 1

2s,
1
2 ]

1
s (1 + s)

(
1
2sβ − h

)
v ∈ ( 12 ,

1
2 + 1

2s]
1
s (1 + 2s) (sβ + h)− 1

s (1 + s)
(
1
2sβ − h

)
v ∈ ( 12 + 1

2s,
1
2 + s]

β−( 1
2+s)(sβ+h)

1
2−s

v ∈ ( 12 + s, 1]

. (15)

To generate the data in the simulation, I draw vi ∼ U [0, 1] as implied by the structural model, then
generate ζi | vi ∼ N(σεvvi, σεε). Hence, σεv and σεε control the correlation between ηi and ζi, with σεε = 0
corresponding to perfect correlation. In the base case, I set σεε = 0.1 and σεv = 0.3. With the given πk, πY k,
the observable variables are generated from X̌i = I{πk(i) > vi} and Yi = πY k(i) + ζi.

Derivations for Constructed Instrument Using the notation for the just-identified IV AR test in
Section 2.4,

ε̂i = ei − X̃i

∑
i eiX̃i∑
i X̃

2
i

=
ei
∑

i X̃
2
i − X̃i

∑
i eiX̃i∑

i X̃
2
i

, and
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Table 6: Parameters for Simple Example

λk
1
2 − s 1

2 − 1
2s

1
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Applying the asymptotic result that 1
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p−→ 0 from Theorem 1,
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A.3 Details for Section 4

A.3.1 Existence of Structural Model

This section presents a structural model, then argues that any reduced-form model in the form of Equa-
tion (13) can be justified by this structural model.

Example 1. Consider a linear potential outcomes model with an instrument Z that is a vector of indicators
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for judges, each with c = 5 cases, a continuous endogenous variable X, and outcome Y :

Xi(z) = z′π + vi, Yi(x) = x (β + ξi) + εi, and εi
ξi
vi

 | k(i) = k ∼ N

 0
0
0

 ,

 σεε σεξ σεv

· σξξ σξvk

· · σvv

 .
(16)

Due to the judge design, Xi = πk(i)+vi, where k(i) is the judge that observation i is assigned to. The strength

of the instrument is CS = 1√
K

∑
k(c− 1)π2

k. The πk’s are constructed as such: with s =
√
CS/

√
K/(c− 1),

set πk = 0 for the base judge, πk = −s for half the judges and πk = s for the other half. The heterogeneity
covariances σξvk are constructed so that

∑
k πk = 0,

∑
k σξvk = 0, and

∑
k πkσξvk = 0. With CH charac-

terizing the heterogeneity in the model, and h =
√

CH/
√
K/(c− 1), set σξvk = 0 of the base judge; among

judges with πk = s, half of them have σξvk = h and the other half σξvk = −h. The same construction of
σξvk applies for judges with πk = −s.

In this model, the individual treatment effect is βi = β + ξi. We can interpret vi as the noise associated
with the first-stage regression, εi as the noise in the intercept of the outcome equation, and ξi as the
individual-level treatment effect heterogeneity. Further, σξvk characterizes the extent of treatment effect
heterogeneity. The observed outcome in a model with constant treatment effects is Yi(Xi) = Xiβ + ε̌i, with
E[ε̌i]=0. When σξvk = 0, regardless of the values of σεξ, σξξ, the observed outcome of Equation (16) can
be written as Yi(Xi) = Xiβ + ε̌i where E[ε̌i] = E[Xiξi + εi] = E[XiE[ξi | Xi]] = 0, which resembles the
constant treatment effect case.

Lemma 4. Consider the model of Example 1. If
√
Ks2 → C̃S < ∞ and

√
Kh2 → C̃H < ∞, then

σ11 =
4

σ33

(
σ22 −

σ2
23

2σ33

)2

+ o(1), σ12 = 2
σ23

σ33

(
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σ2
23

2σ33

)
+ o(1), σ13 =

σ2
23

σ33
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c

(
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(
σεε + σvvβ
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)
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2
)
+ o(1),

σ33 = 2
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c
σ2
vv + o(1), σ23 = 2

c− 1

c
σvv (σvvβ + σεv) + o(1), and µ1

µ2

µ3
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
√
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s2β2 + h2

)
√
K (c− 1) s2β√
K (c− 1) s2

 = (c− 1)

 CSβ
2 + CH

CSβ
CS

 .

Proposition 4. In the model of Example 1 with
√
Ks2 → C̃S < ∞ and

√
Kh2 → C̃H < ∞, for any

σ22, σ23, σ33 such that σ22, σ33 > 0, σ2
23 ≤ σ22σ33 and µ such that µ1, µ3 > 0, µ2

2 ≤ µ1µ3, the following values
of structural parameters:

C̃S = µ3/ (c− 1) , β = µ2/µ3, h =

√
1√
K

1

c− 1

(
µ1 −

µ2
2

µ3

)
,

ΣSF =

 σεε σεξ σεv

. σξξ σξvk

. . σvv
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 1
σvv

c
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(
σ22 − σ2
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σ33

)
+

σ2
εv

σvv
0 σεv

. h
σvv
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. . σvv

 ,

σvv =

√
σ33c

2 (c− 1)
, and σεv =

1

σvv

(
σ23c

2 (c− 1)
− σ2

vvβ

)
,

satisfy the equations in Lemma 4, and det (ΣSF ) /h → CD ≥ 0.

Due to Proposition 4, since the principal submatrices of ΣSF are positive semidefinite asymptotically,
ΣSF is a symmetric positive semidefinite matrix. The proposition thus implies that when the σ’s and µ satisfy
the conditions, there exists structural parameters that can generate the given µ and Σ asymptotically. Hence,
there are no further restrictions on µ from the observed Σ in the simple normal model.
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A.3.2 Numerical Results for Power

Beyond the theoretical optimality results of Section 4, this section presents numerical results for power in
environments not covered by the theory. I first consider one-sided tests beyond the set S covered by the
theory, then weighted average power for two-sided tests rather than the class of unbiased tests.

The power envelope is achieved by a test that is valid across the entire composite null space, and is most
powerful for testing against a particular point in the alternative space. To obtain this test, I implement the
algorithm from Elliott et al. (2015) (EMW) where all weight on the alternative are placed on a single point
while being valid across a composite null. Then, testing against every point in the alternative space requires
a different critical value. For the numerical exercises in this subsection, I use a Σ matrix of the form:

Σ =

 2 2ρ 2ρ2

· 1 + ρ2 2ρ
· · 2

 , (17)

which corresponds to the Σ matrix in Proposition 1 with ωζζ = ωηη = 1, ωζη = ρ.
In the numerical exercises, I display the rejection rate across 500 independent draws from X∗ ∼ N(µ,Σ)

at each point on the µ2 axis, across several µ1, µ3 values for a 5% test. The composite null uses a grid of
µ1 ∈ [0, 5], µ3 ∈ [0, 5] in 0.5 increments, and assumes the variance is known.

Figure 2 uses a one-sided LM test, with a large covariance at ρ = 0.9. When data is generated from
the null, since LM and EMW are valid tests, their rejection rate is at most 0.05. EMW has exact size when
testing a weighted average of values in the null space and is valid across the entire space, so when data is
generated from one particular point in the null, EMW can be conservative. Consistent with Proposition 2,
when µ2 is small enough for µ1 = 1, µ3 = 4, LM achieves the power envelope, but as µ2 gets larger, the gap
widens substantially. This phenomenon occurs because EMW still uses the same null grid, but now it no
longer needs to have correct size for testing against the point (µA

1 − σ12

σ22
µA
2 , 0, µ

A
3 − σ23

σ22
µA
2 ), as that point is

no longer in the null space.
In Figure 3, Σ is calibrated by using the Σ matrix calculated from the Angrist and Krueger (1991)

application, so after appropriate normalizations, ρ = 0.34. With such a low covariance, LM is basically
indistinguishable from the EMW bound. Hence, even though there are gains to be made theoretically, in
the empirical application considered, the gains are small.

Instead of considering a point alternative, we may be more interested in testing against a composite
alternative. Here, the alternative grid for EMW places equal weight on alternatives (µA

1 , µ
A
2 , µ

A
3 ) ∈ [0, 5] ×

[−2, 2]× [0, 5] in increments of 0.5 (excluding µ2 = 0) subject to the inequality constraints. Figures 4 and 5
present one such possibility by allowing EMW to place equal weight on several points within the alternative
space. The resulting test is the nearly optimal test for a weighted average of values the null space against the
uniformly weighted average of alternative values. Hence, there is no guarantee that its power is necessarily
higher than the LM test at every point in the alternative space. While there are weighted-average power
curves that substantially outperform LM, they are compatible with Proposition 3. EMW as constructed is a
biased test as there are points in the alternative space that are not a part of the grid where LM outperforms
EMW. Nonetheless, Figure 5 suggests that, when using the empirical covariance, LM does not perform
substantially worse than EMW.

A.4 Further Simulation Results

This section reports simulation results from several structural models to assess how well various procedures
control for size. Since the nominal size is 0.05, and data is generated under the null, the target rejection
rate is 0.05. Across the board, the L3O method performs well, and for all existing procedures, there exists
at least one design where they perform badly. Comments for the procedures are in Table 2.

A.4.1 Continuous Treatment

This section reports results for a simulation based on Example 1 that has a continuous X. Table 7 reports
results with K = 500 and Table 8 reports results for K = 40. The L3O rejection rates are close to the
nominal rate than the existing procedures in the literature, albeit worse in with a smaller K. MS has high
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Figure 2: One-sided test with ρ = 0.9

Figure 3: One-sided test with ρ = 0.34
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Figure 4: UW with ρ = 0.9

Figure 5: UW with ρ = 0.34
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Table 7: Rejection rates under the null for nominal size 0.05 test for continuous X

TSLS EK MS MO JIVEC ARC L3O LMorc

CH = CS = 3
√
K,σεv = 0 0.061 0.017 1.000 0.079 0.079 0.078 0.042 0.044

CH = 2
√
K,CS = 2

√
K 0.952 0.022 1.000 0.082 0.087 0.084 0.058 0.055

CH = 2
√
K,CS = 2 1.000 0.009 1.000 0.125 0.076 0.127 0.053 0.050

CH = 2
√
K,CS = 0 1.000 0.006 1.000 0.128 0.061 0.127 0.059 0.052

CH = 3, CS = 3
√
K 0.986 0.033 0.109 0.060 0.062 0.064 0.056 0.047

CH = 3, CS = 3 1.000 0.036 0.168 0.065 0.078 0.087 0.055 0.047
CH = 3, CS = 0 1.000 0.048 0.184 0.066 0.106 0.088 0.053 0.057

CH = 0, CS = 2
√
K 1.000 0.089 0.049 0.068 0.083 0.080 0.061 0.058

CH = 0, CS = 2 1.000 0.207 0.045 0.076 0.243 0.135 0.057 0.045
CH = 0, CS = 0 1.000 0.337 0.051 0.062 0.413 0.127 0.045 0.048
CH = S = 0, σεv = 1 1.000 1.000 0.044 0.061 1.000 0.157 0.052 0.044

Notes: Data generating process corresponds to Example 1. Unless mentioned otherwise, simulations use
K = 500, c = 5, β = 0, σεε = σvv = 1, σεξ = 0,= σεv = 0.8, σξξ = 1+h for h2 < 1 with 1000 simulations. The
table displays rejection rates of various procedures (in columns) for various designs (in rows). CH = 0 uses
ξi = 0 for all i, which uses σξξ = σεξ = σξv = 0, corresponding to constant treatment effects. Procedures
are described in Table 2.

rejection rates with strong heterogeneity and EK has high rejection rates with weak instruments. Notably,
with perfect correlation and an irrelevant instrument, EK can achieve 100% rejection in the simulation with
K = 500. The procedures that use the LM statistic are MO, ARC, L3O and LMorc; they differ only in their
variance estimation. Hence, while ARC and MO over-reject, the extent of over-rejection is smaller than MS
and EK in the adversarial cases.

A.4.2 Binary Treatment

This subsection presents a structural model with a binary X. Data is generated from a judge model with
J = K + 1 judges, each with c = 5 cases, and cases are indexed by i. The structural model is:

Yi(x) = x(β + ξi) + εi, and

Xi(z) = I {z′π − vi ≥ 0} .

Our unobservables are generated as follows. Draw vi ∼ U [−1, 1], then generate residuals from:

εi | vi ∼

{
N (σεv, σεε)

N (−σεv, σεε)

if

if

vi ≥ 0

vi < 0
,

ξi | vi ≥ 0 =

{
σξvk

−σξvk

w.p.

w.p.

p

1− p
, and ξi | vi < 0 =

{
σξvk

−σξvk

w.p.

w.p.

1− p

p
.

The process for determining s, h and πk ∈ {0,−s, s}, σξvk ∈ {0,−h, h} are identical to Example 1, as s
controls the strength of the instrument, h the extent of heterogeneity, and β is the object of interest. Then,
the problem’s variances and covariances are determined by (p, σεv, σεε). The JIVE estimand is shown to be β
in Appendix E. A simulation is run with K = 100, so the sample size is smaller than the normal experiment
in Example 1.

Results are presented in Table 9, and are qualitatively similar to Section 2. The oracle test consistently
obtains rejection rates close to the nominal 5% rate across all designs, in accordance with the normality

33



Table 8: Rejection Rates under the null for nominal size 0.05 test for Continuous X with K = 40

TSLS EK MS MO JIVEC ARC L3O LMorc

CH = CS = 3
√
K,σεv = 0 0.072 0.022 0.525 0.061 0.074 0.068 0.039 0.055

CH = 2
√
K,CS = 2

√
K 0.238 0.034 0.388 0.066 0.074 0.077 0.055 0.062

CH = 2
√
K,CS = 2 0.547 0.033 0.475 0.111 0.096 0.133 0.077 0.053

CH = 2
√
K,S = 0 0.651 0.013 0.511 0.094 0.088 0.102 0.068 0.054

CH = 3, CS = 3
√
K 0.213 0.025 0.109 0.057 0.057 0.063 0.055 0.046

CH = 3, CS = 3 0.658 0.032 0.129 0.051 0.074 0.063 0.064 0.055
CH = 3, CS = 0 0.849 0.049 0.127 0.078 0.109 0.103 0.087 0.057

CH = 0, CS = 2
√
K 0.853 0.105 0.049 0.070 0.068 0.098 0.085 0.056

CH = 0, CS = 2 0.999 0.152 0.048 0.062 0.201 0.132 0.098 0.037
CH = 0, CS = 0 1.000 0.342 0.052 0.067 0.439 0.143 0.080 0.049
CH = CS = 0, σεv = 1 1.000 1.000 0.045 0.062 1.000 0.179 0.082 0.045

Note: Designs are identical to Table 7, but K = 40 here.

Table 9: Rejection Rates under the null for nominal size 0.05 test for binary X

TSLS EK MS MO JIVEC ARC L3O LMorc

CH = CS = 3
√
K,σεv = 0 0.046 0.049 0.059 0.045 0.045 0.045 0.049 0.054

CH = 2
√
K,CS = 2

√
K 0.097 0.047 0.177 0.038 0.038 0.041 0.051 0.052

CH = 2
√
K,CS = 2 0.727 0.059 1.000 0.140 0.051 0.143 0.058 0.051

CH = 2
√
K,CS = 0 0.891 0.037 1.000 0.237 0.067 0.247 0.059 0.045

CH = 3, CS = 3
√
K 0.092 0.060 0.051 0.056 0.057 0.056 0.055 0.047

CH = 3, CS = 3 0.996 0.089 0.888 0.074 0.086 0.096 0.055 0.048
CH = 3, CS = 0 1.000 0.124 0.999 0.128 0.289 0.181 0.068 0.052

CH = 0, CS = 2
√
K 0.408 0.058 0.055 0.043 0.046 0.046 0.045 0.041

CH = 0, CS = 2 1.000 0.212 0.052 0.076 0.188 0.108 0.078 0.057
CH = 0, CS = 0 1.000 0.654 0.046 0.057 0.750 0.149 0.069 0.039
CH = CS = 0, σεε = 0 1.000 1.000 0.053 0.069 1.000 0.173 0.076 0.053

Note: The data generating process corresponds to Appendix A.4.2. Unless stated otherwise, designs use
K = 100, c = 5, β = 0, p = 7/8, σεε = 0.1, σεv = 0.5 with 1000 simulations.
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Table 10: Rejection Rates under the null for nominal size 0.05 test for binary X with covariates

TSLS EK MS MO JIVEC ARC L3O LMorc

CH = CS = 3
√
K,σεv = 0 0.048 0.123 0.049 0.052 0.047 0.055 0.054 0.060

CH = 2
√
K,CS = 2

√
K 0.072 0.111 0.052 0.044 0.041 0.046 0.050 0.053

CH = 2
√
K,CS = 2 0.171 0.016 0.471 0.088 0.012 0.092 0.060 0.050

CH = 2
√
K,CS = 0 0.259 0.002 0.960 0.133 0.008 0.135 0.047 0.058

CH = 3, CS = 3
√
K 0.065 0.132 0.048 0.053 0.056 0.054 0.060 0.049

CH = 3, CS = 3 0.131 0.015 0.108 0.040 0.003 0.042 0.044 0.050
CH = 3, CS = 0 0.247 0.003 0.300 0.086 0.004 0.091 0.062 0.053

CH = 0, CS = 2
√
K 0.084 0.099 0.054 0.042 0.036 0.043 0.048 0.050

CH = 0, CS = 2 0.178 0.006 0.058 0.042 0.002 0.044 0.052 0.051
CH = 0, CS = 0 0.246 0.006 0.048 0.063 0.005 0.069 0.081 0.050
CH = CS = 0, σεε = 0 1.000 0.497 0.042 0.015 0.147 0.049 0.092 0.035

Note: The data generating process corresponds to Appendix A.4.3. Unless stated otherwise, designs use
K = 48, c = 5, β = 0, p = 7/8, σεε = 0.5, σεv = 0.1, and g = 0.1 with 1000 simulations.

result, even with heterogeneous treatment effects and non-normality of errors due to the binary setup. The
L3O rejection rate is close to the nominal rate even with a smaller sample size. EK, MS and MO continue
to have high rejection rates in the adversarial designs.

A.4.3 Incorporating Covariates

This section presents a data-generating process that involves covariates. Instead of judges, consider a model
where there are K states. Let t = 1, · · · ,K index the state and let W denote the control vector that is
an indicator for states. With a binary exogenous variable (say an indicator for birth being in the fourth
quarter) B ∈ {0, 1}, the value of the instrument is given by k = t×B. Then, the instrument vector Z is an
indicator for all possible values of k. The structural model is:

Yi(x) = x(β + ξi) + w′γ + εi, and

Xi(z) = I {z′π + w′γ − vi ≥ 0} .

In the simulation, every state has 10 observations, of which 5 have B = 1 and the other 5 have B = 0.
The process for generating (vi, εi, ξi), πk, σξvk, and s, h is identical to the binary case. Hence, π0 = σξv0 for
the base group, which constitutes half the observations. For k ̸= 0, πk is the coefficient for observations from
state t = k and have B = 1, and σξvk is the corresponding heterogeneity term. Whenever πt = s, set γt = g;
whenever πt = −s, set γt = −g. In this setup, it can be shown that the UJIVE estimand is β, and the proof
is in Appendix E. Table 10 reports the associated simulation results, which are qualitatively similar to the
results described before.

B Proofs for Section 3

B.1 Proofs for Section 3.1

First, I prove a quadratic CLT. Let

T =
∑
i

s′ivi +
∑
i

∑
j ̸=i

Gijv
′
iAvj ,
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where vi is a finite-dimensional random vector independent over i = 1, . . . , n with bounded 4th moments, si
is a nonstochastic vector that weights the vi’s, and A is a conformable matrix. Let 1 {·} denote a function
that takes value 1 if the argument is true and 0 if false.

Lemma 5. Suppose:

1. Var (T )
−1/2

is bounded;

2.
∑

i s
4
il → 0; and

3. ||GLG
′
L||F+||GUG

′
U ||F → 0, where GL is a lower-triangular matrix with elements GL,ij = Gij1 {i > j}

and GU is an upper-triangular matrix with elements GU,ij = Gij1 {i < j}.

Then, Var (T )
−1/2

T
d−→ N(0, 1).

Proof of Lemma 5. I rewrite the quadratic term to produce a martingale difference array:∑
i

∑
j ̸=i

Gijv
′
iAvj =

∑
i

∑
j<i

Gijv
′
iAvj +

∑
i

∑
j>i

Gijv
′
iAvj

=
∑
i

∑
j<i

(
Gijv

′
iAvj +Gjiv

′
jAvi

)
.

Hence,
∑

i s
′
ivi +

∑
i

∑
j ̸=i Gijv

′
iAvj =

∑
i yi, where

yi = s′ivi +
∑
j<i

(
Gijv

′
iAvj +Gjiv

′
jAvi

)
= s′ivi + v′iA

∑
j<i

Gijvj

+

∑
j<i

Gjiv
′
j

Avi

= s′ivi + v′iA (GLv)
′
i· + (G′

Uv)i· Avi.

Let Fi denote the filtration of y1, . . . , yi−1. To apply the martingale CLT, we require:

1.
∑

i E
[
|yi|2+ϵ

]
→ 0.

2. Conditional variance converges to 1, i.e., P
(
|
∑

i E
[
B2y2i | Fi

]
− 1| > η

)
→ 0, where B = Var (T )

−1/2
.

The 4th moments of vi are bounded. With ϵ = 2, we want
∑

i E
[
y4i
]
→ 0. Using Loeve’s cr inequality, it

suffices that, for any element l of the vi vector,∑
i

s4ilE
[
v4il
]
→ 0, and

∑
i

E
[
v4il (GLv)

4
il

]
→ 0.

The first condition is immediate from condition (2). The second condition holds by condition (3) using
the proof in EK18. To be precise,∑

i

E
[
v4il (GLv)

4
il

]
=
∑
i

E
[
v4il
]
E
[
(GLv)

4
il

]
⪯
∑
i

E
[
(GLv)

4
il

]
=
∑
i

∑
j

G4
L,ijE

[
v4il
]
+ 3

∑
i

∑
j

∑
k ̸=j

G2
L,ijG

2
L,ikE

[
v2il
]
E
[
v2jl
]

⪯
∑
i

∑
j

∑
k

G2
L,ijG

2
L,ik =

∑
i

(GLG
′
L)

2
ii

≤
∑
i

∑
j

(GLG
′
L)

2
ij = ||GLG

′
L||2F .

The argument for GU is analogous. Now, I turn to showing convergence of the conditional variance.
yi = s′ivi+v′iA (GLv)

′
i·+(G′

Uv)i· Avi. With abuse of notation, Wi = s′ivi and Xi = v′iA (GLv)
′
i·+v′iA (G′

Uv)
′
i·.

Since Var (BT ) = B2
∑

i E
[
W 2

i

]
+B2

∑
i E
[
X2

i

]
= 1,∑

i

E
[
B2y2i | Fi

]
−1 = B2

∑
i

(
E
[
X2

i | Fi

]
− E

[
X2

i

])
+2B2

∑
i

E [WiXi | Fi]+B2
∑
i

(
E
[
W 2

i | Fi

]
− E

[
W 2

i

])
.
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The previous observations in the filtration do not feature, so E
[
W 2

i | Fi

]
− E

[
W 2

i

]
= 0. It suffices to

show that the RHS converges to 0. For the
∑

i E [WiXi | Fi] term,

B2
∑
i

E [WiXi | Fi] = B2
∑
i

E
[
Wi

(
v′iA (GLv)

′
i· + v′iA (G′

Uv)
′
i·

)
| Fi

]
= B2

∑
i

E [Wiv
′
iA] (GLv)

′
i· +B2

∑
i

E [Wiv
′
iA] (G′

Uv)
′
i· .

It suffices to show that the respective squares converge to 0. Due to bounded fourth moments, and
applying the Cauchy-Schwarz inequality repeatedly, for some n-vector δv with ||δv||2 ≤ C,

E

(∑
i

E[Wiv
′
i]A (GLv)

′
i·

)2
 ⪯ δ′vGLG

′
Lδv ≤ ||δv||22||GLG

′
L||2 ⪯ ||GLG

′
L||F ,

and the same argument can be applied to the GU term. For the other term,∑
i

(
E
[
X2

i | Fi

]
− E

[
X2

i

])
=
∑
i

(
E

[(
v′iA (GLv)

′
i· + v′iA (G′

Uv)
′
i·

)2
| Fi

]
− E

[(
v′iA (GLv)

′
i· + v′iA (G′

Uv)
′
i·

)2])
.

It suffices to consider the GL term, as the GU and cross terms are analogous:∑
i

(
E
[(
v′iA (GLv)

′
i·
)2 | Fi

]
− E

[(
v′iA (GLv)

′
i·
)2])

=
∑
i

(
(GLv)i· A

′E [viv
′
i]A (GLv)

′
i· − E

[
(GLv)i· A

′viv
′
iA (GLv)

′
i·
])

.

Since
∑

i (GLv)i· A
′E [viv

′
i]A (GLv)

′
i· is demeaned, it suffices to show that its variance converges to 0.

Due to bounded moments,

Var

(∑
i

(GLv)i· A
′E [viv

′
i]A (GLv)

′
i·

)
⪯
∑
i

∑
j

(GLG
′
L)

2
= ||GLG

′
L||2F ,

which suffices for the result.

Proof of Theorem 1. Write the JIVE in terms of reduced-form objects:

β̂JIV E =

∑
i

∑
j ̸=i GijYiXj∑

i

∑
j ̸=i GijXiXj

=

∑
i

∑
j ̸=i Gij (RY i + ζi) (Rj + ηj)∑

i

∑
j ̸=i Gij (Ri + ηi) (Rj + ηj)

=

∑
i

∑
j ̸=i GijRY iRj +

∑
i

∑
j ̸=i Gij (ζiRj +RY iηj + ζiηj)∑

i

∑
j ̸=i GijRiRj +

∑
i

∑
j ̸=i Gij (Riηj +Rjηi + ηiηj)

.

Use S∗ :=
∑

i

∑
j ̸=i GijRiRj to denote the object that is not normalized. Then,

β̂JIV E − βJIV E =

∑
i

∑
j ̸=i GijRY iRj +

∑
i

∑
j ̸=i Gij (ζiRj +RY iηj + ζiηj)∑

i

∑
j ̸=i GijRiRj +

∑
i

∑
j ̸=i Gij (Riηj +Rjηi + ηiηj)

−
∑

i

∑
j ̸=i GijRY iRj∑

i

∑
j ̸=i GijRiRj

=

(∑
i

∑
j ̸=i Gij (ζiRj +RY iηj + ζiηj)

)
− β

(∑
i

∑
j ̸=i Gij (Riηj +Rjηi + ηiηj)

)
S∗ +

∑
i

∑
j ̸=i Gij (Riηj +Rjηi + ηiηj)

.
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Substitute ζi = νi + βηi and RY i = R∆i −Riβ into the β̂JIV E − βJIV E expression to obtain:

β̂JIV E − βJIV E =

(∑
i

∑
j ̸=i Gij (R∆iηj + νiRj + νiηj)

)
S∗ +

∑
i

∑
j ̸=i Gij (Riηj +Rjηi + ηiηj)

.

Then, divide by
√
K to obtain the expression as stated. To see the equivalence with the T objects,

1√
K

∑
i

∑
j ̸=i

GijeiXj =
1√
K

∑
i

∑
j ̸=i

Gij (νiRj + νiηj +R∆iRj +R∆iηj) ,

with ∑
i

∑
j ̸=i

GijR∆iRj =
∑
i

∑
j ̸=i

Gij (RY i −Riβ)Rj

=
∑
i

∑
j ̸=i

GijRY iRj −
∑
i

∑
j ̸=i

GijRiRj

(∑
i

∑
j ̸=i GijRY iRj∑

i

∑
j ̸=i GijRiRj

)
= 0,

while TXX is immediate.

Next, I show that the joint distribution of
√

K
rn

(Tee, TeX , TXX) is asymptotically normal and derive the

mean. Using the Cramer-Wold device, it suffices to show that
√

K
rn
(c1Tee + c2TeX + c3TXX) is normal for

fixed c’s, where√
K

rn
(c1Tee + c2TeX + c3TXX) = c1

1
√
rn

∑
i

∑
j ̸=i

Gij (νiRj + νiνj +R∆iR∆j +R∆iνj)

+ c2
1

√
rn

∑
i

∑
j ̸=i

Gij (νiRj + νiηj +R∆iηj) + c3
1

√
rn

∑
i

∑
j ̸=i

Gij (ηiRj + ηiηj +RiRj +Riηj) .

The object T =
√

K
rn
(c1Tee + c2TeX + c3TXX)− c1

1√
rn

∑
i

∑
j ̸=i GijR∆iR∆j − c3

1√
rn

∑
i

∑
j ̸=i GijRiRj

can be written in the CLT form by setting:

vi = (ηi, νi)
′
,

si =

[
c3
∑

j ̸=i (Gij +Gji)Rj + c2
∑

j ̸=i GjiR∆j

c1
∑

j ̸=i (Gij +Gji)R∆j + c2
∑

j ̸=i GijRj

]
, and

A =

[
c3 0
c2 c1

]
,

so that

T =
1

√
rn

∑
i

s′ivi +
1

√
rn

∑
i

∑
j ̸=i

Gijv
′
iAvj .

Bounded 4th moments hold by Assumption 1(a). To apply the CLT from Lemma 5, I verify the following:

1. Var (T )
−1/2

is bounded;

2. 1
r2n

∑
i s

4
il → 0 for all l; and

3. ||GLG
′
L||F+||GUG

′
U ||F → 0, whereGL is a lower-triangular matrix with elementsGL,ij =

1√
rn
Gij1 {i > j}

and GU is an upper-triangular matrix with elements GU,ij =
1√
rn
Gij1 {i < j}.

Condition (2) follows from Assumption 1(d) and applying the Cauchy-Schwarz inequality. Condition (3)
is immediate from Assumption 1(e). For Condition (1), I show that Assumption 1(b) and (c) imply
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that, for any nonstochastic scalars c1, c2, c3 that are finite and not all 0, Var(T )−1/2 is bounded. Since

Cov
(∑

i s
′
ivi,

∑
i

∑
j ̸=i Gijv

′
iAvj

)
= 0,

Var (T ) =
1

rn
Var

(∑
i

s′ivi

)
+

1

rn
Var

∑
i

∑
j ̸=i

Gijv
′
iAvj

 , (18)

so it suffices to show that either term is bounded below. The second term is:

V ar

∑
i

∑
j ̸=i

Gijv
′
iAvj

 =
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [v′iAvjv
′
kAvl]

=
∑
i

∑
j ̸=i

G2
ijE

[
v′iAvjv

′
jA

′vi
]
+
∑
i

∑
j ̸=i

GijGjiE
[
v′iAvjv

′
jAvi

]
.

It can be shown that:

AE
[
vjv

′
j

]
A′ =

[
c23E

[
η2j
]

c2c3E
[
η2j
]
+ c1c3E [νjηj ]

c2c3E
[
η2j
]
+ c1c3E [νjηj ] c22E

[
η2j
]
+ 2c2c1E [νjηj ] + c21E

[
ν2j
] ] , and

AE
[
vjv

′
j

]
A =

[
c23E

[
η2j
]
+ c2c3E [νjηj ] c1c3E [νjηj ]

c3c2E
[
η2j
]
+ c3c1E [νjηj ] + c22E [νjηj ] + c2c1E

[
ν2j
]

c1c2E [νjηj ] + c21E
[
ν2j
] ] .

Hence, for some c > 0, and ρi := corr(νi, ηi),

Var

∑
i

∑
j ̸=i

Gijv
′
iAvj

 =
∑
i

∑
j ̸=i

(
G2

ij +GijGji

) (
c23E

[
η2i
]
E
[
η2j
]
+ c22E

[
ν2i
]
E
[
η2j
]
+ c21E

[
ν2i
]
E
[
ν2j
])

+
∑
i

∑
j ̸=i

(
G2

ij +GijGji

) (
2c1c3E [νiηi]E [νjηj ] + 2c1c2E

[
ν2i
]
E [νjηj ] + 2c2c3E [ηiνi]E

[
η2j
])

=
∑
i

∑
j ̸=i

(
G2

ij +GijGji

) (
c23
(
1− ρ2i

)
E
[
η2i
]
E
[
η2j
]
+ c21

(
1− ρ2j

)
E
[
ν2i
]
E
[
ν2j
])

+
∑
i

∑
j ̸=i

(
G2

ij +GijGji

) (
c23ρ

2
iE
[
η2i
]
E
[
η2j
]
+ c22E

[
ν2i
]
E
[
η2j
]
+ c21ρ

2
jE
[
ν2i
]
E
[
ν2j
])

+
∑
i

∑
j ̸=i

(
G2

ij +GijGji

)(
2c1c3ρi

√
E [η2i ]E [ν2i ]ρj

√
E
[
η2j
]
E
[
ν2j
]
+ 2c1c2E

[
ν2i
]
ρj

√
E
[
η2j
]
E
[
ν2j
])

+
∑
i

∑
j ̸=i

(
G2

ij +GijGji

)(
2c2c3ρi

√
E [η2i ]E [ν2i ]E

[
η2j
])

=
∑
i

∑
j ̸=i

(
G2

ij +GijGji

) (
c23
(
1− ρ2i

)
E
[
η2i
]
E
[
η2j
]
+ c21

(
1− ρ2j

)
E
[
ν2i
]
E
[
ν2j
])

+
∑
i

∑
j ̸=i

(
G2

ij +GijGji

)(
ρic3

√
E [η2i ]E

[
η2j
]
+ c2

√
E [ν2i ]E

[
η2j
]
+ ρjc1

√
E [ν2i ]E

[
ν2j
])2

≥
∑
i

∑
j ̸=i

(
G2

ij +GijGji

) (
c23
(
1− ρ2i

)
E
[
η2i
]
E
[
η2j
]
+ c21

(
1− ρ2j

)
E
[
ν2i
]
E
[
ν2j
])

≥
∑
i

∑
j ̸=i

(
G2

ij +GijGji

)
c.

The first inequality follows from the observation that
(∑

i

∑
j ̸=i GijGji

)2
≤
(∑

i

∑
j ̸=i G

2
ij

)2
by the
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Cauchy-Schwarz inequality, so
∑

i

∑
j ̸=i

(
G2

ij +GijGji

)
≥ 0. The inequality in the final line first applies

Assumption 1(b). Using a similar argument,

Var

(∑
i

s′ivi

)
=
∑
i

s′iVar (vi) si =
∑
i

s2i1E[ηi]
2 + 2si1si2E[ηiνi] + s2i2E[ν2i ]

=
∑
i

(1− ρi)
2E[η2i ]s

2
i1 +

(
ρisi1

√
E[η2i ] + si2

√
E[ν2i ]

)2

≥
∑
i

(1− ρi)
2E[η2i ]s

2
i1.

A similar argument yields Var (
∑

i s
′
ivi) ≥

∑
i(1− ρi)

2E[η2i ]s
2
i2. Due to Assumption 1(c), at least one of the

following must hold: (i) 1
rn

∑
i

∑
j ̸=i

(
G2

ij +GijGji

)
≥ c (ii) 1

rn

∑
i s

2
i1 ≥ c, or (iii) 1

rn

∑
i s

2
i2 ≥ c. Hence,

Var(T )−1/2 is bounded.
Finally, since νi, ηi are mean zero, the expectations are immediate: E [Tee] =

∑
i

∑
j ̸=i GijR∆jR∆i and

E [TXX ] =
∑

i

∑
j ̸=i GijRjRi.

B.2 Proofs for Section 3.2

Proof of Equation (8). Expanding the variance,

Var

∑
i

∑
j ̸=i

GijeiXj

 = E


∑

i

∑
j ̸=i

GijeiXj

2
 = E

∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijeiXjGklekXl


=
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [νiXjνkXl] +
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [νiXjR∆kXl]

+
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [R∆iXjνkXl] +
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [R∆iXjR∆kXl]

The first term is:∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [νiXjνkXl]

=
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [νiRjνkRl + νiηjνkRl + νiRjνkηl + νiηjνkηl]

=
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [νiRjνkRl + νiηjνkηl]

=
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
ν2i
]
GijGikRjRk +

∑
i

∑
j ̸=i

∑
l ̸=i

GijGilE [νiηjνiηl] +
∑
l ̸=j

GijGjlE [νiηjνjηl]


+
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijGkiE [νiηjνkηi] +
∑
k ̸=i,j

GijGkjE [νiηjνkηj ]


=
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
ν2i
]
GijGikRjRk +

∑
i

∑
j ̸=i

(
G2

ijE
[
ν2i η

2
j

]
+GijGjiE [νiηiηjνj ]

)
=
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
ν2i
]
GijGikRjRk +

∑
i

∑
j ̸=i

(
G2

ijE
[
ν2i
]
E
[
η2j
]
+GijGjiE [νiηi]E [ηjνj ]

)
In the next few terms, the expansion steps are analogous, so intermediate steps are omitted for brevity.

The second to fourth terms can be expressed as:∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [νiXjR∆kXl] =
∑
i

E [νiηi]
∑
j ̸=i

GijRj

∑
k ̸=i

GkiR∆k;
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∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [R∆iXjνkXl] =
∑
i

∑
j ̸=i

∑
l ̸=i

GjiGilE [ηiνi]R∆jRl; and

∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

GijGklE [R∆iXjR∆kXl] =
∑
i

E
[
η2i
]∑
j ̸=i

∑
k ̸=i

GjiGkiR∆jR∆k.

The expression stated in the lemma combines these expressions. The corollary follows from setting G = P
and observing that P is symmetric, and that since PR = I, we have

∑
j ̸=i PijRj =

∑
j ̸=i PjiRj = MiiRi.

As a corollary, if G = P is a projection matrix and M = I − P , then

Var

∑
i

∑
j ̸=i

PijeiXj

 =
∑
i

E
[
ν2i
]
M2

iiR
2
i +

∑
i

∑
j ̸=i

P 2
ij

(
E
[
ν2i
]
E
[
η2j
]
+ E [ηiνi]E [ηjνj ]

)
+ 2

∑
i

E [νiηi]M
2
iiRiR∆i +

∑
i

E
[
η2i
]
M2

iiR
2
∆i.

(19)

The proof of Theorem 2 is involved, so it will be split into several intermediate lemmas. First I prove
three lemmas that yield useful inequalities, then use the results. The proof strategy of these lemmas is to
bound the variances above by components that are in the h(.) form so that Assumption 3 inequalities can
be applied. These inequalities are also sufficiently general that other components of the variance matrix
in (7) can be written in the given forms, so repeated applications of these lemmas can analogously show
consistency of the associated variance estimators.

Let Vmi = Rmi + vmi where Rmi denotes the nonstochastic component while vmi denotes the mean zero
stochastic component. Following Equation (6), rn :=

∑
i R̃

2
i +

∑
i R̃

2
∆i +

∑
i

∑
j ̸=i G

2
ij . Let Ci, Cij , Cijk any

denote nonstochastic objects that are non-negative and are bounded above by C. I use hA
4 (.) and hB

4 (.) to
denote two different functions that satisfy the above definition for h4.

Lemma 6. Under Assumption 3, the following hold:

(a)
∣∣∣∑n

i ̸=j ̸=k Cijk

(∑
l ̸=i,j,k h

A
4 (i, j, k, l)Rml

)(∑
l ̸=i,j,k h

B
4 (i, j, k, l)Rml

)∣∣∣ ≤ C
∑

i R̃
2
mi,∣∣∣∑n

i ̸=j Cij

(∑
k ̸=i,j

∑
l ̸=i,j,k h

A
4 (i, j, k, l)Rml

)(∑
k ̸=i,j

∑
l ̸=i,j,k h

B
4 (i, j, k, l)Rml

)∣∣∣ ≤ C
∑

i R̃
2
mi,

and
∣∣∣∑i Ci

(∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k h

A
4 (i, j, k, l)Rml

)(∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k h

B
4 (i, j, k, l)Rml

)∣∣∣ ≤ C
∑

i R̃
2
mi.

(b)
∣∣∣∑n

i̸=j Cij

(∑
k ̸=i,j h

A
3 (i, j, k)Rmk

)(∑
k ̸=i,j h

B
3 (i, j, k)Rmk

)∣∣∣ ≤ C
∑

i R̃
2
mi

and
∣∣∣∑i Ci

(∑
j ̸=i

∑
k ̸=i,j h

A
3 (i, j, k)Rmk

)(∑
j ̸=i

∑
k ̸=i,j h

B
3 (i, j, k)Rmk

)∣∣∣ ≤ C
∑

i R̃
2
mi.

(c)
∣∣∣∑i Ci

(∑
j ̸=i h

A
2 (i, j)Rmj

)(∑
j ̸=i h

B
2 (i, j)Rmj

)∣∣∣ ≤ C
∑

i R̃
2
mi.

Proof of Lemma 6. I begin with part (c). By applying the Cauchy-Schwarz inequality,∣∣∣∣∣∣
∑
i

Ci

∑
j ̸=i

hA
2 (i, j)Rmj

∑
j ̸=i

hB
2 (i, j)Rmj

∣∣∣∣∣∣
≤

∑
i

Ci

∑
j ̸=i

hA
2 (i, j)Rmj

2


1/2∑
i

Ci

∑
j ̸=i

hB
2 (i, j)Rmj

2


1/2

≤ max
i

Ci

∑
i

∑
j ̸=i

hA
2 (i, j)Rmj

2


1/2∑
i

∑
j ̸=i

hB
2 (i, j)Rmj

2


1/2

≤ max
i

Ci

(∑
i

R̃2
mi

)1/2(∑
i

R̃2
mi

)1/2

≤ C
∑
i

R̃2
mi.
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The proof of all other parts are entirely analogous.

Lemma 7. Under Assumption 3, the following hold:

(a) Var
(∑n

i ̸=j GijFijV1iV2iV3jV4j

)
≤ Crn.

(b) Var
(∑n

i ̸=j ̸=k GijFijM̌ik,−ijV1iV2kV3jV4j

)
≤ Crn.

(c) Var
(∑n

i ̸=j ̸=l GijFijM̌jl,−ijV1iV2iV3jV4l

)
≤ Crn.

(d) Var
(∑n

i ̸=j ̸=k ̸=l GijFijV1iM̌ik,−ijV2kV3jM̌jl,−ijkV4l

)
≤ Crn.

Proof of Lemma 7. Proof of Lemma 7(a).
Using the decomposition from AS23,

Var

∑
i

∑
j ̸=i

GijFijV1iV2iV3jV4j


=

n∑
i̸=j

G2
ijF

2
ijVar (V1iV2iV3jV4j) +

n∑
i ̸=j

GijFijGjiFjiCov (V1iV2iV3jV4j , V1jV2jV3iV4i)

+

n∑
i ̸=j ̸=k

GijFijGkjFkjCov (V1iV2iV3jV4j , V1kV2kV3jV4j) +

n∑
i ̸=j ̸=k

GijFijGjkFjkCov (V1iV2iV3jV4j , V1jV2jV3kV4k)

+

n∑
i ̸=j ̸=k

GijFijGikFikCov (V1iV2iV3jV4j , V1iV2iV3kV4k) +

n∑
i ̸=j ̸=k

GijFijGkiFkiCov (V1iV2iV3jV4j , V1kV2kV3iV4i)

≤ 2

[
max
i,j

Var (V1iV2iV3jV4j)

]∑
i


∑

j ̸=i

GijFij

2

+

∑
j ̸=i

GijFij

∑
j ̸=i

GjiFji


 .

Notice that the terms in
∑n

i ̸=j are absorbed into the sum over k so that the final expression can be
written as

∑
i

∑
j ̸=i

∑
k ̸=i. Then, due to Assumption 3(a) and the Cauchy-Schwarz inequality,

∑
i

∑
j ̸=i

GijFij

2

≤
∑
i

∑
j ̸=i

G2
ij

∑
j ̸=i

F 2
ij

 ≤ C
∑
i

∑
j ̸=i

G2
ij ,

and ∣∣∣∣∣∣
∑
i

∑
j ̸=i

GijFij

∑
j ̸=i

GjiFji

∣∣∣∣∣∣ ≤
∑

i

∑
j ̸=i

GijFij

2


1/2∑
i

∑
j ̸=i

GjiFji

2


1/2

≤ C

∑
i

∑
j ̸=i

G2
ij

1/2∑
i

∑
j ̸=i

G2
ji

1/2

= C
∑
i

∑
j ̸=i

G2
ij .

Proof of Lemma 7(b). Expand the term:

n∑
i̸=j ̸=k

GijFijM̌ik,−ijV1iV2kV3jV4j =

n∑
i ̸=j ̸=k

GijFijM̌ik,−ij (R1iR2k + v1iR2k +R1iv2k + v1iv2k)V3jV4j .

Consider the final sum with 4 stochastic terms. The 6-sums have zero covariances due to independent
sampling. The 5-sums also have zero covariances, because at least one of v1 or v2 needs to have different
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indices. Within the 4-sum, the covariance is nonzero only for j2 ̸= j. We require i2 to be equal to either i
or k and k2 the other index. Hence, by bounding covariances above by Cauchy-Schwarz,

Var

 n∑
i ̸=j ̸=k

GijFijM̌ik,−ijv1iv2kV3jV4j


≤max

i,j,k
Var (v1iv2kV3jV4j)

∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

(
GijFijGilFilM̌ik,−ijM̌ik,−il +GijFijGklFklM̌ik,−ijM̌ki,−kl

)
+max

i,j,k
Var (v1iv2kV3jV4j) 3!

n∑
i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij

≤max
i,j,k

Var (v1iv2kV3jV4j)

 n∑
i ̸=j ̸=k ̸=l

G2
ijG

2
ilM̌

2
ik,−ij

1/2 n∑
i ̸=j ̸=k ̸=l

F 2
ijF

2
ilM̌

2
ik,−ij

1/2

+max
i,j,k

Var (v1iv2kV3jV4j)

 n∑
i ̸=j ̸=k ̸=l

G2
ijG

2
klM̌

2
ik,−ij

1/2 n∑
i ̸=j ̸=k ̸=l

F 2
ijF

2
klM̌

2
ik,−ij

1/2

+max
i,j,k

Var (v1iv2kV3jV4j) 3!

n∑
i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij .

To obtain the first inequality, observe that once we have fixed 3 indices, there are 3! permutations of
the v1iv2kV3jV4j that we can calculate covariances for. They are all bounded above by the variance. In the
various combinations, we may have different combinations of G and F , but they are bounded above by the
expression. To be precise, the 3-sum is:

n∑
i ̸=j ̸=k

GijFijM̌ik,−ij

(
GijFijM̌ik,−ij +GikFikM̌ij,−ik +GjiFjiM̌jk,−ji

)
+

n∑
i ̸=j ̸=k

GijFijM̌ik,−ij

(
GjkFjkM̌ji,−jk +GkiFkiM̌kj,−ki +GkjFkjM̌ki,−kj

)
.

Apply Cauchy-Schwarz to the sum and apply the commutative property of summations to obtain the upper
bound. For instance, n∑

i ̸=j ̸=k

GijFijM̌ik,−ijGjkFjkM̌ji,−jk

2

≤

 n∑
i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij

 n∑
i ̸=j ̸=k

G2
jkF

2
jkM̌

2
ji,−jk

 .

Then, observe that
∑

i

∑
j ̸=i

∑
k ̸=i,j G

2
jkF

2
jkM̌

2
ji,−jk =

∑
j

∑
k ̸=j

∑
i ̸=j,k G

2
jkF

2
jkM̌

2
ji,−jk

=
∑

i

∑
j ̸=i

∑
k ̸=i,j G

2
ijF

2
ijM̌

2
ik,−ij . Due to AS23 Equation (22),

∑
l M̌

2
il−ijk = O(1), so

∑n
i̸=j ̸=k G

2
ijF

2
ijM̌

2
ik,−ij ≤

C
∑

i

∑
j ̸=i G

2
ijF

2
ij ≤ C

∑
i

∑
j ̸=i G

2
ij . Similarly,

∑n
i̸=j ̸=k ̸=l G

2
ijG

2
klM̌

2
ik,−ij = O(1)

∑n
i ̸=j ̸=k G

2
ijM̌

2
ik,−ij =

O(1)
∑n

i ̸=j G
2
ij , which delivers the order required.

To deal with 3 stochastic terms,

Var

 n∑
i̸=j ̸=k

GijFijM̌ik,−ijR1iv2kV3jV4j

 = Var

 n∑
i ̸=j

v2iV3jV4j

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k


≤

n∑
i ̸=j

Var (v2iV3jV4j)

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k +
∑
k ̸=i,j

GkiFkiM̌kj,−kiR1k


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+max
i,j

Var (v2iV3jV4j)

n∑
i ̸=j

∑
l ̸=i,j

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

∑
k ̸=i,l

GklFklM̌ki,−klR1k


≤
∑
i

∑
j ̸=i

Var (v2iV3jV4j)

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k +
∑
k ̸=i,j

GkiFkiM̌kj,−kiR1k


+max

i,j
Var (v2iV3jV4j)

∑
i

∑
j ̸=i

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

2

−max
i,j

Var (v2iV3jV4j)
∑
i

∑
j ̸=i

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

2

≤ max
i,j

Var (v2iV3jV4j)
∑
i

∑
j ̸=i

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

2

+

n∑
i ̸=j

Var (v2iV3jV4j)

∑
k ̸=i,j

GkjFkjM̌ki,−kjR1k

∑
k ̸=i,j

GkiFkiM̌kj,−kiR1k


To get the first inequality, observe that, if for l ̸= i, j, we have v2l instead of V3lV4l, the covariance must

be 0. We can then bound the order by using Assumption 3 and Lemma 6. Similarly,

Var

 n∑
i̸=j ̸=k

GijFijM̌ik,−ijv1iR2kV3jV4j

 = Var

 n∑
i ̸=j

v1iV3jV4j

∑
k ̸=i,j

GijFijM̌ik,−ijR2k


≤ max

i,j
Var (v1iV3jV4j)

∑
i

∑
j ̸=i

∑
k ̸=i,j

GijFijM̌ik,−ijR2k

2

+
∑
i

∑
j ̸=i

Var (v1iV3jV4j)

∑
k ̸=i,j

GijFijM̌ik,−ijR2k

∑
k ̸=i,j

GjiFjiM̌jk,−ijR2k

 .

since the expansion in the intermediate steps are entirely analogous.
Turning to the sum with two stochastic objects,

Var

 n∑
i ̸=j ̸=k

GijFijM̌ik,−ijR1iR2kV3jV4j

 = Var

∑
i

V3iV4i

∑
j ̸=i

∑
k ̸=i,j

GjiFjiM̌jk,−ijR1jR2k


=
∑
i

Var (V3iV4i)

∑
j ̸=i

∑
k ̸=i,j

GjiFjiM̌jk,−ijR1jR2k

2

≤ max
i

Var (V3iV4i)
∑
i

∑
j ̸=i

∑
k ̸=i,j

GjiFjiM̌jk,−ijR1jR2k

2

.

With these inequalities, applying Assumption 3 suffices for the result.
Proof of Lemma 7(c). Expand the term:

n∑
i̸=j ̸=l

GijFijM̌jl,−ijV1iV2iV3jV4l =

n∑
i ̸=j ̸=l

GijFijM̌jl,−ijV1iV2i (R3jR4l +R3jv4l + v3jR4l + v3jv4l) .

With four stochastic objects,

Var

 n∑
i ̸=j ̸=l

GijFijM̌jl,−ijV1iV2iv3jv4l


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≤max
i,j,k

Var (V1iV2iv3jv4l)

n∑
i̸=j ̸=l

∑
i2 ̸=i,j,l

(
GijFijM̌jl,−ijGi2jFi2jM̌jl,−i2j +GijFijM̌jl,−ijGi2lFi2lM̌lj,−i2l

)
+max

i,j,k
Var (V1iV2iv3jv4l) 3!

n∑
i ̸=j ̸=l

G2
ijF

2
ijM̌

2
jl,−ij .

Simplifying the first line,

n∑
i ̸=j ̸=l

∑
i2 ̸=i,j,l

(
GijFijM̌jl,−ijGi2jFi2jM̌jl,−i2j +GijFijM̌jl,−ijGi2lFi2lM̌lj,−i2l

)

≤

 n∑
i ̸=j ̸=l ̸=i2

G2
ijG

2
i2jM̌

2
jl,−ij

1/2 n∑
i ̸=j ̸=l ̸=i2

F 2
ijF

2
i2jM̌

2
jl,−i2j

1/2

+

 n∑
i ̸=j ̸=l ̸=i2

G2
ijG

2
i2lM̌

2
jl,−ij

1/2 n∑
i ̸=j ̸=l ̸=i2

F 2
ijF

2
i2lM̌

2
lj,−i2j

1/2

.

These terms have the required order due to a proof analogous to Lemma 7(b). Next,

Var

 n∑
i̸=j ̸=l

GijFijM̌jl,−ijV1iV2iR3jv4l

 = Var

∑
i

∑
j ̸=i

V1iV2iv4j

∑
l ̸=i,j

GilFilM̌lj,−ilR3l


≤
∑
i

∑
j ̸=i

Var (V1iV2iv4j)

∑
l ̸=i,j

GilFilM̌lj,−ilR3l

∑
l ̸=i,j

GilFilM̌lj,−ilR3l +
∑
l ̸=i,j

GjlFjlM̌li,−jlR3l


+max

i,j
Var (V1iV2iv4j)

∑
i

∑
j ̸=i

∑
i2 ̸=i,j

∑
l ̸=i,j

GilFilM̌lj,−ilR3l

 ∑
k ̸=i2,l

GklFklM̌ki2,−klR1k


≤ max

i,j
Var (V1iV2iv4j)

∑
i

∑
j ̸=i

∑
l ̸=i,j

GilFilM̌lj,−ilR3l

2

+
∑
i

∑
j ̸=i

Var (V1iV2iv4j)

∑
l ̸=i,j

GilFilM̌lj,−ilR3l

∑
l ̸=i,j

GjlFjlM̌li,−jlR3l

 .

Further, Var
(∑n

i̸=j ̸=l GijFijM̌jl,−ijV1iV2iv3jR4l

)
can be bounded by a similar argument. Turning to

the sum with two stochastic objects,

Var

 n∑
i̸=j ̸=l

GijFijM̌jl,−ijV1iV2iR3jR4l

 =
∑
i

Var (V1iV2i)

∑
j ̸=i

∑
l ̸=i,j

GijFijM̌jl,−ijR3jR4l

2

.

These inequalities suffice for the result due to Assumption 3.
Proof of Lemma 7(d). Expand the term:

n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iV2kV3jV4l

=

n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2k (R3jR4l +R3jv4l + v3jR4l + v3jv4l)
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+

n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2k (R3jR4l +R3jv4l + v3jR4l + v3jv4l) .

Consider the v2k line first. We only have the 4-sum to contend with. For 5-sum and above, at least
one of the errors can be factored out as a zero expectation. Hence, by using Cauchy-Schwarz and the same
argument as above,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2kv3jv4l


≤ max

i,j,k,l
Var (V1iv2kv3jv4l) 4!

n∑
i ̸=j ̸=k ̸=l

G2
ijF

2
ijM̌

2
ik,−ijM̌

2
jl,−ijk

≤ C

n∑
i ̸=j ̸=k

G2
ijF

2
ijM̌

2
ik,−ij ≤ C

n∑
i ̸=j

G2
ijF

2
ij ≤ C

 n∑
i ̸=j

G2
ij

1/2 n∑
i ̸=j

F 2
ij

1/2

.

By using the same expansion step as before,

Var

 n∑
i̸=j ̸=k

GijFijM̌ik,−ijV1iv2kv3j

 ∑
l ̸=i,j,k

M̌jl,−ijkR4l


≤max

i,j,k
Var

V1iv2kv3j

 ∑
l ̸=i,j,k

M̌jl,−ijkR4l

 n∑
i ̸=j ̸=k ̸=i2

(
GijFijGi2jFi2jM̌ik,−ijM̌i2k,−ij +GijFijGi2kFi2kM̌ij,−ikM̌i2j,−ik

)

+max
i,j,k

Var

V1iv2kv3j

 ∑
l ̸=i,j,k

M̌jl,−ijkR4l

 3!
∑
i

∑
j ̸=i

∑
k ̸=i,j

G2
ijF

2
ijM̌

2
ik,−ij .

The
∑n

i ̸=j ̸=k ̸=i2

(
GijFijGi2jFi2jM̌ik,−ijM̌i2k,−ij +GijFijGi2kFi2kM̌ij,−ikM̌i2j,−ik

)
term has the required

order due to the same argument as the proof of Lemma 7(b). Next,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2kR3jv4l

 = Var

 n∑
i̸=j ̸=k

V1iv2kv4j

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l


≤max

i,j,k
Var (V1iv2kv4j)

n∑
i ̸=j ̸=k

∑
i2 ̸=i,j,k

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

 ∑
l ̸=i2,j,k

Gi2lFi2lM̌i2k,−i2lM̌lj,−i2lkR3l


+max

i,j,k
Var (V1iv2kv4j)

n∑
i ̸=j ̸=k

∑
i2 ̸=i,j,k

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

 ∑
l ̸=i2,j,k

Gi2lFi2lM̌i2j,−i2lM̌lk,−i2ljR3l


+max

i,j,k
Var (V1iv2kv4j) 3!

n∑
i ̸=j ̸=k

M̌2
ik,−ij

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

≤max
i,j,k

Var (V1iv2kv4j)
∑
k

∑
j ̸=k

∑
i ̸=k,j

∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

−max
i,j,k

Var (V1iv2kv4j)
∑
k

∑
j ̸=k

∑
i ̸=k,j

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

46



+max
i,j,k

Var (V1iv2kv4j)
∑
k

∑
j ̸=k

∑
i ̸=k,j

∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

∑
i ̸=k,j

∑
l ̸=i,j,k

GilFilM̌ij,−ilM̌lk,−iljR3l


−max

i,j,k
Var (V1iv2kv4j)

∑
k

∑
j ̸=k

∑
i ̸=k,j

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

 ∑
l ̸=i,j,k

GilFilM̌ij,−ilM̌lk,−iljR3l


+max

i,j,k
Var (V1iv2kv4j) 3!

n∑
i ̸=j ̸=k

M̌2
ik,−ij

 ∑
l ̸=i,j,k

GilFilM̌ik,−ilM̌lj,−ilkR3l

2

.

The first term in the v2k line is then:

Var

 n∑
i̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iv2kR3jR4l

 = Var

 n∑
i ̸=j

GijFijM̌ij,−ikV1iv2j
∑
k ̸=i,j

∑
l ̸=i,j,k

M̌kl,−ijkR3kR4l


≤ max

i,j
Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l

2

+max
i,j

Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l

GjiFji

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ji,−jkM̌kl,−ijkR3kR4l


+max

i,j
Var (V1iv2j)

n∑
i ̸=j ̸=i2

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l


Gi2jFi2j

∑
k ̸=i2,j

∑
l ̸=i2,j,k

M̌i2j,−i2kM̌kl,−i2jkR3kR4l


≤ max

i,j
Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l

2

+max
i,j

Var (V1iv2j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ij,−ikM̌kl,−ijkR3kR4l

GjiFji

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ji,−jkM̌kl,−ijkR3kR4l


+max

i,j
Var (V1iv2j)

∑
j

∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ij,−ikM̌kl,−ijkR3kR4l

2

−max
i,j

Var (V1iv2j)
∑
j

∑
i̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ij,−ikM̌kl,−ijkR3kR4l

2

.

Now, we turn back to the R2k expression to complete the proof:

n∑
i ̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2k (R3jR4l +R3jv4l + v3jR4l + v3jv4l) .

Consider the term with three stochastic terms first, and simplify it using the same strategy as before:

Var

 n∑
i̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2kv3jv4l

 = Var

 n∑
i ̸=j ̸=k

GijFijV1iv3jv4k
∑

l ̸=i,j,k

M̌il,−ijM̌jk,−ijlR2l


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≤ max
i,j,k

Var (V1iv3jv4k)

 n∑
k ̸=j

∑
i̸=k,j

∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

2

−
n∑

k ̸=j

∑
i ̸=k,j

 ∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

2


+max
i,j,k

Var (V1iv3jv4k)
∑
k

∑
j ̸=k

∑
i ̸=k,j

∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

∑
i̸=k,j

∑
l ̸=i,j,k

GikFikM̌il,−ikM̌kj,−iklR2l


−max

i,j,k
Var (V1iv3jv4k)

∑
k

∑
j ̸=k

∑
i ̸=k,j

 ∑
l ̸=i,j,k

GijFijM̌il,−ijM̌jk,−ijlR2l

 ∑
l ̸=i,j,k

GikFikM̌il,−ikM̌kj,−iklR2l


+max

i,j,k
Var (V1iv3jv4k) 3!

n∑
i ̸=j ̸=k

GijFij

∑
l ̸=i,j,k

M̌il,−ijM̌jk,−ijlR2l

2

.

Next,

Var

∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ik,−ijM̌jl,−ijkV1iR2kv3jR4l


≤ max

i,j
Var (V1iv3j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

2

+max
i,j

Var (V1iv3j)

n∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

GjiFji

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌jk,−ijM̌il,−ijkR2kR4l


+max

i,j
Var (V1iv3j)

∑
j

∑
i ̸=j

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

2

−max
i,j

Var (V1iv3j)

n∑
j ̸=i

GijFij

∑
k ̸=i,j

∑
l ̸=i,j,k

M̌ik,−ijM̌jl,−ijkR2kR4l

2

.

Finally,

Var

 n∑
i̸=j ̸=k ̸=l

GijFijM̌ik,−ijM̌jl,−ijkV1iR2kR3jR4l

 =
∑
i

Var (V1i)

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFijM̌ik,−ijM̌jl,−ijkR2kR3jR4l

2

.

Lemma 8. Under Assumption 3, the following hold:

(a) Var
(∑n

i ̸=j ̸=k GijFikV1jV2kV3iV4i

)
≤ Crn.

(b) Var
(∑n

i ̸=j ̸=k ̸=l GijFikM̌il,−ijkV1jV2kV3iV4l

)
≤ Crn.

Proof of Lemma 8. Proof of Lemma 8(a). Expand the term:

n∑
i̸=j ̸=k

GijFikV1jV2kV3iV4i =

n∑
i̸=j ̸=k

GijFikV3iV4i (R1jR2k +R1jv2k + v1jR2k + v1jv2k) .
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With four stochastic objects,

V ar

 n∑
i̸=j ̸=k

GijFikV3iV4iv1jv2k

 ≤ max
i,j,k

Var (V3iV4iv1jv2k)

n∑
i ̸=j ̸=k

∑
i2 ̸=i,j,k

(GijFikGi2jFi2k +GijFikGi2kFi2j)

+ max
i,j,k

Var (V1iV2iv3jv4l) 3!

n∑
i̸=j ̸=k

G2
ijF

2
ik.

Observe that, due to Assumption 3(a),

n∑
i ̸=j ̸=k ̸=l

GijFikGljFlk =

n∑
j ̸=k

∑
i ̸=j,k

GijFik

∑
l ̸=j,k

GljFlk −GijFik


=

n∑
j ̸=k

∑
i ̸=j,k

GijFik

2

−
n∑

j ̸=k ̸=i

G2
ijF

2
ik

has the required order, which suffices for the bound. Next,

Var

 n∑
i ̸=j ̸=k

GijFikV3iV4iR1jv2k


= Var

∑
i

∑
j ̸=i

FijV3iV4iv2j

∑
k ̸=i,j

GikR1k


≤
∑
i

∑
j ̸=i

Var (V3iV4iv2j)

∑
k ̸=i,j

FijGikR1k

∑
k ̸=i,j

FijGikR1k +
∑
k ̸=i,j

FjiGjkR1k


+max

i,j
Var (V3iV4iv2j)

∑
i

∑
j ̸=i

∑
i2 ̸=i,j

∑
k ̸=i,j

FijGikR1k

 ∑
k ̸=i2,l

Fi2jGi2kR1k


≤ max

i,j
Var (V3iV4iv2j)

∑
i

∑
j ̸=i

∑
k ̸=i,j

FijGikR1k

2

+
∑
i

∑
j ̸=i

Var (V3iV4iv2j)

∑
k ̸=i,j

FijGikR1k

∑
k ̸=i,j

FjiGjkR1k

 .

Similarly,

Var

 n∑
i ̸=j ̸=k

GijFikV3iV4iv1jR2k

 = Var

∑
i

∑
j ̸=i

V3iV4iv1j

∑
k ̸=i,j

GijFikR2k


≤ max

i,j
Var (V3iV4iv1j)

∑
i


∑

j ̸=i

∑
k ̸=i,j

GijFikR2k

2

+
∑
j ̸=i

∑
k ̸=i,j

GijFikR2k

∑
k ̸=i,j

GjiFjkR2k




Turning to the sum with two stochastic objects,

Var

 n∑
i ̸=j ̸=k

GijFikV3iV4iR1jR2k

 = Var

∑
i

V3iV4i

∑
j ̸=i

∑
k ̸=i,j

GijFikR1jR2k


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≤ max
i

Var (V3iV4i)
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijFikR1jR2k

2

Proof of Lemma 8(b).
Decompose the term:

n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV1jV2kV3iV4l

=

n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1j (R2kR4l +R2kv4l + v2kR4l + v2kv4l)

+

n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1j (R2kR4l +R2kv4l + v2kR4l + v2kv4l) .

Consider the v1j line first.

Var

 n∑
i̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jv2kv4l

 ≤ max
i,j,k,l

Var (V3iv1jv2kv4l) 4!

n∑
i ̸=j ̸=k ̸=l

G2
ijF

2
ikM̌

2
il,−ijk.

Next, by using the same expansion and simplification steps as before,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jv2kR4l

 = Var

 n∑
i̸=j ̸=k

GijFikV3iv1jv2k
∑

l ̸=i,j,k

M̌il,−ijkR4l


≤ max

i,j,k
Var (V3iv1jv2k)

∑
k

∑
j ̸=k


∑

i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

2

−
∑
i ̸=j,k

 ∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

2


+max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

∑
i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

∑
i ̸=j,k

∑
l ̸=i,j,k

GikFijM̌il,−ijkR4l


−max

i,j,k
Var (V3iv1jv2k)

∑
k

∑
j ̸=k

∑
i̸=j,k

 ∑
l ̸=i,j,k

GijFikM̌il,−ijkR4l

 ∑
l ̸=i,j,k

GikFijM̌il,−ijkR4l


+max

i,j,k
Var (V3iv1jv2k) 3!

n∑
i ̸=j ̸=k

G2
ijF

2
ik

 ∑
l ̸=i,j,k

M̌il,−ijkR4l

2

and

Var

 n∑
i̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jR2kv4l

 = Var

 n∑
i̸=j ̸=k

GijFikV3iv1jv4k
∑

l ̸=i,j,k

M̌ik,−ijlR2l


≤ max

i,j,k
Var (V3iv1jv4k)

∑
k

∑
j ̸=k


∑

i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

2

−
∑
i ̸=j,k

 ∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

2


+max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

∑
i ̸=j,k

∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

∑
i ̸=j,k

∑
l ̸=i,j,k

GikFijM̌il,−ijkR2l



50



−max
i,j,k

Var (V3iv1jv2k)
∑
k

∑
j ̸=k

∑
i ̸=j,k

 ∑
l ̸=i,j,k

GijFikM̌ik,−ijlR2l

 ∑
l ̸=i,j,k

GikFijM̌il,−ijkR2l


+max

i,j,k
Var (V3iv1jv4k) 3!

n∑
i ̸=j ̸=k

G2
ijF

2
ik

 ∑
l ̸=i,j,k

M̌ik,−ijlR2l

2

with
(∑

l ̸=i,j,k M̌ik,−ijlR2l

)2
≤ C. Finally,

Var

 n∑
i ̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iv1jR2kR4l

 = Var

 n∑
i ̸=j

GijV3iv1j
∑
k ̸=i,j

∑
l ̸=i,j,k

FikM̌il,−ijkR2kR4l


≤ max

i,j
Var (V3iv1j)

n∑
i ̸=j

Gij

∑
k ̸=i,j

∑
l ̸=i,j,k

FikM̌il,−ijkR2kR4l

2

+max
i,j

Var (V3iv1j)

n∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR2kR4l

∑
k ̸=i,j

∑
l ̸=i,j,k

GjiFjkM̌jl,−ijkR2kR4l


+max

i,j
Var (V3iv1j)

∑
j


∑

i̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR2kR4l

2

−
∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR2kR4l

2


Now, return to the R1j line:
∑n

i ̸=j ̸=k ̸=l GijFikM̌il,−ijkV3iR1j (R2kR4l +R2kv4l + v2kR4l + v2kv4l), so

Var

 n∑
i̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1jv2kv4l

 = Var

 n∑
i̸=j ̸=k

GilFikV3iv2kv4j
∑

l ̸=i,j,k

M̌ij,−ilkR1l


≤ max

i,j,k
Var (V3iv2kv4j)

∑
j

∑
k ̸=j

∑
i ̸=j,k

∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

2

−
∑
j

∑
k ̸=j

∑
i ̸=j,k

 ∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

2


+max
i,j,k

Var (V3iv2kv4j)
∑
j

∑
k ̸=j

∑
i ̸=j,k

∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

∑
i̸=j,k

∑
l ̸=i,j,k

GilFijM̌ik,−iljR1l


−max

i,j,k
Var (V3iv2kv4j)

∑
j

∑
k ̸=j

∑
i̸=j,k

 ∑
l ̸=i,j,k

GilFikM̌ij,−ilkR1l

 ∑
l ̸=i,j,k

GilFijM̌ik,−iljR1l


+max

i,j,k
Var (V3iv2kv4j) 3!

n∑
i ̸=j ̸=k

Fik

∑
l ̸=i,j,k

GilM̌ij,−ilkR1l

2

and

Var

 n∑
i̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1jv2kR4l

 = Var

 n∑
i ̸=j

FijV3iv2j
∑
k ̸=i,j

∑
l ̸=i,j,k

GikM̌il,−ijkR1kR4l


≤ max

i,j
Var (V3iv2j)

n∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

2
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+max
i,j

Var (V3iv2j)

n∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGjkM̌jl,−ijkR1kR4l


+max

i,j
Var (V3iv2j)

∑
j


∑

i̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

2

−
∑
i ̸=j

∑
k ̸=i,j

∑
l ̸=i,j,k

FijGikM̌il,−ijkR1kR4l

2
 .

The
∑n

i ̸=j ̸=k ̸=l GijFikM̌il,−ijkV3iR1jR2kv4l term is symmetric, because it does not matter which Rm we
use. Finally,

Var

 n∑
i̸=j ̸=k ̸=l

GijFikM̌il,−ijkV3iR1jR2kR4l

 =
∑
i

Var (V3i)

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkR1jR2kR4l

2

Lemma 9. Under Assumption 3, the following hold:

(a) Var
(∑n

i ̸=j G
2
jiV1iV2iV3jV4j

)
≤ Crn;

(b) Var
(∑n

i ̸=j ̸=k G
2
jiM̌ik,−ijV1iV2kV3jV4j

)
≤ Crn;

(c) Var
(∑n

i ̸=j ̸=l G
2
jiM̌jl,−ijV1iV2iV3jV4l

)
≤ Crn;

(d) Var
(∑n

i ̸=j ̸=k ̸=l G
2
jiV1iM̌ik,−ijV2kV3jM̌jl,−ijkV4l

)
≤ Crn;

(e) Var
(∑n

i ̸=j ̸=k GjiFkiV1jV2kV3iV4i

)
≤ Crn;

(f) Var
(∑n

i ̸=j ̸=k ̸=l GjiFkiM̌il,−ijkV1jV2kV3iV4l

)
≤ Crn.

Proof of Lemma 9. The proof of Lemma 9 is entirely analogous to Lemmas 7 and 8 just that Gji is used in
place of Gij .

Proof of Theorem 2. Proof of Unbiasedness
The variance expression can be equivalently be written as:

VLM =
∑
i

E
[
ν2i
]∑

j ̸=i

GijRj

2

+ 2

∑
j ̸=i

GijRj

∑
j ̸=i

GjiR∆j

E [νiηi] + E
[
η2i
]∑

j ̸=i

GjiR∆j

2


+
∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj ] .

(20)

To ease notation, let:

A1i :=
∑
j ̸=i

∑
k ̸=i

GijXjGikXkei (ei −Q′
iτ̂∆,−ijk) ,

A2i :=
∑
j ̸=i

∑
k ̸=i

GijXjGkiekei (Xi −Q′
iτ̂−ijk) ,

A3i :=
∑
j ̸=i

∑
k ̸=i

GjiejGkiekXi (Xi −Q′
iτ̂−ijk) ,

A4ij := Xi

∑
k ̸=j

M̌ik,−ijXkej
(
ej −Q′

j τ̂∆,−ijk

)
, and
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A5ij := ei
∑
k ̸=j

M̌ik,−ijXkej
(
Xj −Q′

j τ̂−ijk

)
.

Take expectation of A1:

E

∑
i

∑
j ̸=i

∑
k ̸=i

GijXjGikXkei (ei −Q′
iτ̂∆,−ijk)


=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijE [Xj ]GikE [Xk]E [ei (ei −Q′
iτ̂∆,−ijk)] +

∑
i

∑
j ̸=i

G2
ijE

[
X2

j

]
E [ei (ei −Q′

iτ̂∆,−ijk)] .

Evaluating the first term,∑
i

∑
j ̸=i

∑
k ̸=i,j

GijE [Xj ]GikE [Xk]E [ei (ei −Q′
iτ̂∆,−ijk)]

=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijRjGikRk

(
E
[
e2i
]
− E [eiQ

′
iτ̂∆,−ijk]

)
=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijRjGikRk

(
E
[
e2i
]
− E [eiQ

′
iτ∆]

)
=
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijRjGikRkE [eiνi] =
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijRjGikRkE
[
ν2i
]
.

Using an analogous argument for the second term,∑
i

∑
j ̸=i

G2
ijE

[
X2

j

]
E [ei (ei −Q′

iτ̂∆,−ijk)] =
∑
i

∑
j ̸=i

G2
ij

(
R2

j + E
[
η2j
])

E
[
ν2i
]
.

Combining them,

E

∑
i

∑
j ̸=i

∑
k ̸=i

GijXjGikXkei (ei −Q′
iτ̂∆,−ijk)

 =
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijRjGikRkE
[
ν2i
]
+
∑
i

∑
j ̸=i

G2
ij

(
R2

j + E
[
η2j
])

E
[
ν2i
]

=
∑
i

∑
j ̸=i

∑
k ̸=i

GijRjGikRkE
[
ν2i
]
+
∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
.

Similarly,

E [A2i] =

∑
j ̸=i

GijRj

∑
j ̸=i

GjiR∆j

E [νiηi] +
∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj ] , and

E [A3i] = E
[
η2i
]∑

j ̸=i

GjiR∆j

2

+
∑
j ̸=i

G2
jiE

[
η2i
]
E
[
ν2j
]
.

For the A4 and A5 terms, observe that:

Xi −Q′
iτ̂−ij = Xi −Q′

i

∑
k ̸=i,j

∑
l ̸=i,j

QlQ
′
l

−1

QkXk = Xi +
∑
k ̸=i,j

M̌ik,−ijXk =
∑
k ̸=j

M̌ik,−ijXk,

where the final equality follows from M̌ii,−ij = 1. Then,

E [A4ij ] = E

Xi

∑
k ̸=j

M̌ik,−ijXkej
(
Xj −Q′

j τ̂∆,−ijk

) =
∑
k ̸=j

E
[
XiM̌ik,−ijXkej

(
Xj −Q′

j τ̂∆,−ijk

)]
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= E

Xi

∑
k ̸=j

M̌ik,−ijXk

E
[
ej
(
ej −Q′

j τ̂∆,−ijk

)]
= E [Xi (Xi −Q′

iτ̂−ij)]E
[
ν2j
]
= E

[
η2i
]
E
[
ν2j
]
.

Similarly, E [A5ij ] = E [ηiνi]E [ηjνj ]. Combining these expressions yields the unbiasedness result.
Proof of Consistency
By Chebyshev’s inequality,

Pr

∣∣∣∣∣∣
V̂LM −Var

(∑
i

∑
j ̸=i GijeiXj

)
Var

(∑
i

∑
j ̸=i GijeiXj

)
∣∣∣∣∣∣ > ϵ


≤ 1

ϵ2

Var
(∑

i (A1i + 2A2i +A3i)−
∑

i

∑
j ̸=i G

2
jiA4ij −

∑
i

∑
j ̸=i GijGjiA5ij

)
[
Var

(∑
i

∑
j ̸=i GijeiXj

)]2
Observe that the numerator can be written as the variance of the estimator only because V̂LM is unbiased.

I first establish the order of the denominator. As in the supplement, denote R̃i :=
∑

j ̸=i GijRj and R̃∆i :=∑
j ̸=i GjiR∆j . Further, to simplify notation, let ρi := corr(ηiνi).

Since E[ν2i ] and E[η2i ] are bounded away from zero and |corr(ηiνi)| is bounded away from one by As-
sumption 1(b), the first line of the VLM expression in Equation (20) has order at least

∑
i R̃

2
i +
∑

i R̃
2
∆i, and

the second line has order at least
∑

i

∑
j ̸=i G

2
ij . To see this, for some c > 0, the first line is:

∑
i

E
[
ν2i
]
R̃2

i + 2R̃∆iR̃iE [νiηi] + R̃2
∆iE

[
η2i
]
=
∑
i

E
[
ν2i
]
R̃2

i + 2R̃∆iR̃iρi

√
E [ν2i ]E [η2i ] + R̃2

∆iE
[
η2i
]

≥
∑
i

(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
])

(1− |ρi|) +
∑
i

|ρi|
(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
]
− 2R̃∆iR̃i

√
E [ν2i ]E [η2i ]

)

=
∑
i

(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
])

(1− |ρi|) +
∑
i

|ρi|
(√

E [ν2i ] R̃
2
i −

√
R̃2

∆iE [η2i ]

)2

≥
∑
i

(
E
[
ν2i
]
R̃2

i + R̃2
∆iE

[
η2i
])

(1− |ρi|) ≥ c
∑
i

(
R̃2

i + R̃2
∆i

)
,

and the second line is:∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj ]

=
1

2

∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

GijGjiE [ηiνi]E [ηjνj ] +
1

2

∑
i

∑
j ̸=i

G2
jiE

[
ν2j
]
E
[
η2i
]

=
1

2

∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

GijGjiρiρj

√
E [ν2i ]E

[
η2j
]√

E
[
ν2j
]
E [η2i ] +

1

2

∑
i

∑
j ̸=i

G2
jiE

[
ν2j
]
E
[
η2i
]

=
1

2

∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
] (

1− ρ2i
)
+

1

2

∑
i

∑
j ̸=i

G2
jiE

[
ν2j
]
E
[
η2i
] (

1− ρ2j
)

+
1

2

∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
]
ρ2i +

∑
i

∑
j ̸=i

GijGjiρiρj

√
E [ν2i ]E

[
η2j
]√

E
[
ν2j
]
E [η2i ] +

1

2

∑
i

∑
j ̸=i

G2
jiρ

2
jE
[
ν2j
]
E
[
η2i
]

=
1

2

∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
] (

1− ρ2i
)
+

1

2

∑
i

∑
j ̸=i

G2
jiE

[
ν2j
]
E
[
η2i
] (

1− ρ2j
)

+
1

2

∑
i

∑
j ̸=i

(
Gijρi

√
E [ν2i ]E

[
η2j
]
+Gjiρj

√
E
[
ν2j
]
E [η2i ]

)2
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≥ 1

2

∑
i

∑
j ̸=i

G2
ijE

[
ν2i
]
E
[
η2j
] (

1− ρ2i
)
+

1

2

∑
i

∑
j ̸=i

G2
jiE

[
ν2j
]
E
[
η2i
] (

1− ρ2j
)
≥ c

∑
i

∑
j ̸=i

G2
ij .

Consequently,

VLM ⪰
∑
i

R̃2
i +

∑
i

R̃2
∆i +

∑
i

∑
j ̸=i

G2
ij =: rn. (21)

Due to Assumption 1(c),
∑

i

∑
j ̸=i

(
G2

ij +GijGji

)
⪰ K. Since

(∑
i

∑
j ̸=i GijGji

)2
≤
(∑

i

∑
j ̸=i G

2
ij

)2
,∑

i

∑
j ̸=i G

2
ij ⪰ K → ∞. Hence, VLM diverges, as rn → ∞. By repeated application of the Cauchy-Schwarz

inequality, it suffices to show that the variance of each of the 5 A terms above has order at most rn (i.e.,
bounded by any of the three terms in Equation (21)). If this is true, then since the denominator has order
at least r2n, the variance estimator is consistent. Since the derivations are analogous, I focus on Var (

∑
i A1i)

and Var
(∑

i

∑
j ̸=i G

2
jiA4ij

)
. The A1 and A2 terms have the form:

∑
i

∑
j ̸=i

GijFikV1j

∑
k ̸=i

V2kV3i (V4i −Q′
iτ̂4,−ijk) =

∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=j,k

GijFikV1jV2kV3iM̌il,−ijkV4l

=
∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GijFikM̌il,−ijkV1jV2kV3iV4l +
∑
i

∑
j ̸=i

∑
k ̸=i,j

GijFikV1jV2kV3iV4i

+
∑
i

∑
j ̸=i

∑
l ̸=i,j

GijFijM̌il,−ijV1jV2jV3iV4l +
∑
i

∑
j ̸=i

GijFijV1jV2jV3iV4i.

In particular, A1 uses F = G,V1 = X,V2 = X,V3 = e, V4 = e, while A2 uses F = G′, V1 = X,V2 =
e, V3 = e, V4 = X . By applying the Cauchy-Schwarz inequality, it suffices to show that the variance of each of
the sums has order at most rn. The terms

∑
i

∑
j ̸=i GijFijV1jV2jV3iV4i and

∑
i

∑
j ̸=i

∑
l ̸=i,j GijFijM̌il,−ijV1jV2jV3iV4l

are identical to the result in Lemma 7, with the latter result being obtained by switching the i and j indices.
The remaining terms have a variance that has a bounded order by Lemma 8. For A3, we can use Gji in
place of Gij above, and use F = G′, V1 = e, V2 = e, V3 = X,V4 = X so that the order is bounded above due
to Lemma 9. A4 and A5 can be written as:∑

i

∑
j ̸=i

GjiFijV1i

∑
k ̸=j

M̌ik,−ijV2kV3j

(
V4j −Q′

j τ̂4,−ijk

)
=
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

GjiFijV1iM̌ik,−ijV2kV3jM̌jl,−ijkV4l

=
∑
i

∑
j ̸=i

∑
k ̸=i,j

∑
l ̸=i,j,k

GjiFijM̌ik,−ijM̌jl,−ijkV1iV2kV3jV4l +
∑
i

∑
j ̸=i

∑
k ̸=i,j

GjiFijM̌ik,−ijV1iV2kV3jV4j

+
∑
i

∑
j ̸=i

∑
l ̸=i,j

GjiFijM̌jl,−ijV1iV2iV3jV4l +
∑
i

∑
j ̸=i

GjiFijV1iV2iV3jV4j .

In particular, A4 uses F = G′, V1 = X,V2 = X,V3 = e, V4 = e, while A5 uses F = G,V1 = e, V2 =
X,V3 = e, V4 = X . By applying the Cauchy-Schwarz inequality, it suffices to show that the variance of each
of the sums has order at most rn. This result is immediate from Lemma 7 and Lemma 9.

C Proofs for Section 4

Proof of Lemma 1. The joint distribution of (Y ′, X ′)
′
is:[

Y
X

]
∼ N

([
ZπY

Zπ

]
,

[
Inωζζ Inωζη

Inωζη Inωηη

])
.
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Stack them together with their predicted values PY = Z (Z ′Z)
−1

Z ′Y and PX = Z (Z ′Z)
−1

Z ′X:
Y
X

Z (Z ′Z)
−1

Z ′Y

Z (Z ′Z)
−1

Z ′X

 ∼ N




ZπY

Zπ
ZπY

Zπ

 ,


Inωζζ Inωζη ωζζZ (Z ′Z)

−1
Z ′ ωζηZ (Z ′Z)

−1
Z ′

Inωζη Inωηη ωζηZ (Z ′Z)
−1

Z ′ ωηηZ (Z ′Z)
−1

Z ′

ωζζZ (Z ′Z)
−1

Z ′ ωζηZ (Z ′Z)
−1

Z ′ ωζζZ (Z ′Z)
−1

Z ′ ωζηZ (Z ′Z)
−1

Z ′

ωζηZ (Z ′Z)
−1

Z ′ ωηηZ (Z ′Z)
−1

Z ′ ωζηZ (Z ′Z)
−1

Z ′ ωηηZ (Z ′Z)
−1

Z ′


 .

Then, the conditional normal distribution is:[
Y
X

]
|
[

Z (Z ′Z)
−1

Z ′Y

Z (Z ′Z)
−1

Z ′X

]
∼ N

([
ZπY

Zπ

]
+

[
Z (Z ′Z)

−1
Z ′Y − ZπY

Z (Z ′Z)
−1

Z ′X − Zπ

]
, V

)
= N

([
Z (Z ′Z)

−1
Z ′Y

Z (Z ′Z)
−1

Z ′X

]
, V

)
= N

([
PY
PX

]
, V

)
Hence, PX and PY (i.e, Z ′X, Z ′Y ) are sufficient statistics for πY , π.
To show that (s′1s1, s

′
1s2, s

′
2s2) is a maximal invariant, let F be some conformable orthogonal matrix

so F ′F = I. For invariance, let s∗1 = Fs1. Then, s∗′1 s
∗
1 = s′1F

′Fs1 = s′1s1. Invariance of (s′1s2, s
′
2s2) is

analogous. Maximality states that if s∗′1 s
∗
1 = s′1s1, then s∗1 = Fs1 for some F . Suppose not. This means

s∗1 = Gs1, and G is not an orthogonal matrix but yet s∗′1 s
∗
1 = s′1s1. Since G is not an orthogonal matrix,

G′G ̸= I. Hence, s∗′1 s
∗
1 = s′1G

′Gs1 ̸= s′1s1, a contradiction. To obtain the distribution,[
s1
s2

]
=

[
(Z ′Z)

−1/2
Z ′ (ZπY + ζ)

(Z ′Z)
−1/2

Z ′ (Zπ + η)

]
=

[
(Z ′Z)

1/2
πY

(Z ′Z)
1/2

π

]
+

[
(Z ′Z)

−1/2
Z ′ζ

(Z ′Z)
−1/2

Z ′η

]
.

Since Var
(
(Z ′Z)

−1/2
Z ′η
)
= (Z ′Z)

−1/2
Z ′ωηηZ (Z ′Z)

−1/2
= IKωηη,

[
s1
s2

]
∼ N

((
(Z ′Z)

1/2
πY

(Z ′Z)
1/2

π

)
,Ω⊗ IK

)
.

Proof of Proposition 1. Let (
ΠY

Π

)
:=

(
(Z ′Z)

1/2
πY

(Z ′Z)
1/2

π

)
.

With this definition, (π′
Y Z

′ZπY , π
′Z ′ZπY , π

′Z ′Zπ) = (Π′
Y ΠY ,Π

′
Y Π,Π′Π), and(

s1
s2

)
∼ N

((
ΠY

Π

)
,Ω⊗ IK

)
.

Split s1 and s2 into the Π component and a random normal component: s1k = ΠY k + z1k and s2k =
Πk + z2k. Then, for all k, (

z1k
z2k

)
∼ N

((
0
0

)
,

[
ωζζ ωζη

ωζη ωηη

])
, and

 s′1s1
s′1s2
s′2s2

 =

 ∑
k s

2
1k∑

k s1ks2k∑
k s

2
2k

 =

 ∑
k (ΠY k + z1k)

2∑
k (ΠY k + z1k) (Πk + z2k)∑

k (Πk + z2k)
2


=

 ∑
k Π

2
Y k + 2

∑
k ΠY kz1k +

∑
k z

2
1k∑

k ΠY kΠk +
∑

k ΠY kz2k +
∑

k Πkz1k +
∑

k z1kz2k∑
k Π

2
k + 2

∑
k Πkz2k +

∑
k z

2
2k

 .
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Under the assumption, Π′Π/
√
K → CS , so

1√
K

∑
k Π

2
k → CS . By applying the Lindeberg CLT due to

bounded moments,

1√
K



∑
k Πkz1k∑
k ΠY kz1k∑
k ΠY kz2k∑
k Πkz2k∑
k z1kz2k∑
k z

2
2k∑

k z
2
1k


a∼ N





0
0
0
0√

Kωζη√
Kωηη√
Kωζζ


, V


,

where V is some variance matrix. By assumption, 1√
K

∑
k ΠY kΠk → CY and 1√

K

∑
k Π

2
Y k → CY Y , so

1√
K

 s′1s1
s′1s2
s′2s2

 =
1√
K

 ∑
k Π

2
Y k + 2

∑
k ΠY kz1k +

∑
k z

2
1k∑

k ΠY kΠk +
∑

k ΠY kz2k +
∑

k Πkz1k +
∑

k z1kz2k∑
k Π

2
k + 2

∑
k Πkz2k +

∑
k z

2
2k



a∼

 CY Y

CY

C

+A
1√
K



∑
k Πkz1k∑
k ΠY kz1k∑
k ΠY kz2k∑
k Πkz2k∑
k z1kz2k∑
k z

2
2k∑

k z
2
1k


, where

A =

 0 2 0 0 0 0 1
1 0 1 0 1 0 0
0 0 0 2 0 1 0

 .

This means:

1√
K

 s′1s1
s′1s2
s′2s2

 a∼ N

 CY Y +
√
Kωζζ

CY +
√
Kωζη

C +
√
Kωηη

 , AV A′

 .

Let Σ = AV A′ to obtain the result as stated. To derive Σ explicitly, I derive V by applying the Isserlis’
Theroem. As a special case of the Isserlis’ Theorem for X’s that are multivariate normal and mean zero,

E [X1X2X3X4] = E [X1X2]E [X3X4] + E [X1X3]E [X2X4] + E [X1X4]E [X2X3] .

Another corrolary is that if n is odd, then there is no such pairing, so the moment is always zero. Hence,

E
[
z21kz

2
2k

]
= E

[
z21k
]
E
[
z22k
]
+ 2E [z1kz2k]E [z1kz2k] = ωζζωηη + 2ω2

ζη, and

Var (z1kz2k) = ωζζωηη + ω2
ζη.

Similarly,

Var
(
z22k
)
= E

[
z42k
]
− ω2

ηη = 3ω2
ηη − ω2

ηη = 2ω2
ηη,

Cov (z1k, z1kz2k) = E
[
z21kz2k

]
− E [z1k]E [z1kz2k] = 0,

Cov
(
z21k, z1kz2k

)
= E

[
z31kz2k

]
− E

[
z21k
]
E [z1kz2k]

= 3ωζηωζζ − ωζζωζη = 2ωζηωζζ ,

Cov
(
z21k, z

2
2k

)
= E

[
z21kz

2
2k

]
− ωζζωηη = 2ω2

ζη, and
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V =



1
K

∑
k Π

2
kωζζ

1
K

∑
k ΠkΠY kωζζ

1
K

∑
k ΠkΠY kωζη

1
K

∑
k Π

2
kωζη 0 0 0

. 1
K

∑
k Π

2
Y kωζζ

1
K

∑
k Π

2
Y kωζη

1
K

∑
k ΠkΠY kωζη 0 0 0

. . 1
K

∑
k Π

2
Y kωηη

1
K

∑
k ΠkΠY kωηη 0 0 0

. . . 1
K

∑
k Π

2
kωηη 0 0 0

. . . . ωζζωηη + ω2
ζη 2ωζηωηη 2ωζηωζζ

. . . . . 2ω2
ηη 2ω2

ζη

. . . . . . 2ω2
ζζ


.

If 1
K

∑
k Π

2
k → 0, 1

K

∑
k ΠkΠY k → 0, 1

K

∑
k Π

2
Y k → 0 under weak identification, then we obtain the Σ

expression stated in the proposition.

Proof of Proposition 2. Fix any alternative
(
πA, πA

Y

)
∈ S with corresponding

(
µA
1 , µ

A
2 , µ

A
3

)
. Due to the

restriction in S,  µH
1

µH
2

µH
3

 =

 µA
1 − σ12

σ22
µA
2

0
µA
3 − σ23

σ22
µA
2


is in the null space. Construct Neyman-Pearson test for µH vs µA. The Neyman-Pearson test rejects for
large values of:

log
dN

(
µA,Σ

)
dN (µH ,Σ)

=
µA
2

σ22
X2 −

1

2

(
µA
2

)2
σ22

.

Hence, the most powerful test rejects large values of X2, which is what LM does. By Lehmann and
Romano (2005) Theroem 3.8.1(i), since LM is valid for any distribution in the null space (by Theorem 1)
and it is most powerful for some distribution in the null space, LM is most powerful for testing the composite
null against the given alternative

(
πA, πA

Y

)
.

Proof of Proposition 3. Let µ ∈ M = {µ : µ1 > 0, µ3 > 0, µ2
2 < µ1µ3}. I first show that M is con-

vex. For λ ∈ (0, 1), it suffices to show, for µa and µb that satisfy µ2
2a < µ1aµ3a and µ2

2b < µ1bµ3b, that

(λµ2a + (1− λ)µ2b)
2
< (λµ1a + (1− λ)µ1b) (λµ3a + (1− λ)µ3b). This set is intersected with the set that

satisfies µ1 > 0 and µ3 > 0, which is clearly convex. The following is negative:

(λµ2a + (1− λ)µ2b)
2 − (λµ1a + (1− λ)µ1b) (λµ3a + (1− λ)µ3b)

=λ2µ2
2a + (1− λ)

2
µ2
2b + 2λ (1− λ)µ2aµ2b − λ2µ1aµ3a − (1− λ)

2
µ1bµ3b − λ (1− λ) (µ1bµ3a + µ1aµ3b)

=λ2
(
µ2
2a − µ1aµ3a

)
+ (1− λ)

2 (
µ2
2b − µ1bµ3b

)
+ λ (1− λ) (2µ2aµ2b − µ1bµ3a − µ1aµ3b)

<λ (1− λ) (2
√
µ1aµ1bµ1bµ3b − µ1bµ3a − µ1aµ3b)

<− λ (1− λ) (
√
µ1bµ3a −

√
µ1aµ3b)

2 ≤ 0.

The first inequality occurs from applying µ2
2a < µ1aµ3a and µ2

2b < µ1bµ3b, so M is convex. Let m ∼
N(µ,Σ) denote a statistic drawn from the asymptotic distribution, with mi being a component of the vector
m, so that m2 is the LM statistic. Using the linear transformation from Lehmann and Romano (2005)
Example 3.9.2 Case 3, we can transform the statistics and parameter such that m2 is orthogonal to all other
components. In particular, consider the following transformation L:

L :=


√

σ22

σ11σ22−σ2
12

−σ12

σ22

√
σ22

σ11σ22−σ2
12

0

0 1√
σ22

0

0 −σ23

σ22

√
σ22

σ33σ22−σ2
23

√
σ22

σ33σ22−σ2
23

 .
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Then,

Lm ∼ N

Lµ,

 1 0 σ13σ22−σ12σ23

(σ11σ22−σ2
12)(σ33σ22−σ2

23)
0 1 0

σ13σ22−σ12σ23

(σ11σ22−σ2
12)(σ33σ22−σ2

23)
0 1


 .

The parameter space of Lµ ∈ L is also convex because L is a linear transformation: take any µa, µb ∈
M, then observe that λLµa + (1 − λ)Lµb = L (λµa + (1− λ)µb). Since M is convex, and every el-
ement in M is linearly transformed into the space on L, we have λµa + (1− λ)µb ∈ M and hence
L (λµa + (1− λ)µb) ∈ L. Since Lm is normally distributed and L is convex with rank 3, the problem
is in the exponential class, using the definition from Lehmann and Romano (2005) Section 4.4. Since
the joint distribution is in the exponential class and the restriction to the interior ensures that there
are points in the parameter space that are above and below the null, the uniformly most powerful un-
biased test follows the form of Lehmann and Romano (2005) Theorem 4.4.1(iv), by using U = m2 and

T =

(√
σ22

σ33σ22−σ2
23
m3 − σ23√

σ22(σ33σ22−σ2
23)

m2,
√

σ22

σ11σ22−σ2
12
m1 − σ12√

σ22(σ11σ22−σ2
12)

m2

)′

in their notation. To

calculate the critical values of the Lehmann and Romano (2005) Theorem 4.4.1(iv) result, observe that [Lm]2
is orthogonal to [Lm]1 and [Lm]3, so the distribution of [Lm]2 conditional on [Lm]1 and [Lm]3 is standard
normal. Since [Lm]2 is standard normal, it is symmetric around 0 under the null, so the solution to the
critical value is ±1.96 for a 5% test, due to simplification in Lehmann and Romano (2005) Section 4.2. The
resulting test is hence identical to the two-sided LM test.

D Proofs for Section 5

Proof of Lemma 2. The A expressions can be written as:

A1 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGikXk

(
YiYl −XiYlβ0 − YiXlβ0 +XiXlβ

2
0

)
;

A2 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGkiXl

(
YiYk −XiYkβ0 − YiXkβ0 +XiXkβ

2
0

)
;

A3 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkXlGjiGkiXi

(
YjYk −XjYkβ0 − YjXkβ0 +XjXkβ

2
0

)
;

A4 =
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌jl,−ijkM̌ik,−ijG
2
jiXiXk

(
YjYl −XjYlβ0 − YjXlβ0 +XjXlβ

2
0

)
; and

A5 =
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌ik,−ijM̌jl,−ijkGijGjiXkXl

(
YiYj −XiYjβ0 − YiXjβ0 +XiXjβ

2
0

)
.

Since these terms have a quadratic form, the variance estimator is also quadratic in β2
0 , i.e.,

V̂LM = C0 + C1β0 + C2β
2
0 ,

where the C’s can be worked out by collecting the expressions above. For instance,

C0 =
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGikXkYiYl + 2
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkGijXjGkiXlYiYk

+
∑
i

∑
j ̸=i

∑
k ̸=i

∑
l ̸=k

M̌il,−ijkXlGjiGkiXiYjYk

−
∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌jl,−ijkM̌ik,−ijG
2
jiXiXkYjYl −

∑
i

∑
j ̸=i

∑
k ̸=j

∑
l ̸=i,k

M̌ik,−ijM̌jl,−ijkGijGjiXkXlYiYj

C1 and C2 are analogous by collecting the coefficients on β0, β
2
0 from expressions A1 to A5. The test does
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not reject:

(PXY − PXXβ0)
2

C0 + C1β0 + C2β2
0

≤ q ⇔
(
P 2
XX − qC2

)
β2
0 − (2PXY PXX + qC1)β0 +

(
P 2
XY − qC0

)
≤ 0.

Solutions exist when:

D := (2PXY PXX + qC1)
2 − 4

(
P 2
XX − qC2

) (
P 2
XY − qC0

)
≥ 0.

The rest of the lemma are immediate from properties of solving quadratic inequalities.

E Proofs for Appendix A

E.1 Proofs for Appendix A.1

Proof of Equation (14).

E
[
Ψ̂MO

]
= E

∑
i

∑
j ̸=i

Pij (Rj + ηj)

2

(R∆i + νi)
2
+
∑
i

∑
j ̸=i

P 2
ij (Ri + ηi) (R∆i + νi) (Rj + ηj) (R∆j + νj)


= E

∑
i


∑

j ̸=i

PijRj

2

+

∑
j ̸=i

Pijηj

2
 (R∆i + νi)

2


+ E

∑
i

∑
j ̸=i

P 2
ij (RiR∆i + ηiR∆i +Riνi + ηiνi) (RjR∆j + ηjR∆j +Rjνj + ηjνj)


=
∑
i

M2
iiR

2
i

(
R2

∆i + E
[
ν2i
])

+
∑
i

R2
∆iE


∑

j ̸=i

Pijηj

2
+

∑
i

E
[
ν2i
]
E


∑

j ̸=i

Pijηj

2


+
∑
i

∑
j ̸=i

P 2
ij (RiR∆i + E [ηiνi]) (RjR∆j + E [ηjνj ])

=
∑
i

M2
iiR

2
i

(
R2

∆i + E
[
ν2i
])

+
∑
i

∑
j ̸=i

P 2
ijE

[
η2j
(
R2

∆i + ν2i
)]

+
∑
i

∑
j ̸=i

P 2
ij (RiR∆i + E [ηiνi]) (RjR∆j + E [ηjνj ])

=
∑
i

M2
iiR

2
iR

2
∆i +

∑
i

M2
iiR

2
iE
[
ν2i
]
+
∑
i

∑
j ̸=i

P 2
ijE

[
ν2i
]
E
[
η2j
]
+
∑
i

∑
j ̸=i

P 2
ijR

2
∆iE

[
η2j
]

+
∑
i

∑
j ̸=i

P 2
ij (RiR∆iRjR∆j + E [ηiνi]RjR∆j +RiR∆iE [ηjνj ] + E [ηiνi]E [ηjνj ])

As a corollary of Equation (8) and Equation (14),

V ar

∑
i

∑
j ̸=i

PijeiXj

− E
[
Ψ̂MO

]
=
∑
i

M2
ii

(
2RiR∆iE [νiηi] + E

[
η2i
]
R2

∆i −R2
iR

2
∆i

)
−
∑
i

∑
j ̸=i

P 2
ij

(
R2

∆iE
[
η2j
]
+RiR∆iRjR∆j + E [ηiνi]RjR∆j +RiR∆iE [ηjνj ]

)
,

which reflects the bias of the estimator.
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E.2 Proofs for Appendix A.2

Proof of Lemma 3. Suppose not. Then, for some real β0,

E [Tee] =
∑
i

∑
j ̸=i

PijR∆iR∆j =
∑
i

∑
j ̸=i

Pij

(
RY iRY j −RiRY jβ0 −RY iRjβ0 +RiRjβ

2
0

)
= 0.

Solving for β0,

β0 =
2
∑

i

∑
j ̸=i PijRiRY j ±

√
4
(∑

i

∑
j ̸=i PijRiRY j

)2
− 4

(∑
i

∑
j ̸=i PijRiRj

)(∑
i

∑
j ̸=i PijRY iRY j

)
2
(∑

i

∑
j ̸=i PijRiRj

) .

In our structural model, Ri = πk(i) and RY i = πY k(i). The term in the square root can be written as:

D = 4

(∑
k

πkπY k

)2

− 4

(∑
k

π2
k

)(∑
k

π2
Y k

)

Using Table 6,
∑

k π
2
k = 5

8s
2K,

∑
k π

2
Y k =

(
5
8s

2β2 + h2
)
K, and

∑
k πkπY k = 5

8s
2βK, we obtain

1

4
D =

(
5

8
s2βK

)2

−
(
5

8
s2K

)(
5

8
s2β2 + h2

)
K = −5

8
s2h2K2 ≤ 0.

Since h ̸= 0 and Ks2 > 0, there are no real roots of β0, a contradiction.

E.3 Proofs for Appendix A.3

Proof of Lemma 4. I work out the µ’s first. Using the judge structure,
∑

i M
2
ii =

∑
k

(c−1)2

c ,
∑

i

∑
j ̸=i Pij =∑

k
c−1
c . We have also chosen πk, σξvk such that

∑
k πk = 0,

∑
k σξvk = 0,

∑
k πkσξvk = 0. Then, we get the

result for means: µ1

µ2

µ3

 =


1√
K

∑
k (c− 1)

(
π2
kβ

2 + 2πkβσξvk + σ2
ξvk

)
1√
K

∑
k (c− 1)

(
π2
kβ + πkσξvk

)
1√
K

∑
k (c− 1)π2

k

 =


√
K (c− 1)

(
s2β2 + h2

)
√
K (c− 1) s2β√
K (c− 1) s2

 .

Using a derivation similar to that of the lemma for VLM expression,

Kσ22 =
∑
i

∑
j ̸=i

∑
k ̸=i

(
GjiGkiE

[
ζ2i
]
RjRk + 2GijGkiE [ηiζi]RY jRk +GijGikE

[
η2i
]
RY jRY k

)
+
∑
i

∑
j ̸=i

(
G2

ijE
[
η2i
]
E
[
ζ2j
]
+GijGjiE [ηiζi]E [ηjζj ]

)
;

Kσ11 =
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
ζ2i
]
RY jRY k (GjiGki + 2GijGki +GijGik) +

∑
i

∑
j ̸=i

E
[
ζ2i
]
E
[
ζ2j
] (

G2
ij +GijGji

)
;

Kσ33 =
∑
i

∑
j ̸=i

∑
k ̸=i

E
[
η2i
]
RjRk (GjiGki + 2GijGki +GijGik) +

∑
i

∑
j ̸=i

E
[
η2i
]
E
[
η2j
] (

G2
ij +GijGji

)
;

Kσ12 =
∑
i

∑
j ̸=i

∑
k ̸=i

(
GjiGkiE

[
ζ2i
]
RjRY k + 2GijGkiE

[
ζ2i
]
RY jRk +GijGikE [ηiζi]RY jRY k

)
+
∑
i

∑
j ̸=i

E [ηiζi]E
[
ζ2j
] (

G2
ij +GijGji

)
;

Kσ23 =
∑
i

∑
j ̸=i

∑
k ̸=i

(
GjiGkiE

[
η2i
]
RY jRk + 2GijGkiE

[
η2i
]
RjRY k +GijGikE [ηiζi]RjRk

)

61



+
∑
i

∑
j ̸=i

E [ηiζi]E
[
η2j
] (

G2
ij +GijGji

)
; and

Kσ13 =
∑
i

∑
j ̸=i

∑
k ̸=i

E [ηiζi]RY jRk (GjiGki + 2GijGki +GijGik) +
∑
i

∑
j ̸=i

E [ηiζi]E [ηjζj ]
(
G2

ij +GijGji

)
.

The equalities hold regardless of whether identification is strong or weak and whether heterogeneity
converges or not. Without covariates, G = P is symmetric and the above expressions simplify. For instance,

Kσ22 =
∑
k

(c− 1)
2

c

(
ωζζkπ

2
k + 2ωζηkπkπY k + ωηηkπ

2
Y k

)
+
∑
k

c− 1

c

(
ωηηkωζζk + ω2

ζηk

)
.

Evaluate the terms in the expression. For higher moments of πk,
∑

k π
2
k = Ks2,

∑
k π

3
k = 0,

∑
k π

4
k =

Ks4. Similarly,
∑

k π
3
kσξv = 0. Treating the heterogeneity in the same way,

∑
k σ

2
ξv = Kh2. Then,∑

k

ωζζkπ
2
k =

∑
k

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε − σ2

ξvk + σvvβ
2 + σvvσξξ + 2σ2

ξvk + 2σεvβ
)
π2
k

= s2K
(
s2σξξ + σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)
; and∑

k

ωζηkπkπY k =
∑
k

(πkσξvk + σvvβ + σεv)πk (πkβ + σξvk)

=
∑
k

(
σvvβ

2π2
k + σεvπ

2
kβ + π2

kσ
2
ξvk

)
= s2K

(
σvvβ

2 + σεvβ + h2
)
.

Now, for the P 2
ij part,∑

k

ωηηkωζζk =
∑
k

σvv

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε − σ2

ξvk + σvvβ
2 + σvvσξξ + 2σ2

ξvk + 2σεvβ
)

=
∑
k

σvv

(
π2
kσξξ + σεε − σ2

ξvk + σvvβ
2 + σvvσξξ + 2σ2

ξvk + 2σεvβ
)

= Kσvv

(
s2σξξ + σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)
; and∑

k

ω2
ζηk =

∑
k

(πkσξvkπkσξvk + σvvβπkσξvk + σεvπkσξvk + πkσξvkσvvβ + σvvβσvvβ + σεvσvvβ)

+
∑
k

(
πkσξvkσεv + σvvβσεv + σ2

εv

)
=
∑
k

(
π2
kσ

2
ξvk + σ2

vvβ
2 + σεvσvvβ + σvvβσεv + σ2

εv

)
= K

(
s2h2 + (σvvβ + σεv)

2
)
.

Combine the expressions for σ22 and impose asymptotics where s → 0 and h → 0:

σ22 =
1

K

∑
k

(c− 1)
2

c
h2 +

1

K

∑
k

c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)
+ (σvvβ + σεv)

2
)
+ o(1)

=
c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)
+ (σvvβ + σεv)

2
)
+ o(1).

Next, evaluate a few more sums that feature in the other σ expressions:∑
k

ωζζπ
2
Y k =

∑
k

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

) (
π2
kβ

2 + 2πkσξvk + σ2
ξv

)
1

K

∑
k

ωζζπ
2
Y k =

1

K

∑
k

σ2
ξv

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)
= h2

(
σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)
= o(1);
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1

K

∑
k

ω2
ζζ =

1

K

∑
k

(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)2
=

1

K

∑
k

(
σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)2
=
(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)2

;

1

K

∑
k

ωζηπ
2
Y k =

1

K

∑
k

(πkσξvk + σvvβ + σεv)
(
π2
kβ

2 + 2πkσξvk + σ2
ξv

)
= h2 (σvvβ + σεv) = o(1); and

1

K

∑
k

ωζηωζζ =
1

K

∑
k

(πkσξvk + σvvβ + σεv)
(
π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)
=

1

K

∑
k

(σvvβ + σεv)
(
σεε + σvvβ

2 + σvvσξξ + σ2
ξvk + 2σεvβ

)
= (σvvβ + σεv)

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)
+ o(1).

Using these results,

σ22 =
c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)
+ (σvvβ + σεv)

2
)
+ o(1);

σ11 = 2
c− 1

c

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)2

+ o(1);

σ33 = 2
c− 1

c
σ2
vv + o(1);

σ12 = 2
c− 1

c
(σvvβ + σεv)

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)
+ o(1);

σ23 = 2
c− 1

c
σvv (σvvβ + σεv) + o(1); and

σ13 = 2
c− 1

c
(σvvβ + σεv)

2
+ o(1).

Hence, σ13 = σ2
23/σ33 + o(1) is immediate. Further, for σ12,

2
σ23

σ33

(
σ22 −

σ2
23

2σ33

)
= 2

σvvβ + σεv

σvv

(
σ22 −

(
2 c−1

c σvv (σvvβ + σεv)
)2

2× 2 c−1
c σ2

vv

)
+ o(1)

= 2
c− 1

c
(σvvβ + σεv)

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)
+ o(1) = σ12 + o(1).

Finally, the σ11 can be obtained:

4

σ33

(
σ22 −

σ2
23

2σ33

)2

=
2

c−1
c σ2

vv

(
c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + h2 + 2σεvβ
)))2

+ o(1)

= 2
c− 1

c

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)2

+ o(1) = σ11 + o(1).

Proof of Proposition 4. The first two are straightforward: CS = µ3/ (c− 1) and β = µ2/µ3 imply µ3 =
(c− 1)CS and µ2 = (c− 1)CSβ. For µ1, observe that:

h =

√
1√
K

1

c− 1

(
µ1 −

µ2
2

µ3

)
=

√
1√
K

(µ1 − CSβ2), and

CH =
√
Kh2 = µ1/ (c− 1)− CSβ

2, so

(c− 1)
(
CSβ

2 + CH

)
= (c− 1)

(
CSβ

2 + µ1/ (c− 1)− CSβ
2
)
= µ1
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as required. Next, since σvv =
√

σ33c
2(c−1) , σ33 = 2 c−1

c σ2
vv is immediate. Similarly, with σεv = 1

σvv

(
σ23c

2(c−1) − σ2
vvβ
)
,

σ23 = 2 c−1
c σvv (σvvβ + σεv). From these two expressions, we can observe that:

(σvvβ + σεv)
2
=

c

2 (c− 1)

σ2
23

σ33
.

To obtain an expression for σ22, rearrange σεε =
1

σvv

c
c−1

(
σ22 − σ2

23

σ33

)
+

σ2
εv

σvv
≥ 0:

σ22 =
σ2
23

σ33
+

c− 1

c

(
σεεσvv − σ2

εv

)
=

c− 1

c

(
σvv

(
σεε + σvvβ

2 + σvvσξξ + 2σεvβ
)
+ (σvvβ + σεv)

2
)
+ o(1),

where the final step uses σξξ = h/σvv. This expression for σ22 is of the form required in Lemma 4. Then,

det (ΣSF ) = σεεσξξσvv − σεεh
2 − σ2

εξσvv + 2σεξσεvh− σξξσ
2
εv

= σεεσξξσvv − σεεh
2 − σξξσ

2
εv = σεεh− σεεh

2 − h
σ2
εv

σvv
; and

det (ΣSF ) /h = σεε −
σ2
εv

σvv
− σεεh = σεε −

σ2
εv

σvv
+ o(1).

An analogous argument holds for σξvk = −h. From the σ22 equation, σεε − σ2
εv

σvv
= c

c−1

(
σ22 − σ2

23

σ33

)
≥ 0,

which delivers the result that det (ΣSF ) /h → CD ≥ 0.

E.4 Derivations for Appendix A.4

Derivation for continuous setup without covariates.
This subsection derives expressions for relevant objects in the reduced-form model. Comparing the first-

stage equations, ηi = vi. As a corollary, for all i, E
[
η2i
]
= σvv. Then, ζi = Z ′

i (πβi − πY ) + viβi + εi. Define
πY using E [ζi] = 0 and E [viβi] = E [vi (β + ξi)] = σξvk(i), which implies πY k = πkβ + σξvk. Hence, we can
rewrite ζi as:

ζi = πk(i)ξi − σξvk(i) + viβ + viξi + εi.

By substituting the expression for ζi, the covariance is E [ηiζi | k] = πkσξvk + σvvβ + E
[
v2i ξi

]
+ σεv.

By Isserlis’ theorem, E
[
v2i ξi

]
= 0, so E [ηiζi | k] = πkσξvk + σvvβ + σεv. The variance of ζi can be derived

analogously. Since E
[
v2i β

2
i

]
= σvvβ

2+σvvσξξ+2σ2
ξvk by applying Isserlis’ theorem, by putting the expressions

together, with ωηηk := E[η2i | k(i) = k], ωζηk := E[ζiηi | k(i) = k], and ωζζk := E[ζ2i | k(i) = k], we obtain:

ωηηk = σ2
vv,

ωζηk = πkσξvk + σvvβ + σεv, and

ωζζk = π2
kσξξ + 2πkβσξvk + 2πkσεξ + σεε + σ2

ξvk + σvvβ
2 + σvvσξξ + 2σεvβ.

(22)

In this model, the local average treatment effect (LATE) of judge k relative to the base judge 0 is:

LATEk =
πY k

πk
= β +

σξvk

πk
. (23)

Derivation for binary setup without covariates.
The reduced-form residuals are given by:

ηi | vi =

{
1− πk

−πk

if

if

vi ≤ πk

vi > πk

, and ζi = πk(i)βi − πY k(i) + ηiβi + εi.
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Imposing E [ζi] = 0, πY k(i) = πk(i)β + E [ηiβi], where E [ηiβi] = − (1− s) (2p− 1)σξvk. Hence,

πY k = πkβ − (1− s) (2p− 1)σξvk.

Following the same argument as Section 2, due to the judge setup, the estimand is:∑
k πY kπk∑

k π
2
k

=

∑
k (πkβ − (1− s) (2p− 1)σξvk)πk∑

k π
2
k

= β

because
∑

k σξvkπk = 0 by construction.
Derivation for binary setup with covariates.
Consider the structural model:

Yi(x) = x(β + ξi) + w′γ + εi, and

Xi(z) = I {z′π + w′γ − vi ≥ 0} .

Let Nt denote the set of observations in state t. Then, using the G that corresponds to UJIVE,∑
i∈Nt

∑
j∈Nt\i

GijRY iRj =
∑
i∈Nt

∑
j∈Nt\i

Gij

(
πY k(i) + γt(i)

) (
πk(j) + γt(j)

)
=
∑
i∈Nt

∑
j∈Nt\i

Gij

(
πY k(i)πk(j) + γt(i)πk(j) + πY k(i)γt(j) + γt(i)γt(j)

)
=

1

1− 1/5

∑
k∈{0,t}

5× 4× 1

5

(
πY kπk + γtπk + πY kγt + γ2

t

)
− 1

1− 1/10

∑
i∈Nt

∑
j∈Nt\i

1

10

(
πY k(i)πk(j) + γtπk(j) + πY k(i)γt + γ2

t

)
=

∑
k∈{0,t}

5
(
πY kπk + γtπk + πY kγt + γ2

t

)
− 1

9

∑
k∈{0,t}

5× 4
(
πY kπk + γY tπk + πY kγXt + γ2

t

)
− 1

9
5× 5

(
πY tπ0 + γtπ0 + πY tγt + γ2

t

)
− 1

9
5× 5

(
πY 0πt + γtπt + πY 0γt + γ2

t

)
= 5

(
5

9

)
(πY 0π0 + πY tπt − πY tπ0 − πY 0πt) .

Recall that πY k = πkβ − (1− s) (2p− 1)σξvk. Impose σξv0 = 0 for all k, so that πY 0 = 0. Then,

πY k = πkβ − (1− s) (2p− 1)σξvk.

Using the result directly,∑
i∈Nt

∑
j∈Nt\i

GijRY iRj = 5

(
5

9

)
(πY 0π0 + πY tπt − πY tπ0 − πY 0πt) =

25

9
πY tπt.

Analogously,
∑

i∈Nt

∑
j∈Nt\i GijRiRj = 25

9 π2
t . Hence, as long as

∑
t σξvtπt = 0, which is the case for

the construction in the main text, we still recover β as our estimand:∑
i

∑
j ̸=i GijRY iRj∑

i

∑
j ̸=i GijRiRj

=

∑
t πY tπt∑

t π
2
t

=

∑
t (πtβ − (1− s) (2p− 1)σξvt)πt∑

t π
2
t

= β −
∑

t (1− s) (2p− 1)σξvtπt∑
t π

2
t

= β.

This happens in our construction regardless γt.
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