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Abstract

This paper considers inference in a linear instrumental variable regression model with many
potentially weak instruments and heterogeneous treatment effects. I first show that existing test
procedures, including those that are robust to only either weak instruments or heterogeneous
treatment effects, can be arbitrarily oversized in this setup. Then, I propose a valid inference
procedure based on a score statistic and a leave-three-out variance estimator. To establish this
procedure’s validity, this paper proves that the score statistic is asymptotically normal and the
variance estimator is consistent. With heterogeneity, the score test is also the uniformly most

powerful unbiased test in the asymptotic distribution.

1 Introduction

Many empirical studies in economics involve instrumental variables (IV) models with many in-
struments. A prominent example is the judge design: several studies argue that judges or case
workers are as good as randomly assigned and can affect the treatment status, so they are used
as instruments to study the effects of foster care (Doyle, 2007), incarceration (Aizer and Doyle,
2015), detention (Dobbie et al., 2018), disability benefits (Autor et al., 2019), and prosecution
(Agan et al., 2023), among others. When the IV is a vector of indicators for judges, the number
of instruments can be large. Another example of many IV is a single instrument interacted with
discrete covariates. For instance, when Angrist and Krueger (1991) used the quarter of birth as
an instrument to study the returns to education, interacting the quarter of birth with the state of
birth can generate 150 instruments.

Recent econometrics research also suggests that many instruments should be used. With covari-
ates, Blandhol et al. (2022) show that the standard two-stage least squares (TSLS) estimator puts
negative weights on local average treatment effects (LATE), unless there is a parametric model or
the regression is fully saturated (i.e., where instruments are fully interacted with covariates). Fur-

ther, with a saturated regression, several jackknife estimators recover a positively weighted average
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of LATE’s. (Evdokimov and Kolesar, 2018; Chao et al., 2023; Boot and Nibbering, 2024) Unless
there are a few (or no) discrete covariates, fully interacting the instrument with covariates creates
many instruments, which further motivates the many IV setting.

Despite the pervasiveness and importance of this setting, there does not yet exist an inference
procedure that is robust to both heterogeneous treatment effects and weak instruments, which is
a gap this paper aims to fill. Weak instruments refers to a setting where no consistent estimator
for the object of interest exists; and heterogeneous treatment effects refers to a setting where
different subsets of the many IV may estimate different LATE’s. It is well-understood the standard
TSLS estimator for IV is inconsistent and its ¢-statistic test is invalid for inference in the many-
instrument environment (e.g., Bekker (1994); Bound et al. (1995); Donald and Newey (2001)).
While the jackknife IV estimator (JIVE) (e.g., Phillips and Hale (1977); Angrist et al. (1999);
Chao et al. (2012)) addresses the estimation problem, its ¢-statistic test does not solve the over-
rejection problem of TSLS due to weak IV. There are several recent proposals (Crudu et al., 2021;
Mikusheva and Sun, 2022; Matsushita and Otsu, 2022) that are robust to weak IV, but they assume
constant treatment effects. A separate literature (Evdokimov and Kolesér, 2018) proposed variance
estimators for the JIVE that are robust to heterogeneous treatment effects, but its t-statistic test
is still not robust to weak IV. While it is clear that weak IV can lead to substantial distortions in
inference (e.g., Staiger and Stock (1997)), it is less obvious if procedures developed under constant
treatment effects that are robust to weak IV are still valid with heterogeneous treatment effects.

In this paper, I first show that neglecting either heterogeneity or weak instruments can result
in substantial distortions in inference. Section 2 presents a simple simulation that has both weak
instruments and heterogeneous treatment effects. For a nominal 5% test, using the procedure
from Mikusheva and Sun (2022) (henceforth MS22) that is robust to weak instruments but not
heterogeneity can result in 100% rejection under the null, because their test statistic is not centered
correctly when there is heterogeneity. This result is attributed to how their test is a joint test of both
the parameter value and the null of no heterogeneity. Similarly, the procedure from Evdokimov and
Kolesér (2018) (henceforth EK18), which is robust to heterogeneity but not weak instruments, can
be severely oversized. Additionally, this section documents how an empirically common practice of
constructing a “leniency measure” that combines the many instruments and then using weak IV
robust procedures from the just-identified IV literature is invalid.

Given the stark simulation results, Section 3 proposes a procedure for valid inference. Following
the many instruments literature, the JIVE estimand is the object of interest — this estimand
can be interpreted as a weighted average of treatment effects when there is heterogeneity (e.g.,
EK18). Using weak identification asymptotics, I show that the Lagrange Multiplier (LM) (i.e.,
score) statistic, earlier proposed by Matsushita and Otsu (2022) under constant treatment effects,
is mean zero and asymptotically normal even with treatment effect heterogeneity. In fact, I prove
a stronger normality result that a set of jackknife statistics that includes the LM is jointly normal,
which is the first technical challenge of this paper. This normality implies that, as long as the

variance of LM is consistently estimable, a t-statistic can be calculated and critical values from the



standard normal distribution are valid for inference. I prove that a leave-three-out (L30) variance
estimator, motivated by the procedure in Anatolyev and Sglvsten (2023) for the OLS problem with
many covariates, is consistent. Consistency of L3O is the second technical challenge of this paper.
Even in an environment where the reduced-form coefficients are not consistently estimable, this
variance estimator consistently estimates the LM variance. Due to the generality of the setting
considered, beyond its robustness to weak IV and heterogeneity, the procedure proposed in this
paper is also robust to (i) heteroskedasticity, (ii) potentially few observations per instrument, and
(iii) potentially many covariates, so it retains the advantages of existing procedures in the literature.

Section 4 argues that the proposed LM procedure is powerful. In the environment with a fixed
reduced-form covariance matrix, I focus on a class of tests that are functions of a natural set of
statistics. Then, I show theoretically in the asymptotic distribution that the one-sided LM test
is the most powerful test for testing the null against any alternative from a well-defined set, and
that the two-sided LM test is the uniformly most powerful unbiased test for the interior of the
alternative space. Beyond the scope of the theory, numerical results also suggest that LM is close
to a power envelope in an empirical application.

Section 5 shows how the test can be inverted to construct a confidence set that can be expressed
in closed form. Simulation results in Section 6 suggest that the procedure is robust even with a small
number of instruments, and it is reasonably powerful. I also implement my proposed procedure
in the Angrist and Krueger (1991) quarter of birth application in Section 6, and show that the
confidence interval is wide, but their result is nonetheless significant.

This paper contributes to the following strands of literature. First, this paper contributes to a
growing literature on many weak instruments. There is a strand of literature dealing with many
instruments (e.g., Chao and Swanson (2005); Chao et al. (2012)) and another separate strand on
weak instruments (e.g., Staiger and Stock (1997); Stock and Yogo (2005); Lee et al. (2023)). While
recent work accommodates both simultaneously (e.g., Crudu et al. (2021); Mikusheva and Sun
(2022); Matsushita and Otsu (2022); Yap (2023); Lim et al. (2024)), its focus has been on the
linear IV model with constant treatment effects. This paper augments their setup by allowing for
heterogeneity in treatment effects.

Second, this paper contributes to the literature on heterogeneous treatment effects (e.g., Kolesar
(2013); Evdokimov and Kolesar (2018); Blandhol et al. (2022)). These papers provide conditions
where the coefficient of interest can be consistently estimated, and exploit that consistency to
conduct inference. In this paper, I operate in the (more general) weak IV environment so the object
of interest may not be consistently estimated, but I still have sufficient conditions for inference.
One paper that allows weak IV and heterogeneity is contemporaneous work in Boot and Nibbering
(2024), who study a single discrete instrument interacted and saturated with many covariates. Their
setup is a special case of the environment considered in this paper and the many weak instruments
literature, so it is unclear if their procedure generalizes to many instruments without covariates
(e.g., judges). Additionally, I characterize power properties of the score statistic.

Third, this paper contributes to a literature on inference when coefficients cannot be consis-



tently estimated. The difficulty in having such a general robust inference procedure lies in consistent
variance estimation when the number of coefficients is large. Recent literature that has made sub-
stantial progress in a different context. In doing inference in OLS with many covariates, Cattaneo
et al. (2018) and Anatolyev and Sglvsten (2023) proposed consistent variance estimators that are
robust to heteroskedasticity, which involve inverting a large (n by n, where n is the sample size)
matrix (similar to Hartley et al. (1969)) and a L3O approach respectively. Boot and Nibbering
(2024) adapt the Cattaneo et al. (2018) variance estimator for inference. In contrast, this paper
adapts the approach from Anatolyev and Sglvsten (2023) that does not require an inversion of an
n by n matrix, and whose L3O implementation is fast when using matrix operations.

Fourth, this paper contributes to a literature on optimal tests. While the uniformly most
powerful unbiased (UMPU) test for just-identified IV has been established since Moreira (2009b),
obtaining a UMPU test in the over-identified IV environment has thus far been more challenging.
There has been a large literature numerically comparing various valid tests and characterizing
various forms of optimality (e.g., Moreira (2003); Andrews (2016); Andrews et al. (2019); Van de
Sijpe and Windmeijer (2023); Lim et al. (2024)). By imposing heterogeneity in the environment,
the problem (somewhat surprisingly) simplifies, which allows me to obtain a UMPU result.

In the rest of this paper, Section 2 explains how existing procedures are invalid using a simple
simulation. Section 3 proposes a valid inference procedure. Section 4 discusses the power prop-
erties of the score statistic; Section 5 discusses implementation issues; Section 6 presents further
simulation results and an empirical application; Section 7 concludes. Implementation code can be

found at: https://github.com/lutheryap/mwivhet.

2 Challenges in Conventional Practice

This section explains the challenges faced in conventional practice by considering a simple potential
outcomes model without covariates that exhibits weak instruments and heterogeneity in treatment
effects. This model is a special case of the model in Section 3, which presents an inference procedure
that is valid for a general model that also accommodates potentially many covariates, heteroskedas-
ticity, and distributions of residuals that are not normal. A simulation from the model shows how
weak instruments and heterogeneity can lead to substantial distortions in inference. A common
empirical practice of constructing a leave-one-out instrument and then applying inference methods
for the instrument as if it is not constructed also has high rejection rates. In contrast, the method

proposed in this paper has a rejection rate that is close to the nominal rate.

2.1 Setting for Simple Example

The simple example uses the canonical latent variable framework of Heckman and Vytlacil (2005).
We are interested in the effect of X; € {0,1} (e.g., incarceration) on some outcome Y;, fori =1,---n
that indexes individuals. To instrument for X;, we use a vector of judges indicators: Z; is a (K +1)-

dimensional vector of indicators for judges, indexed 1,--- , K 4+ 1, each with ¢ = 5 individual cases,
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Table 1: Parameter Values for Simple Example

so the vector takes value 1 for the kth component when individual ¢ is matched to judge k, and 0
elsewhere. Let Y;(0) and Y;(1) denote the untreated and treated potential outcomes respectively,
and we observe Y; = Y;(X;). The treatment status given some instrument value z is X;(z), and we
observe X;(Z;). The model is:

Xi(z) = 1{Z'\ > v;}, and Y;(z) = zf(v;) + &, (1)

where 1{-} is an indicator function that takes the value 1 if the argument is true and 0 otherwise.
Here, Z/\ = Ak(i), Where k(i) is the judge that individual 7 is matched to. With individual unob-
servable v; ~ U|0, 1], the probability of treatment (i.e., X; = 1) given judge k is A\;. I set A\ =1/2
for the base judge, and evenly split all other K judges to take 4 different values of \; denoted in
Table 1. Potential outcomes are Y;(0) = ¢; and Y;(1) = f(v;) + &; so Y;(1) — Y;(0) = f(v;) is the
treatment effect. The individual-specific residuals v; and ¢; are allowed to be arbitrarily correlated.
Let Bj denote the local average treatment effect (LATE) when comparing judge & to the base judge:
for instance, when A\ > 1/2, By = ﬁ ff}’; f(v)dv. The By values for the 4 groups of judges are
also given in Table 1. The function f(v) that delivers these parameters and further details of this
example are in Appendix A.2.

The Ax and Sy values are parameterized by objects s and h, which control the IV strength and
heterogeneity in the model respectively. The impact of these parameters are better illustrated in
Figure 1 that plots the point masses for the four groups of judges in reduced-form. Parameter s
controls how far E[X | Z] are spread across judges, which then affects the instrument strength.
Parameter h controls the distance between the mass points and a line with slope 8 — this slope is
the object of interest. If the impact of X on Y is homogeneous, then h = 0, and all mass points
must lie on a line — this implication is falsifiable by the data.

The simulation designs vary the values of s and h through the following parameters:
Cs=VEK(c—1)s%, and Cy = VK (c— 1)h%. (2)

Using Staiger and Stock (1997) asymptotics, Cyg is the parameter that determines whether there
is strong or weak identification. Where C' is some positive arbitrary constant, C's — oo is an
environment with strong identification where the object of interest can be estimated consistently,
and Cs — C < 00 is an environment with weak identification where no consistent estimator exists.

For every design, I generate data under the null and calculate the frequency that each inference
procedure rejects the null of 5y = 0. These procedures include the standard TSLS, procedures that

are robust to weak instruments, procedures that are robust to heterogeneity, and procedures that



Figure 1: IV Strength and Heterogeneity in Reduced Form
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Table 2: Rejection rates under the null for nominal size 0.05 test

TSLS EK MS MO JIVEC ARC L3O LMorc
Cy =2VK,Cs=2VK 0900 0.066 1.000 0.103 0.100 0.101 0.085  0.053

Cy =2VK,Csg =2 1.000 0.033 1.000 0.285 0.076 0.271 0.045 0.045
Crx =2VK,Cs =0 0.998 0.024 1.000 0.308 0.055 0.297 0.051  0.048
Cy =3,Cs =3VK 0.996 0.066 1.000 0.042 0.043 0.044 0.039  0.048
Cyp=3Cs=3 1.000 0.101 1.000 0.101 0.181 0.141 0.056  0.057
Cyg=3Cs=0 1.000 0.141 1.000 0.133 0.242 0.192 0.069  0.054
Cy =0,Cs =2VK 1.000 0.145 0.048 0.064 0.074 0.074 0.064  0.052
Cyg =0,Cg =2 1.000 0.248 0.043 0.063 0.217 0.105 0.046  0.057
Cyg =0,Cs=0 1.000 0.378 0.044 0.066 0.337 0.128 0.064  0.050

Notes: The table displays rejection rates of various procedures (in columns) for various designs (in rows).
Details of the data generating process are in Appendix A.2. Simulations use K = 400,c¢ = 5,5 = 0 with
1000 simulations. TSLS implements the standard two-stage-least-squares procedure for an over-identified IV
system. EK implements the procedure in Evdokimov and Kolesér (2018). MS uses the statistic in Mikusheva
and Sun (2022) with an oracle variance of their statistic. MO uses the variance estimator proposed in
Matsushita and Otsu (2022). JIVEC uses a constructed instrument and runs TSLS for a just-identified IV
system. ARC uses the AR procedure for a just-identified system using a constructed instrument. L3O uses
the variance estimator proposed in this paper. LMorc is the infeasible theoretical benchmark that uses an
LM statistic with an oracle variance.



use a constructed instrument. The results are presented in Table 2, which I will refer to in the

remainder of this section.

2.2 Issue with Weak Instruments

If we simply run TSLS for an over-identified model, inference is invalid, a fact already known in the
literature. This fact is also evident in Table 2, where TSLS has 100% rejection in many designs.
In TSLS, the first stage regresses X on Z to get a predicted X = Z#, where # is the estimated
coefficient; the second stage regresses Y on X. With constant treatment effects, the asymptotic bias
of TSLS depends on ), EZ'XZ'/ > X’ZQ When every judge only has ¢ = 5 cases, the influence of v; on
k(i) and hence X, is non-negligible. Since ¢; and v; can be arbitrarily correlated, the numerator is
biased. If the instruments are weak such that the denominator ), X,LQ does not diverge sufficiently
quickly, the asymptotic bias can be large. Hence, the problem arises from using X; to estimate 7.

A natural solution to the bias in the TSLS estimator is to use the JIVE to estimate 5. Instead
of using XZ = Z!7 in the second stage, we instead use )N(Z- = Z!7_;, where 7_; is the coefficient from
the first-stage regression that leaves out observation 4. I will also call this the leave-one-out (L10)
coefficient. With P = Z (Z'Z)~" Z' denoting the projection matrix, X; = Z!m_; can be written as
Xi =32, PijX;j. Then, the JIVE is:

> Y (Zj;éi Pz'ij)
Zi Xi <Zj7éi Pinj) '

b 3)

In the many IV context with constant treatment effects, the asymptotic distribution of the
t-statistic of the JIVE is the same as the distribution of the t-statistic of the TSLS estimator in the
just-identified environment (Mikusheva and Sun, 2022; Yap, 2023) — it is a ratio of two normally
distributed random variables. It is well-known that, in the just-identified IV context with weak
instruments, the rejection rate of the standard ¢-statistic can be up to 100% for a nominal 5% test
(e.g., Dufour (1997); Staiger and Stock (1997)). Hence, like the just-identified IV context, by using
a structural model that has sufficiently weak instruments and high covariance, the simulation can
deliver high rejection rates.

EK18 have a procedure that is robust to heterogeneity, but not weak instruments, so even
if we use their variance estimator for the t-statistic, this problem is not alleviated. This fact is
evident in the EK column of Table 2, where, with a sufficiently large correlation in the individual
unobservables, rejection rates can be large. Further, Example 1 in Appendix A.3 can yield 100%
rejection under the null (see Table 7). Hence, ignoring the issue of weak instruments can lead to
substantial distortions in inference. In fact, even with strong instruments, there is no guarantee
that EK18 achieves the nominal rate, because their variance estimation method requires consistent
estimation of the first-stage coefficients 7. A condition for consistent variance estimation is that

the number of cases per judge is large, which is not ¢ = 5.

Remark 1. In the literature, there have been several definitions of weak instruments in this context,



which I clarify in this remark. Using Equation (2), there are three asymptotic regimes, ordered
L
VK
(i) is a necessary condition for the TSLS estimator to be consistent, so \/—%CS — C < oo is what

from the strongest to the weakest: (i) Cg — o0, (ii) Cs — o0, and (iii) Cs — C' < oo. Regime
Stock and Yogo (2005) would refer to as weak instruments. Regime (ii) is a necessary condition for
the JIVE to be consistent (e.g., Chao et al. (2012); Evdokimov and Kolesar (2018)). Regime (iii)
is where no estimator is consistent (e.g., Mikusheva and Sun (2022)). If K is fixed, then (i) and
(ii) are the same asymptotically, and (iii) is the relevant weak-identification asymptotic regime. If
K — oo, then there is more ambiguity in what weakness means: Chao et al. (2012) and Evdokimov
and Kolesar (2018) who assume (ii) are robust to weak instruments when defined in the Stock and
Yogo (2005) sense, because s can converge to 0, albeit at a slower rate than +/K. In this paper, I
follow the Staiger and Stock (1997) standard of weak identification where no consistent estimator

exists, which corresponds to (iii) that EK18 is not robust to.

2.3 Issue with Heterogeneity

Next, we consider proposals for inference that are developed for contexts with many weak in-
struments. MS22 (and Crudu et al. (2021)) propose using an Anderson-Rubin (AR) statistic
Tee = \/% > Z#i Pjjeie;, for e; == Y; — X;Py where [y is the hypothesized null value. This
statistic is motivated by how e; is the null-imposed residual: if the instrument is orthogonal to
the residual, then E[Z’e] = 0. Then, T,. is the L10 analog for the quadratic form that tests the
moment E[Z'e] = 0. Since observations are independent, the critical value for the test is obtained
from a mean-zero normal distribution. In this model, E [T..] = VK (c — 1)h%.! Hence, when there
are constant treatment effects such that h = 0 for all k, the statistic is unbiased. However, in the
setup with heterogeneity, the test statistic in MS22 can be biased: in fact, when h does not converge
to zero, E[T.] diverges. Further, there does not exist any estimand Sy such that E [Te.] = 0, as
shown in Lemma 3 of Appendix A.2. In the simulation, when A does not coverge to 0, the bias is
large enough to generate 100% rejection.

Another proposal in the literature that is robust to many weak instruments is Matsushita
and Otsu (2022) (henceforth MO22) who use the statistic T,x = \/%ZZ >z DijeiX;. Since
T.x = \/% > Zj# Pje;X; = \/% > e;X;, this statistic can be interpreted as the LM (or score)

statistic that uses the moment F [eX | = 0. They propose the following variance estimator Uro:

2

Vo= [ D PX;| € +>.> PiXieiXje;. (4)

i \J# i j#

While T,.x has zero mean, the variance is constructed under constant treatment effects, so the
variance estimand differs from the true variance. In particular, it is shown in Appendix A.1 that

E [\il Mo} # Var (T.x), and U /0 is inconsistent in general, so when it is used to construct the

!This result can be obtained as a special case of Theorem 1 in Section 3 and using the fact that > Z].# Pfj =

Do Zj;éi (1/62) = 2 657721 =2 C21~




t-statistic of T.x, the normalized statistic is not distributed N (0, 1) asymptotically. Consequently,
by constructing a DGP where . Mo underestimates the variance, it is possible to get over-rejection
of the MO22 procedure, as in the cases of Table 2 where Cp diverges. As expected, when there is
no heterogeneity such that h = 0, the rejection rate of MO22 and MS22 are close to the nominal
rate. MS22 is closer to the nominal rate than MO22 because I used an oracle variance for MS22

and an estimated variance for MO22.

2.4 Issue with a Constructed Instrument

In light of problems with weak identification and heterogeneity, a possible response is to transform
a many instruments environment into a just-identified single-IV environment. With a single IV,
the Anderson and Rubin (1949) procedure (among others) is robust to both weak identification
and heterogeneity. However, this subsection will argue that such an approach is invalid.

Due to how the JIVE is written, there are several empirical papers that treat X; = Zj# P;; X
as the “instrument” so that § = >, Y;X;/ >, X;X;, and proceed with inference as if X; is not
constructed, but is an observed scalar instrument, usually referred to as the leniency measure.
While the resulting estimator is numerically identical to JIVE, there are distortions in inference
because the variance estimators do not account for the variability in constructing X;.

If the TSLS t-statistic inference is used as if X; is the instrument, then its rejection rates in
designs with heterogeneity are somewhat worse than rejection rates of EK18 that accounts for the
variance accurately, by comparing the JIVEC and EK columns in Table 2.

Even if the weak-instrument robust AR procedure for just-identified IV were used, there can

still be distortion in inference (see the ARC column of Table 2). To see how the distortion
- - . - N2

arises, the AR t-statistic is tarc = ), ein-/\/;, where V = )", X?2e2 (ZZ Xf) and é; =

e; — X} (ZZ eiX'i) / (Zl Xf) Even though t4rc is mean zero and asymptotically normal, the

variance estimand is inaccurate, much like MO22. In particular, when 8 = 0, the leading term of
the variance estimand is F [Zl f(feﬂ, whose expression is derived in Appendix A.2, and it does
not converge to the true variance derived in Section 3 in general. Hence, using the just-identified
AR procedure with a constructed instrument results in over-rejection.

As a preview, the L3O procedure proposed in this paper has rejection rates close to the nominal

rate while the other procedures can over-reject.

3 Valid Inference

In light of how existing procedures are invalid in an environment with many weak instruments
and heterogeneity as documented in the previous section, this section describes a novel inference
procedure and shows that it is valid. I set up a general model, then show that an LM statistic is

asymptotically normal and a feasible variance estimator is consistent, which suffices for inference.



3.1 Setting: Model and Asymptotic Distribution

The general setup mimics Evdokimov and Kolesar (2018). With an independently drawn sample of
individuals ¢ = 1,...,n, we observe each individual’s scalar outcome Y;, scalar endogenous variable
X, instrument Z;, and covariates W;, where dim (Z;) = K. For every instrument value z, there is an
associated potential treatment X; (z), and we observe X; = X; (Z;). Similarly, potential outcomes
are denoted Y; (z), with Y; = Y; (X;). Let R; = F[X; | Z;,W;] and Ry; = E'[Y; | Z;, W;], and these

are assumed to be linear. The model, written in the reduced-form and first-stage equations, is:

Y; = Ry; + (;, where Ry; = Zlmy + W]y, E[¢ | Z;,W;] =0, and
X; = R; +n;, where R; :== Zim + W/, Eni | Zi,W;] = 0.

2 This model implies

The setup implicitly conditions on Z;, W;, so R;, Ry; are nonrandom.
linearity in Z and W, which is not necessarily restrictive when there is full saturation or when K
is large, because any nonlinear function of the instruments can be arbitrarily well-approximated
by a spline with a large number of pieces or a high-order polynomial. Moreover, the arguments in
this paper could presumably be extended to a linear approximation of nonlinear functions as long
as there are regularity conditions to ensure that higher-order terms are asymptotically negligible.

Define e; :=Y; — X3, where § is some estimand of interest that we want to test, and e; is an
associated linear transformation. Further, let Ra; := Ry;— R; 58 and v; := (;—n;3. These definitions
imply that e; = Ra; +v; and Ra; = Z](my — w8) + W/(yy — ). Since E [v4|Z;, W;] = 0 from the
model, E [e;|Z;, W;] = Ra;, which need not be zero. For data matrix A, let Hy = A (A’A)_1 A
denote the hat (i.e., projection) matrix and M4 = I — Hy its corresponding annihilator matrix.
With Z, W denoting the corresponding data matrices of the instrument and covariates, let Q =
(Z,W), P=Hg,and M =1 — P. C denotes arbitrary constants.

Remark 2. While E [e;|Z;, W;] = Ra; need not be zero under heterogeneous treatment effects,
Ele;|Z;,W;] = Ra; = 0 under constant treatment effects. Since Ra; = Z.(ny —n8) +W/(vy —5)
for all 4, constant treatment effects with E[Y; — X;8 | Z;, W;] = 0 also implies 7y = 73 and vy = 03
outside of edge cases (e.g., when Z;, W; are always 0). These Ra objects hence capture the impact

of having heterogeneous treatment effects in the many instruments model.

The (conditional) object of interest and its corresponding estimator are:

BiIvE == i 2y Cigltvilly and  Byrve = 2 2z GigYiX;
20 2 Gig iRy 2o 22 Gi XiX;

where G is an n x n matrix that can take several forms. As the leading cases, if there are no
covariates, using the projection matrix G = Hz = P is the standard JIVE, and when there are
covariates, I use the unbiased JIVE “UJIVE” (Kolesér, 2013) with G = (I — diag (HQ))_1 Hg —

2If we are interested in a superpopulation where Z is random, then the estimands would be defined as the
probability limit of the conditional objects. Then, it suffices to have regularity conditions to ensure that the conditional
object converges to the unconditional object.

10



(I — diag (Hyw)) ™' Hy.® In an environment with a binary instrument and many covariates inter-
acted with the instrument, the saturated estimand “SIVE” (Chao et al., 2023; Boot and Nibbering,
2024) uses G = Pgny — MgDpnMg, where Ppy = MWZ(Z’]WWZY1 Z'My and Dpgy is defined
as a diagonal matrix with elements such that Py = [MQD B NMQ]n" With constant treatment
effects, the estimand is the same for all the estimators: Ry; = R;8 so Byrve = . Depending
on the application, the estimand is usually interpretable as some weighted average of treatment
effects when using JIVE without covariates or UJIVE with covariates with a saturated regression.”
(Evdokimov and Kolesér, 2018) The focus of this paper is on inference, so I will not discuss the
estimand in detail. The results for valid inference in the paper are established for any G that
satisfies properties that will be formally stated in the theorem.

This paper restricts its attention to the following statistics:

1
(T667T6X7TXX)/ = \/? ZZG” (eiejaeinaXin)/ . (5)

i jF#L
These T objects are observed because the e; objects can be calculated by using the null-imposed .
It suffices to focus on (Tee, Tex, Tx x) for inference as they correspond to a linear transformation of
the leave-one-out analog of a maximal invariant — details are in Section 4.1. T¢, is the (unnormal-
ized) AR statistic used by MS22 for inference, and T.x is the LM (score) statistic used by MO22.
T'x x corresponds to a first-stage F statistic.

The asymptotic behavior depends on the following object:

2 2
Tn ::Z ZGinj +Z ZGinAj JrZZG?j- (6)

( J#1 i J#1 I
Asymptotic theory in this paper uses 7, /v K — 0o, which nests the environments of EK18, MS22,
2
and MO22. EKIS8 assume ), (Z#i Ginj) /VK — oo, which implies r,/vK — co. The
2
condition that ), (Z#i Ginj> /VK — oo implies strong identification, but r,/vK — oo can
also be achieved if either of the latter terms in Equation (6) diverges. MS22 and MO22 assume
K — oco. Without covariates, G = P, so ), Z#i G?j = O(K), and hence r,/vK — oco. Hence,

to apply the asymptotic theory in this paper, it suffices to have either strong identification, or

K — o0o0. The only case ruled out is where K is fixed, and there is weak identifcation in that

2
D (Zj# Ginj> /VK does not diverge.

The following assumption states sufficient conditions for joint asymptotic normality.

3Even if Z includes full interaction of a discrete instrument (say quarter of birth) and W, there is still value
in partialling out W. The main difference is that, if for a given covariate group, all observations have the same
instrument value, then UJIVE will not incorporate those observations at all. In contrast, merely using Z will still
incorporate these observations.

4In the judge example without covariates above, we have G = P and my = Br7r where §i is the local average
SeTyeTh _ Sk TRBk

2 2
DI DO

treatment effect (LATE) between judge k and the base judge, so fjive =
of LATE’s.

is a weighted average
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Assumption 1. (a) There exists C' < oo such that E[n}] + E[v}] < C for all 4.
(b) E [v?] and E [n?] are bounded away from 0 and |corr (14, 7;) | is bounded away from 1.

(c) There exists ¢ > 0 such that for any ¢, c2, c3 that are not all 0,
2 2

= <C3 > i (Gij + Gji) Rj + 234 sz‘RAj) += (01 >z (Gij + Gji) Raj + 2} Ginj> +

i Y (G?j + Gz’ﬁjz‘) > c.

(@ 7 ((Z#i Guly) + (i Cubing) + (S Cty) + (S GﬁRN>4> o

(e) H%GLG’L] |+ %GUG/U‘ |F — 0, where G, is a lower-triangular matrix with elements G, ;; =

Gi;1{i > j} and Gy is an upper-triangular matrix with elements Gy ;; = G;1{i < j}.

Assumption 1 states high-level conditions that mimic EK18 so that a central limit theorem
(CLT) can be applied. These conditions hence accommodate the G that EK18 consider with
covariates. Having bounded moments in (a) is standard. Conditions (b) and (c) are sufficient to
ensure that the variance is non-zero asymptotically. In particular, (b) rules out perfect correlation:
in the simulation, corr(n;,r;) = —1 is the pathological case that makes the variance zero, but
corr(n;,v;) = 1 still allows non-zero variance. Conditions (d) and (e) ensure that the weights
placed on the individual stochastic terms are not too large.

The conditions on G are satisfied when G = P is a projection matrix. For (c), any rank K
projection matrix satisfies 37, >, Pfj = K. Due to Lemma B3 of Chao et al. (2012), under weak IV
asymptotics where P; < C' < 1, Assumption 1(e) is satisfied, as |GG’ ||r < CVK. Mechanically,
if there is weak IV and fixed K, then H%GLG’LHF = +O(VK) # o(1), so (e) fails when r,/vVK
does not diverge. Notably, the conditions do not require P;; — 0 so the 7, my coefficients need not

be consistently estimated.

Theorem 1. Under Assumption 1, let Sk = \/% > Z#i GijRiR;j. Then,

R (Zi 2521 Gig (Rain + viRj + ij)) Tex
Sk + = 2i Xz Gig (Rimy + Rymi +mimy) - Txx”

Birve — BiIvE =

and for some variance matriz V', as ry,/vV K — 00,

Tee — \/% Zz Z];ﬁz GinAiRAj . 0
vz Tox 4N 0 |.55]. (7)

Txx — e 2 2z GigRiRRj

Theorem 1 states a numerical equivalence on the difference between B give and ByvE. Sk is
the concentration parameter corresponding to the instrument strength. In the model of Section 2,

the mapping to the reduced-form 7 can be found in Appendix A.2, so the concentration parameter
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is given by Sk = \/% Sple—1D)mi = gx/F(c — 1)s2. If the instruments are strong, then Sk — oo,

SO BJIVE —Brive i) 0. With weak IV, Sk converges to some constant C' < co.

The asymptotic distribution follows from establishing a quadratic CLT that may be of inde-
pendent interest: it is proven by rewriting the leave-one-out sums as a martingale difference array,
and then applying the martingale CLT. While there are existing quadratic CLT available, they do
not fit the context exactly. Chao et al. (2012) Lemma A2 requires G to be symmetric, which works
without covariates as it is just a projection matrix, but G for UJIVE is not symmetric. EK18
Lemma D2 is established for scalar random variables, so I extend it to random vectors.

This theorem implies that, under weak identification, comparing the JIVE t-statistic with the
standard normal distribution leads to invalid inference even in large samples. The theorem also
states that the asymptotic distribution is a ratio of two normals, which is identical to the distribution
of the just-identified T'SLS estimator. While Yap (2023) and MS22 have observed this result in part
with many weak instruments, their results are restricted to the case with constant treatment effects.
Here, I show that the distribution holds even with heterogeneous treatment effects. Theorem 1 also
states that T.x is mean zero and asymptotically normal in this general environment. Hence, if we
have access to the oracle variance of T, x, we can simply use the statistic T, x //Var(T.x) for testing
because it has a standard normal distribution under the null. Obtaining a consistent estimator is
an issue addressed in the next subsection.

A corollary from Theorem 1 is that T¢. is normal and mean zero under constant treatment
effects, but its mean is shifted when Ra # 0. Consequently, one could test for heterogeneity by

comparing the T, and T, x statistics.

3.2 Variance Estimation

To test the null that Hy : 5 = By, we can calculate T,x using the null-imposed 5y and an estimator
for the variance of VK Te.x, VLM, defined later in this section. Then, reject if KT EQX / VLM >
® (1 — a/2)? for a size « test where ®(.) is the standard normal CDF. This procedure is valid when
T.x is asymptotically normal with mean zero as we have established in the previous section, and
when VL M 1S consistent.

Before stating the variance estimator, I first decompose the variance expression in the equation
below, which follows from substituting e; = Ra; + v; and X; = R; + n; into the variance. It is
shown in Appendix B that, for Vi := Var (ZZ Zj# Gijein),

Vi =S S S B [02] GyGuRi R+ S S GRE 2] B [2] + 305 Gy Gy [nivi] E [y

i i kot i i i
+ 2 Z Z Z FE [Vﬂ?i] GiijiRjRAk + Z Z Z E [7712] GjiniRAjRAk.
i i ket i g ket

(8)

With constant treatment effects, only the first line appears in the variance. With G = P,
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the expression for Var (ZZ > ot Pije; X j) matches the expression in EK18 Theorem 5.3, but their

variance estimator cannot be used directly as they required consistent estimation of reduced-form

coefficients. By adapting the leave-three-out (L30O) approach of Anatolyev and Se¢lvsten (2023)

(henceforth AS23), an unbiased and consistent variance estimator can be obtained. Let 7 := (7', ")’

and 7a := ((ry — 78)’, (yv —v8)")" denote the coefficients on @ when running the regression of X

and e respectively. In the following, let M = Mg. The variance estimator is:

VLM = A1+ As + Ag + Ay + As,

with
Al = Z Z Z Gl‘ijGikaei (ei - Q;%A,fijk) ’
i i ki
A2 =92 Z Z ZGinijiekei (Xz - Qﬁlijk) ’
i i ki
As = Z Z Z GjiejGrierX; (Xi - Q;f'—ijk) )
i g ki
Api==> 3 G XMy i Xpe; (e — QiFa—ijk) »
i gkt
As = — Z Z Z Gz’jGjieiMik,—inkej (Xj - Qz'%—ij’“) ’
i i k#j
where

—1
7A'_Z'jk = Z QZQE Z QZXZ’

I#i,5,k I#i,5.k
—1
~ /
Paigri=| Y Q@ > Qe
I#£i,j,k I#£i,5,k
2
Dij = Miiij — Mij’ and

-1

=-Qi | > Qe |
1£i,5

y _ MMy — Mij My
. B

Following AS23, I make an assumption to ensure that the L3O estimator is well-defined.’
Assumption 2. (a) Zl#’j’k QQ] is invertible for every 7,7,k € {1,--- ,n}.

(b) MaX;-£j-Lk4q D;i = Op(l), where Dijk = M”Djk — (]\41']‘]\45g + MkkMZQJ — QMJkaMlk)

9)

Assumption 2(a) corresponds to AS23 Assumption 1 and Assumption 2(b) corresponds to AS23

°If these conditions are not satisfied, then we can follow the modification in AS23 so that the variance estimator

is conservative.
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Assumption 4. For consistent variance estimation, we additionally require regularity conditions that
are stated in Assumption 3 of Appendix A.1. These conditions are satisfied when G is a projection

matrix. With these conditions, Theorem 2 below claims that the variance estimator is consistent.

Theorem 2. Under Assumptions 1-2, and Assumption 3 in Appendix A.1, E [VLM} = Vim and
the variance estimator is consistent, i.e., VLM/VLM 2.

With many instruments and potentially many covariates, the main difficulty is that the reduced-
form coefficients 7, 7y, v, vy are not consistently estimable. The usual approach to constructing
variance estimators calculates residuals by using the estimated coefficients, but this approach no

longer works when these estimated coefficients are inconsistent. To be precise, applying Chebyshev’s

inequality for any € > 0 yields:

o

Without an unbiased estimator and when reduced-form coefficients cannot be consistently esti-

< + = . 10
Vi (10)

Vinr — Vi 1 Var (VLM) 1 (E [VLM} — VLM>2
‘ g 6) T Vi e? Vi

mated, the second term in (10) is not necessarily asymptotically negligible. To overcome this
problem, I use an unbiased variance estimator so that the second term is exactly zero. Then, it
suffices to show that the variance of individual components of the variance are asymptotically small
compared to V7, so that the first term in (10) is o(1) by applying the Cauchy-Schwarz inequality.

To obtain an unbiased estimator, I use estimators for the reduced-form coefficients m, 7y, v, vy
that are unbiased and independent of objects that they are multiplied with, which helps to construct
an unbiased variance estimator. The leave-three-out (L30) approach provides this unbiasedness for
linear regressions: when leaving three observations out in the inner-most sum of the A expressions,
the estimated coefficient 7_;;;, is independent of 4, j, k and is unbiased for 7. Then, when taking
the expectation through a product of random variables of 4, j, k and 7_;;;, 7 can be used in place of

the 7_;;; component, and the expectations of individual components can be isolated. For instance,

E Y YN GiyXiGaXpei (ei — Qiia—in) | = 2> Y GiE[X;]|GinE [Xp) E [ei (e — Qifa —ijk)]

i jF k#g i jFi k#g

=33 GuRGuRE []],

i JF k#g

which recovers the triple sums in the Vs expression of Equation (8). An analogous argument
applies to other components of V' in (7). Assuming that the residuals have zero mean conditional

on @ is crucial: if we merely have E[Q(] = 0, this argument can no longer be applied.

Remark 3. While the proposed Vi is motivated by AS23, the contexts and estimators are
different. First, the statistic that we are estimating the variance for is different: AS23 demeaned
their F statistic using E F, Where E ' is estimated using L10O, so they are interested in the variance of

F — Er that is mean zero; I use a mean-zero L10 statistic directly in T, x. Second, the expectation
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of their variance estimator takes the form of their (9), which is analogous to the sum of A; and A4
using the notation above, so repeated applications of their estimator is insufficient to recover all
five terms exactly. Hence, to adjust for the A4 and As terms here, I additionally require another

estimator, and its form is similarly motivated by a L3O reasoning.

4 Power Properties

This section characterizes power properties of the valid LM procedure. To do so, I first argue that
we can restrict our attention to three statistics that are jointly normal. Since the reduced-form
covariance can be consistently estimated, the remainder of the section focuses on the 3-variable
normal distribution with a known covariance matrix. With this asymptotic distribution, I qualify
some theoretical optimality results on one-sided and two-sided LM tests. Namely, the one-sided
LM test is the most powerful test against alternatives within a subset and the two-sided LM test

is the uniformly most powerful unbiased test within the interior of the parameter space.

4.1 Sufficient Statistics and Maximal Invariant

As is standard in the literature, I consider the canonical model without covariates where the
reduced-form errors are normal and homoskedastic (e.g., Andrews et al. (2006); Moreira (2009a);
Mikusheva and Sun (2022)). In this environment, I derive a maximal invariant and its associ-
ated distribution for the reduced-form model without covariates. Suppose (7,() in the model of

Section 3.1 are jointly normal with known variance. To be precise,

<<i>~N(O,Q):N<O,[w§C WC”D. (11)
YU Wen - Wi

si\ [ (Zz2)7Vzy
so )]\ (22 V2zx )’

I restrict attention to tests that are invariant to rotations of Z, i.e., transformations of the form

Define:

Z — ZF'" where F is a K x K orthogonal matrix. In particular, an invariant test ¢(s,s2) is one
for which @¢(F's1, F'sa) = ¢(s1,s2) for all K x K orthogonal matrices F. If we focus on invariant

tests, then the maximal invariant contains all relevant information from the data for inference.

Lemma 1. (s},s})" are sufficient statistics for (74, '), Further, for transformations of the form

Z — ZF' where F is a K x K orthogonal matriz, (s}s1,s)s2,s582) is a maximal invariant, and

s AARGE:
( . ) ~N<< A > ,Q®IK>.

The derivation for Lemma 1 mimics Moreira (2009a) Proposition 4.1. After demeaning appro-

priately, the maximal invariant (s]s1,s)s2, s5s2) is jointly normal.
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Proposition 1. With Equation (11), K — oo and LK (ny Z' Zmy 7' Z' Zmwy , 7' Z' Zw) — (Cyy, Cy,Cs),
1 8/181 — ngc — ny 0
d
— sh sy — Kwey — C - N 0|, 12
VK 192 ¢n Y (12)

s589 — Kwpy — Cg

for some variance matriz . If Cyy,Cy,Cgs < 00,

20.:2C 2wenwee 20.:277
_ 2
Y= 2wepwee weewny + Wen 2W¢nWin
2 2
Qan 2wenwny 2w,m

The proof of Proposition 1 relies on K — oo because objects like s]s1 can be written as a sum
of K objects. With an appropriate representation to obtain independence, a central limit theorem
can be applied to yield normality. Compared to MS22, Proposition 1 does not require constant
treatment effects and characterizes the distribution without orthogonalizing the sufficient statistics.
Nonetheless, the form of the covariance matrix is similar to MS22.

Considering the leave-one-out (L10) analog of the maximal invariant is attractive in this context
because it removes the need to subtract the variance objects on the left-hand side of Equation (12).
Without covariates such that G = P, I define (Tyy, Ty x, Txx) := \/% > Z#i P (YiY;, Y X5, X; X5).
This (Tyy,Tyx,Txx) is the L10 analog of the maximal invariant (s}si, s|s2, s5s2).° This L10
analog also relates to JIVE directly because B Jive = Ty x/Txx. As a corollary of Theorem 1, since
(Tyy, Ty x, Tx x) is a linear transformation of (Tee, Tex, Tx x) that is jointly normal, (Tyy, Ty x, Txx)
is also jointly normal.” Since (Tyy,Tyx,Txx) is the L10 analog and has the same distribution as
the maximal invariant, I restrict our attention to tests that are functions of (Tyy, Ty x,Txx).

While validity results in Section 3 apply even when K is small, the optimality results here do
not apply. Based on Proposition 1, the distribution of the maximal invariant is approximately
normal when K is large. When K is fixed, the distribution of the maximal invariant is different

from the distribution of L10 statistics, and focusing on the L10O statistics is not justified.

4.2 Discussion of Asymptotic Problem

The asymptotic problem involving (Tyy, Ty x, Txx) is:

Tyy \/% > 2jri PijRyiRy;j o11 012 013
Tyx | ~N (%), p= \/% > Zj;éi PijRyiR; 2= © 022 023 |- (13)
Txx T= i 2y D RiR; SR

°To see this, 150 = Y'Z(Z2'2) ' Z'X =Y'PX = 3,3, Pi;YiX;.
"To see that (Tyy, Ty x,Txx) is a linear transformation, use the fact that e = Y+ X 3. Then, (Tyy,Tyx,Txx) :=
T 20 2 Pi((ei + XiB) (e + X58), (ei + XiB) X, XiX;) = (Tee + 2Tex f + Tx x5, Tex — Txx B3, Txx).
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There are several natural restrictions in the p vector, which is assumed to be finite. Since P is a
projection matrix, ), Z#i PjjRiR; =), RZ-(Ej P,jRj—P;R;) =Y, M;;R?. Since the annihilator
matrix M has positive entries on its diagonal, we obtain usg > 0 and a similar argument yields
p1 > 0. Further, with pp = 37, 3., PjjRy;R; = >, M;;Ry;R;, the Cauchy-Schwarz inequality
implies p3 < p1 3. Notably, constant treatment effects implies 3 = 11 u3, which is a special case of
the environment here. These properties do not contradict the joint normality: even though pus > 0,
Tx x can still be negative when using the L10 statistic.

Beyond the necessary restrictions that i, pus > 0 and p3 < pyus, there is also a question of
whether ¥ places further restrictions on u, which can give more information about Syrv e = pe/us.
While ¥ is uninformative when we have normal homoskedastic reduced-form errors, it is less obvious
if there exists any structural model where this result still holds when § features in . With more
structure, there can be more restrictions on p, but if there is no structural model where ¥ is
uninformative, then any necessary restriction should be accounted for in the asymptotic problem.
Hence, Appendix A.3.1 establishes that there exists a structural model where ¥ is uninformative
about g, and gy, pug > 0, so u3 < pypus are the only restrictions on p.® While the result establishes
that there exists a structural model where there are no further restrictions, for any given structural

model, there can still be further restrictions.

4.3 Analytic Results

Using the asymptotic problem of Equation (13), testing Hy : po/pus = S* is identical to testing
Hy : po — pB*us = 0. Since §* is fixed, and I consider alternatives of the form: Hy : po — 8% us = ha.
The LM statistic corresponds to Ty x — 8*T'x x, so it can be used to test the null directly. I focus
on the most common case of §* = 0, and it is analogous to extend the argument for 8* # 0. Having
B* = 0 simplifies the argument because it suffices to focus on testing the null of us = 0. Further,
(Tyy, Tyx,Txx) = (Tee, Tex, Txx). Let u? denote the mean under the alternative and u7 under
the null. The remainder of this section presents theoretical results for power, and numerical results
beyond the environment covered by theory are relegated to Appendix A.3.2.

The one-sided and two-sided LM tests are defined in the following manner. With a size « test,
the one-sided LM test against the alternative that uo > 0 rejects when T,y /+/Var(Tex) > ®(1—a).
When testing against the alternative that us < 0, it rejects when T.x/+/Var(T.x) < ®(a). The
two-sided LM test against the alternative that us # 0 rejects when T2 /Var(T.x) > ®(1 — «/2).

The one-sided test is the most powerful test for testing against a particular subset of alter-
natives § := {(Mf,uﬁ,ﬂz’?) cugt — %;MQA >0, 4 — g—zg,u? > 0}. While § may not be empirically
interpretable, this set is constructed so that standard Lehmann and Romano (2005) arguments
can be applied to conclude that the one-sided LM test is the most powerful test. The proposition
makes no statement about alternative hypotheses that are not in S. A more powerful test can be

constructed when u? is large and covariance o93, 012 are large.

8Since the model in Section 2 is binary, it is insufficient for such a general result, and a continuous X is required,
so the example is relegated to Appendix A.3.1.
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Proposition 2. The one-sided LM test is the most powerful test for testing any alternative hy-
pothesis (uf,u‘;,u?) € S in the asymptotic problem of Equation (13).

For a given (u‘f‘, s, u?) in the alternative space, LM (which just uses the second element) is
justified as being most powerful because it is identical to the Neyman-Pearson test when testing
against a point null p with pff = puft — %3“124’ pil =0 and pfl = ,u? — %M‘QL‘. The inequalities
in § are imposed so that u{{ , ,u,y{{ > 0, ensuring that ! is in the null space. If these constraints
hold, then LM is the most powerful test. In contrast, if the inequalities fail in the alternative space,
then (uf! — %,u?, 0, 4 — g—igu‘;) is not in the null space, and the Lehmann and Romano (2005)
argument cannot be applied.

Turning to two-sided tests, I consider the theoretical benchmark of a uniformly most powerful

unbiased test (e.g., Lehmann and Romano (2005); Moreira (2009b)).

Proposition 3. Consider a restriction of the alternative p space to the interior i.e., pi, pus > 0
and p3 < pips. Then, the two-sided LM test is the uniformly most powerful unbiased test in the
asymptotic problem of Equation (13).

The argument for optimality applies a standard optimality result from Lehmann and Romano
(2005) on the exponential family, which includes the normal distribution. To apply the Lehmann
and Romano (2005) result, we require a convex parameter space and the the existence of alternative
values above and below the null value.? It can be verified that the restricted parameter space is still
convex, and the restriction to the interior ensures the latter condition is satisfied. The proposition
claims optimality within the class of unbiased tests, and makes no statement about tests that are

biased (i.e., where the power at some point in the alternative space can be lower than the size).

Remark 4. With the characterized asymptotic distribution, there are several other tests that are
valid. (1) We can implement a Bonferroni-type correction that constructs a 99% confidence set
for both py and s, then a 97% test for LM. (2) VtF from Yap (2023) can also be implemented,
because the asymptotic distribution does not rely on homogeneous treatment effects. There is
evidence that it can lead to shorter confidence intervals from Lee et al. (2023). (3) With a given
structural model, the the algorithm from Elliott et al. (2015) can also be applied by using a grid

on structural parameters.

Studying optimality in the over-identified IV environment has thus far been complicated. In
the constant treatment effects environment considered by the existing literature, ;s and s}sy are
informative of the object of interest 4. In this context, constant treatment effects implies ji; = 52us3.
However, once we impose g1 > 0 under the null that 8 = 0, we rule out constant treatment effects
by focusing on the interior of the alternative space. Then, the statistic associated with g is no
longer directly informative of 8. Imposing heterogeneity is hence the key to obtaining this UMPU

result.

9Technically, it suffices to have u1, 3 > 0 and u3 < pips when using the null that o = 0.
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5 Implementation

Expressions for the test are given in Section 3, which can be feasibly implemented using matrix
operations. Inverting the test to obtain a confidence set is also straightforward in this procedure,
as the bounds of the confidence set are derived in closed-form in this section.

To invert the LM test to obtain a confidence set, use e; = Y; — X;5y and expand the A
expressions in Equation (9) so that they are written in terms of X and Y. The two-sided test
rejects: (32,324 Gijein)Q/f/LM > g = ®(1 - a/2)? Let Pyy := 3,3, Gij¥iX;. Then,
> Z#i Gije; Xj = Pyx — Pxxfo, so squaring it results in a term that is quadratic in Bg. With
Vin = Co+ C1 80 + (282 quadratic in Sy, where Cp, C1, Cs are coefficients derived in Appendix D,
the analysis for the shape of the confidence intervals is similar to the AR procedure for just-identified

IV (e.g., Lee et al. (2022)). Coefficients can be calculated in a manner similar to L30O.

Lemma 2. The test does not reject when (P)Q(X - qu) ﬁgf(QPYXPXX + qCh) Bo+ (P§2,X - qu) <
0. Let D := (2PyxPxx +qC1)* — 4 (P} yx — qCs) (PEx —qCo). If D > 0 and P%y — qCo > 0,

then the upper and lower bounds of confidence set are:

(2Py x Pxx + qC1) £ VD
2 (P)2<X - qu)

If D <0 and P)%X — qCs < 0, then the confidence set is empty. Otherwise, the confidence set is

unbounded.

Due to +¢qC1, —qC5 in the expression of the upper and lower bounds, the confidence set is not

necessarily centered around Svp = Pyx/Pxx.

6 Numerical Illustrations

6.1 Simulations

The general model in Section 3 can be justified by several structural models. In this section, I focus
on the simple example from Section 2. There are two sets of simulations that assess the size: 1
generate data under the null and assess how close the rejection rates of various procedures are to the
nominal rate. One set of size simulations uses a large K while the other a small K. I also report one
set of simulations that assess power: I generate data under some alternative and assess the rejection
rates across procedures. There are more simulation results using several different structural models
in Appendix A.4, including settings with continuous treatment X, and with covariates.

Table 2 in Section 2 reports rejection rates under the null for a relatively large number of judges
with K = 400, each with a small number of cases at ¢ = 5. L3O performs well across various
designs, while existing procedures can substantially over-reject in at least one design. The LMorc

column is included as an infeasible theoretical benchmark that uses an oracle variance: this should
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Table 3: Rejection rates under the null for nominal size 0.05 test

TSLS EK MS MO JIVEC ARC L3O LMorc

Cg = .5¢,Cs = .5¢ 0.325 0.050 1.000 0.318 0.324 0.323 0.056  0.051
Chg = .5¢,Cs =2 0.575 0.012 1.000 0.820 0.277 0.833 0.040  0.047
Chg =.5¢,Cs =0 0.501 0.005 1.000 0.856 0.335 0.881 0.061  0.050

Ch =2,Cs = .5c 0.082 0.057 0.604 0.081 0.073 0.082 0.065  0.060
Cop=2Cs=2 0.485 0.013 0.625 0.348 0.326 0.466 0.109  0.046

Cp=2Cs=0 0.461 0.011 0.624 0.341 0.349 0.497 0.107  0.047
Chg =0,Cs = .5c 0.064 0.045 0.043 0.044 0.046 0.051 0.055 0.043
Cg=0,Cs=2 0.437 0.102 0.048 0.040 0.296 0.134 0.066  0.042
Cg=0,Csg=0 0.590 0.181 0.049 0.029 0.431 0.163 0.059  0.045

Notes: K = 4,c = 200, and designs are otherwise identical to Table 2.

have nominal size when normality holds because the variance is not estimated. The difference
between LMorc and L3O is attributed to the variance estimation procedure.

Table 3 reports rejection rates under the null for a small number of judges with K = 4 and a
large number of cases at ¢ = 200. Based on the theory in Section 3, .30 should be valid when
the instrument is strong, i.e., in the cases with C's = .5¢, which is what we observe. Notably, even
when Cs = 2 or Cg = 0, the over-rejection for L3O is not too severe. EK performs very well in the
cases with C's = .5¢ as expected in their theory. In contrast, MS and MO can over-reject severely
with strong instruments.

Table 4 reports rejection rates under the alternative. When C's = 0, the instrument should be
completely uninformative about the true parameter, so we should have 0.05 rejection rate for a
valid test, which is what we observe for L30. When Cg = 2v/K, all procedures, including L30, are
very informative. Looking at the case with C'y = 0, Cs = 2, L3O is less powerful than MO in small
samples, but we should expect both procedures to converge to the same variance in larger samples.
L3O is a lot less powerful than MS for C'y = 0, Cg = 2, suggesting that this data-generating process

favors MS with constant treatment effects.

6.2 Empirical Application

Angrist and Krueger (1991) were interested in the effect of education (X) on wages (Y). They
instrument for education using the quarter of birth (QOB) and report several specifications that
interact QOB with covariates such as the state of birth. Motivated by the recent econometrics
literature that argue for full saturation, I implement UJIVE with full interaction (with 1530 instru-
ments), and construct a confidence interval (CI) using the L3O procedure proposed in this paper.
I report the CI in Table 5 with the CI reported in several existing papers. The UJIVE is 0.1027
(vs 0.0831 in Table VII(6) of Angrist and Krueger (1991)). With a CI of [0.022, 0.210], the result

remains statistically significant, albeit wider than Angrist and Krueger (1991), but is comparable
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Table 4: Rejection rates under the alternative for nominal size 0.05 test

TSLS EK MS MO JIVEC ARC L30 LMorc
Cyp=2VK,Cs=2VK 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000

Cy=2VK,Cs =2 0.449 0.100 1.000 0.463  0.044 0.452 0.179 0.153
Cyp=2VK,Cg=0 0.825 0.028 1.000 0.305  0.063 0.298 0.050  0.043
Cy=3.Cs=3VK 1.000 1.000 1.000 1.000  1.000 1.000 1.000  1.000
Cyp=3Cs=3 0.322 0.491 1.000 0.881  0.150 0.889 0.737  0.752
Cnp=3,Cs=0 1.000 0.080 1.000 0.138  0.196 0.177 0.052  0.057
Cyg=0,Cs=2VK 1.000 1.000 1.000 1.000  1.000 1.000 1.000  1.000
Cyg=0,Cg=2 0.881 0.400 0.978 0.776  0.075 0.812 0.692  0.752
Cyp=0Cs=0 1.000 0.366 0.046 0.049  0.322 0.092 0.061  0.049

Notes: K = 100,58 = 0.1,¢c =5, and designs are otherwise identical to Table 2.

Table 5: Returns to education with 1530 instruments

Method Confidence Interval
Angrist and Krueger (1991) [0.064,0.102]
Matsushita and Otsu (2022) [0.025,0.123]
Mikusheva and Sun (2022) [-0.047,0.202]
This paper [0.022,0.210]

to MS22. MO22 argue that their procedure has more power than MS22 for local alternatives, but

in light of my results, this advantage is lost when there is heterogeneity.

7 Conclusion

This paper has documented how both weak instruments and heterogeneity can interact to invalidate
existing procedures in the many instruments environment. To address both problems simultane-
ously, this paper contributes a feasible method for valid inference. The procedure is shown to be
valid as the limiting distribution of commonly-used statistics, including the LM statistic, in an
environment with many weak instruments and heterogeneity, is normal, and a leave-three-out vari-
ance estimator is consistent for obtaining the variance of the LM statistic. Further, the associated
confidence set can be derived in closed form. Beyond its validity, the LM test is also optimal as
it is the uniformly most powerful unbiased test in the asymptotic distribution for the interior of
the alternative space. In light of the broader econometrics literature on the value of saturated
regressions and how many instruments can arise from it, this paper presents a highly applicable,

robust, and powerful inference procedure for IV.
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A Additional Details

A.1 Supplementary Material

Assumption 3 states high-level conditions for consistency of the variance estimator. To ease notation, let
R,; stand for either Ra; or R;. Denote R; := Zj# GijR; and Rp; = Zj# GijRaj. Let hy (i,7,k,1) be a
product of any number of G;,;,,91 # i2, Mhh,jl # j2, and Ry, with i1,i2, 51, j2, k1 € {i,J,k,1} such that
every index in {i,j,k,1} occurs at least once as an index of either Gj,;, or M;, ;,. For instance, hy(i, j, k, )
could be G13M1k7—lel]7—1]k Define hs (i,7,k) and ho (4,7) in a similar manner. Let Zz# Do Zj;ﬁi SO
that those without the n superscript are still sums of individual indices, but those with an n superscript
involves the sum over multiple indices. Objects like > itk and Y LAkt A€ defined in a similar manner.
When I refer to the p-sum, I refer to the sum over p non-overlapping indices. For instance, a 3-sum is
> i1 Let F stand for either G or G'. 1{-} is an indicator function that takes the value 1 if the argument
is true and 0 otherwise. I {-} is a function that takes value 1 if the argument is true and -1 if false.

Assumption 3. For some C < oo,

2 2
(a) E G” <, Z Gﬂ <cC Z j#k (Zi#j,k GijFik) < Zj;ék G?k’Zj;ﬁk (Zi;ﬁj,k Gjini) < Zj;ﬁk G?k’and
|Roi| < C.

(b) Z?;éj;ék (Zl;éi,j,k hy (iaj’ k, l) le) < CZ Rmﬂ Z;ﬁj (Zk;éi,j Zlyﬁi,j,k hy (iajv k, l) le) < CZ Rmu
and ), (Zj;ﬁiZk;ﬁi,j Dii g ha (4,5, k,0) le) <CY,R%,

2 - 2 -
(€) sy (i P (055 K) Rt ) < €5, B2 and 5, (00 Sy B (i ) o) < O X2, B2,
2 ~
(@) 3 (Syiha (i) Bng) < OS5, B2,

The first condition requires the row and column sums of the squares of the G elements to be bounded.
Assumption 1(e) is insufficient because it does not rule out having G;; = K for some i and 0 elsewhere in the
G matrix. These remaining conditions can be interpreted as (approximate) sparsity conditions on M and G
as the p-sum of entries of M and G cannot be too large. Note that other elements of the covariance matrix
can be analogously shown to be consistent using the same strategy by using the lemmas from Appendix B
by using Ry, in place of Ra; where required.

The judges example in Section 2 satisfies this assumption when there are no covariates and G = P and R

2
values are bounded. For condition (a), >_; Pfj = P;; < C and, since P is idempotent, Z;ék (Z#Lk P Pik> =
n 2 n 2 n 2
Y5k (4 Pij Pk = Py Pjk = PurPjr)™ = 325 (Pjk = PjgPj = PurPir)™ = 2 (1= Pjj = Pu)” Pjj, <
Z? 2k Pfk. For any M;; and G,;, these elements are nonzero only when ¢ and j share the same judge p.

Further, R;; = Tpp(i), Where my,, can denote myor ma, in the model. Due to how the h functions are
defined, when every judge has at most ¢ cases,

2 2 2
SUD o ha@i) R | =D Y. b2 ) Ry | =D D | D h2(i,5) mmp
i \J# i \JeN o \{i} PN, \JEN,\{i}
2
=S D (i) mmp | 7, <CD Y (c—1)°72, 7CZR
p €N, \jEN,\{i} p iEN,

The same argument applies for the other components. For instance, in other extreme case,

2

SO 3D DD SPAETVIN IS Si°HD S UD SRS SRNED SR NP AN

i\ G ki 1k ) €N \GEN\{i} KEN,\{i,j} LEN,\{i.5,k}
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<CY N wk,(e—1)*(c—2)°( <CZR

p €N,

The Matsushita and Otsu (2022) variance estimator presented in Equation (4) is biased in general. In
particular, it can be shown that the model of Section 3.1 implies:

{\IIMO} ZMZ%R?R&‘FZMER? AR E[nj] +Y ) PiRAE

iogFE i g

+Y > P2 (RiRaiR;Raj + E [nivi] RiRaj + RiRaiE [njv;] + E [nivi] E [nv5]) -
i ji

(14)

If the Ra’s are zero, then W0 is unbiased, by comparing the expression E [‘i’Mo] with Equation (8).

Heterogeneity results in many excess terms in the expectation of the variance estimator, generating bias
and inconsistency in general. However, W);o can be consistent when forcing weak identification and
weak heterogeneity. If it is assumed that \%Z-MiiRZ — Cs < oo and %ZM”RQAZ — C < ©
with weak identification and weak heterogeneity, then the excess terms in ? [\I/ Mo] can be written as
\/7\/7? >, MR = WO( ) =o(1 ) and ——Z M;;R%,; = o(1). However, when identification or het-

erogeneity is strong, % Do M;;R? or i Zz M“R A; is nonnegligible and the variance estimator is inconsistent.
The variance estimator adapted from MS22 has similar properties. In contrast, the L3O variance estimator
is robust regardless of whether the identification is weak or strong.

A.2 Details for Section 2
Lemma 3. Consider the model of Section 2. Suppose h # 0 and Ks* > 0. Then, E[T..] # 0 for all real 3.

Data Generating Process. Data is generated from an environment with Ele;] = 0, and fo v)dv =
B. To run a regression on judge indicators (without an intercept) in the reduced-form system, I make a
transformation X = 2X — 1 so that the reduced-form equations can be written as:

Xi=Zm+n;, and Y; = Zmy + (;,

so my = 7wy = 0 for the base judge. The reduced-form errors are: 17, = [ {)\k(z —v; > 0} — () and

G=1 {/\k(z —v; > O} f(vi)+e; Y k(i) respectively. With mar = my — 73, the reduced-form parameters
for the groups of judges are derlved in Table 6. The f(v) that delivers the parameters in Table 6 is

—sB+h UG[O,%—S]
1(1=s)(—3sB—nh)—L1(1—-2s)(-sB+h) ve(L—s1—1is]
L0 (b +1) vel-foy

FO) =911 45 (15— n) ved i+l - (15)
L(1+2s)(sBp+h)—L2(1+s) (38— h) vE (3435144
B(ti)isﬁ+h) ve (d+s,1]

2

To generate the data in the simulation, I draw v; ~ UJ0, 1] as implied by the structural model, then
generate (; | v; ~ N(0zyv;,0cc). Hence, 0., and o.. control the correlation between n; and (;, with o.. =0
corresponding to perfect correlation. In the base case, I set .. = 0.1 and o, = 0.3. With the given 7y, Ty,
the observable variables are generated from X; = I {7y > vi} and Y = Ty + G-

Derivations for Constructed Instrument Using the notation for the just-identified IV AR test in
Section 2.4,

éi = €; —XlZZeZ:Xl = elszlQ — )glzlele, and
> X7 > X7
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Table 6: Parameters for Simple Example

N 3-s b4 b 3t s

h h h h
Br B—5% p+2% NA [-2% t5
Tk —S —%s %s S
Ty —sB+h —isB—h 0 L1sB—h sB+h
TAE h —h 0 —h h

oo X X2¢2 _ > X7 (eiZij—XiZjerj)Q
(. %2)° (z.x2)
R et (szE) +30, XA (z ]Xj) — 2%, X3e, (zjfc;) (zjejfcj)
_ = ng .

Applying the asymptotic result that % Ej ejf(j 2, 0 from Theorem 1,

(Zij(ieif

2o (= %)

AT T REe (S, R RS, e K,) 2 8 K (5, X3) (2 00 K0)
(= x2)"

(2 %e) (35 22)
ST R (R, %5) H AR (R 0%) —2h Bkt (5, 5) (£ 5,0 %)
(2 %er) (35.82)° (S )
_|_

= = +op(1), and
1 2.2
op(1) Py Zi Xie;

ZXZ@?]—ZE S Py (Rj+n) | (Rai+1) ZE MER? + [ > Pt | | (RA; +v7)

i J#i J#i

:Z MZR?R3; + ;PQR 2| + MR}E g E [n?]
7 JF JF

A.3 Details for Section 4
A.3.1 Existence of Structural Model

This section presents a structural model, then argues that any reduced-form model in the form of Equa-
tion (13) can be justified by this structural model.

Example 1. Consider a linear potential outcomes model with an instrument Z that is a vector of indicators
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for judges, each with ¢ = 5 cases, a continuous endogenous variable X, and outcome Y:

Xi(2) = 2'm+ v, Yi(x) =2 (B+ &) + i, and

€ 0 Oce 0Oct Ocv (16)
fi | k(l) =k~N 0 , . 0’55 Uﬁvk
Vi 0 . : Oy

Due to the judge design, X; = m,;)+v;, where k(i) is the judge that observation i is assigned to. The strength

of the instrument is Cs = f >, (c—1)72. The 7’s are constructed as such: with s = /Cs/VK/(c— 1),

set m = 0 for the base judge, mp = —s for half the judges and 7, = s for the other half. The heterogeneity
covariances og¢,p, are constructed so that Y, mp = 0,>°, 0¢or = 0, and Y, mroeor, = 0. With Cy charac-

terizing the heterogeneity in the model, and h = 1/Cy /v K /(c — 1), set oevi = 0 of the base judge; among
judges with 7, = s, half of them have o¢,;; = h and the other half o¢,;;, = —h. The same construction of
O¢vr, applies for judges with m, = —s.

In this model, the individual treatment effect is 5; = 5+ &;. We can interpret v; as the noise associated
with the first-stage regression, ¢; as the noise in the intercept of the outcome equation, and &; as the
individual-level treatment effect heterogeneity. Further, og,; characterizes the extent of treatment effect
heterogeneity. The observed outcome in a model with constant treatment effects is Y;(X;) = X;5 + &;, with
E[¢;]=0. When o¢,;, = 0, regardless of the values of o.¢, 0¢e, the observed outcome of Equation (16) can
be written as Y;(X;) = X;8 + &; where E[&;] = E[X;& + ;] = E[X;E[& | Xi]] = 0, which resembles the
constant treatment effect case.

Lemma 4. Consider the model of Example 1. If VKs? — Cg < 0o and VKh? — Cyy < o0, then

4 032 2 o 02 o3

o1l = — (0'22— 23 ) +o(1), o9 =22 (022 ) +o(1), o013 =22 +0(1),
033 2033 033 2033 033
c—1

022 = c (Um) (Uss =+ UUU/BQ + OypOge + 206@/6) + (UUU/B =+ 0'51))2) + 0(1)7

-1 -1
033 = 246 c 012;1) + 0(1), 023 = 240 c Ovv (O—qwﬂ + Crsv) + 0(1)’ CL’I’Ld

H1 VK (c—1) (s*8% + h?) CsB%+ Cy
e | = VK (c—1)s*B =(c—-1) Csp
13 VK (c—1)s? Cs

Proposition 4. In the model of Example 1 with VKs?> — Cs < oo and VKh? = Cg < oo, for any
093, 023, 033 such that o9o,033 > 0, 033 < 099033 and p such that py, us >0, u% < pips, the following values
of structural parameters:

éS:/JS/<C_1>7 B = pa/ps, \/ 1-”2)

Kc—1 3
2
Oce Ogg Oew vy C— 1 022 B Tm) + ﬁ 0 Oev
Ysp=| . O Oen | = . hoogp |
. Oyv

o f_ossc o L [ owc
v 2(c—1)’ o \2(c—1) )7

satisfy the equations in Lemma 4, and det (Xgr) /h — Cp > 0.

Due to Proposition 4, since the principal submatrices of X gr are positive semidefinite asymptotically,
Y gr is a symmetric positive semidefinite matrix. The proposition thus implies that when the ¢’s and p satisfy
the conditions, there exists structural parameters that can generate the given p and 3 asymptotically. Hence,
there are no further restrictions on p from the observed ¥ in the simple normal model.
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A.3.2 Numerical Results for Power

Beyond the theoretical optimality results of Section 4, this section presents numerical results for power in
environments not covered by the theory. I first consider one-sided tests beyond the set S covered by the
theory, then weighted average power for two-sided tests rather than the class of unbiased tests.

The power envelope is achieved by a test that is valid across the entire composite null space, and is most
powerful for testing against a particular point in the alternative space. To obtain this test, I implement the
algorithm from Elliott et al. (2015) (EMW) where all weight on the alternative are placed on a single point
while being valid across a composite null. Then, testing against every point in the alternative space requires
a different critical value. For the numerical exercises in this subsection, I use a ¥ matrix of the form:

2 2p 2p?
L= - 1+p2 2p |, (17)
. . 2

which corresponds to the Y matrix in Proposition 1 with wee = wyy = 1, wey = p.

In the numerical exercises, I display the rejection rate across 500 independent draws from X* ~ N(u, X)
at each point on the po axis, across several puq, pu3 values for a 5% test. The composite null uses a grid of
p1 € [0,5], us € [0,5] in 0.5 increments, and assumes the variance is known.

Figure 2 uses a one-sided LM test, with a large covariance at p = 0.9. When data is generated from
the null, since LM and EMW are valid tests, their rejection rate is at most 0.05. EMW has exact size when
testing a weighted average of values in the null space and is valid across the entire space, so when data is
generated from one particular point in the null, EMW can be conservative. Consistent with Proposition 2,
when po is small enough for 1 = 1, u3 = 4, LM achieves the power envelope, but as ps gets larger, the gap
widens substantially. This phenomenon occurs because EMW still uses the same null grid, but now it no
longer needs to have correct size for testing against the point (uft — g—;;pé, 0, u? - %ué), as that point is
no longer in the null space.

In Figure 3, ¥ is calibrated by using the ¥ matrix calculated from the Angrist and Krueger (1991)
application, so after appropriate normalizations, p = 0.34. With such a low covariance, LM is basically
indistinguishable from the EMW bound. Hence, even though there are gains to be made theoretically, in
the empirical application considered, the gains are small.

Instead of considering a point alternative, we may be more interested in testing against a composite
alternative. Here, the alternative grid for EMW places equal weight on alternatives (ui', u3', u4') € [0, 5] x
[—2,2] x [0,5] in increments of 0.5 (excluding ps = 0) subject to the inequality constraints. Figures 4 and 5
present one such possibility by allowing EMW to place equal weight on several points within the alternative
space. The resulting test is the nearly optimal test for a weighted average of values the null space against the
uniformly weighted average of alternative values. Hence, there is no guarantee that its power is necessarily
higher than the LM test at every point in the alternative space. While there are weighted-average power
curves that substantially outperform LM, they are compatible with Proposition 3. EMW as constructed is a
biased test as there are points in the alternative space that are not a part of the grid where LM outperforms
EMW. Nonetheless, Figure 5 suggests that, when using the empirical covariance, LM does not perform
substantially worse than EMW.

A.4 Further Simulation Results

This section reports simulation results from several structural models to assess how well various procedures
control for size. Since the nominal size is 0.05, and data is generated under the null, the target rejection
rate is 0.05. Across the board, the L30 method performs well, and for all existing procedures, there exists
at least one design where they perform badly. Comments for the procedures are in Table 2.

A.4.1 Continuous Treatment

This section reports results for a simulation based on Example 1 that has a continuous X. Table 7 reports
results with K = 500 and Table 8 reports results for K = 40. The L3O rejection rates are close to the
nominal rate than the existing procedures in the literature, albeit worse in with a smaller K. MS has high
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Figure 2: One-sided test with p = 0.9
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Figure 3: One-sided test with p = (0.34
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Figure 4: UW with p =0.9
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Table 7: Rejection rates under the null for nominal size 0.05 test for continuous X

TSLS EK MS MO JIVEC ARC L3O LMorc

Cyp=Cs=3VK,o.,=0 0.061 0.017 1.000 0.079 0.079 0.078 0.042  0.044
Cy=2VK,Cg =2VK 0.952 0.022 1.000 0.082  0.087 0.084 0.058  0.055

Cy =2VK,Cs =2 1.000 0.009 1.000 0.125 0.076 0.127 0.053  0.050
Cy =2VK,Cs=0 1.000 0.006 1.000 0.128 0.061 0.127 0.089  0.052
Cy =3,Cs =3VK 0.986 0.033 0.109 0.060 0.062 0.064 0.056  0.047
Cg=3,Cs=3 1.000 0.036 0.168 0.065 0.078 0.087 0.055  0.047
Crp=3,Cs=0 1.000 0.048 0.184 0.066 0.106 0.088 0.053  0.057
Cy =0,Cs =2VK 1.000 0.089 0.049 0.068 0.083 0.080 0.061  0.058
Cg=0,Cs=2 1.000 0.207 0.045 0.076 0.243 0.135 0.057  0.045
Crp=0,Cs=0 1.000 0.337 0.051 0.062 0.413 0.127 0.045  0.048
Cp=5=0,0,=1 1.000 1.000 0.044 0.061 1.000 0.157 0.052  0.044

Notes: Data generating process corresponds to Example 1. Unless mentioned otherwise, simulations use
K =500,c=5,=0,0cc =0y = 1,006 =0,= 02 = 0.8,0¢¢ = 1+h for h? < 1 with 1000 simulations. The
table displays rejection rates of various procedures (in columns) for various designs (in rows). Cy = 0 uses
& = 0 for all 4, which uses o¢¢ = 0.¢ = 0¢, = 0, corresponding to constant treatment effects. Procedures
are described in Table 2.

rejection rates with strong heterogeneity and EK has high rejection rates with weak instruments. Notably,
with perfect correlation and an irrelevant instrument, EK can achieve 100% rejection in the simulation with
K = 500. The procedures that use the LM statistic are MO, ARC, L.30 and LMorc; they differ only in their
variance estimation. Hence, while ARC and MO over-reject, the extent of over-rejection is smaller than MS
and EK in the adversarial cases.

A.4.2 Binary Treatment

This subsection presents a structural model with a binary X. Data is generated from a judge model with
J = K + 1 judges, each with ¢ = 5 cases, and cases are indexed by 7. The structural model is:

Yi(z) = x(B + &) + &, and
Xi(z) =I{Z'7m—v; >0}.

Our unobservables are generated as follows. Draw v; ~ U[—1, 1], then generate residuals from:

)

| N (Usvu Use) Zf (% Z 0
Ei | Uy ~~ .
N (—=0.0,0c¢) if v; <0

w.p. w.p. 1-—
gilv>0=1{ 7 PP and glu<o=4 7 b P
—O¢ok w.p. 1—p —O¢uk w.p. P

The process for determining s, h and m, € {0, —s, s}, oepr € {0, —h, h} are identical to Example 1, as s
controls the strength of the instrument, h the extent of heterogeneity, and g is the object of interest. Then,
the problem’s variances and covariances are determined by (p, o<y, 0cc). The JIVE estimand is shown to be
in Appendix E. A simulation is run with K = 100, so the sample size is smaller than the normal experiment
in Example 1.

Results are presented in Table 9, and are qualitatively similar to Section 2. The oracle test consistently
obtains rejection rates close to the nominal 5% rate across all designs, in accordance with the normality
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Table 8: Rejection Rates under the null for nominal size 0.05 test for Continuous X with K = 40

TSLS EK MS MO JIVEC ARC L3O LMorc

Cyp=Cs=3VK,0., =0 0.072 0.022 0525 0.061 0.074 0.068 0.039  0.055
Cy=2VK,Cg = 2VK 0.238 0.034 0.388 0.066  0.074 0.077 0.055  0.062

Cy =2VK,Cs =2 0.547 0.033 0.475 0.111 0.096 0.133 0.077  0.053
Cy=2VK,S=0 0.651 0.013 0.511 0.094 0.088 0.102 0.068  0.054
Cy=3,C5 =3VK 0.213 0.025 0.109 0.057 0.057 0.063 0.055  0.046
Cp=3,Cs=3 0.658 0.032 0.129 0.051 0.074 0.063 0.064  0.055
Crg=3,Cs=0 0.849 0.049 0.127 0.078 0.109 0.103 0.087  0.057
Cyg =0,Cs =2VK 0.853 0.105 0.049 0.070 0.068 0.098 0.085  0.056
Cg=0,Cs =2 0.999 0.152 0.048 0.062 0.201 0.132 0.098  0.037
Cr=0,Cs=0 1.000 0.342 0.052 0.067 0.439 0.143 0.080  0.049
Cp=Cs=0,0.,=1 1.000 1.000 0.045 0.062 1.000 0.179 0.082  0.045

Note: Designs are identical to Table 7, but K = 40 here.

Table 9: Rejection Rates under the null for nominal size 0.05 test for binary X

TSLS EK MS MO JIVEC ARC L3O LMorc

Cy=0Cs=3VK,0.,=0 0.046 0.049 0.059 0.045 0.045 0.045 0.049 0.054
Cy =2VK,Cs =2VK 0.097 0.047 0.177 0.038 0.038 0.041 0.051  0.052

Cy =2VK,Cg =2 0.727 0.059 1.000 0.140 0.051 0.143 0.058  0.051
Cy =2VK,Cs =0 0.891 0.037 1.000 0.237 0.067 0.247 0.059  0.045
Cy =3,Cs =3VK 0.092 0.060 0.051 0.056 0.057 0.056 0.055  0.047
Cg=3,Cs=3 0.996 0.089 0.888 0.074 0.086 0.096 0.055  0.048
Cr=3,Cs=0 1.000 0.124 0.999 0.128 0.289 0.181 0.068  0.052
Cy=0,Cs=2VK 0.408 0.058 0.055 0.043 0.046 0.046 0.045 0.041
Crp=0,Cs=2 1.000 0.212 0.052 0.076 0.188 0.108 0.078  0.057
Crg=0,Cs=0 1.000 0.654 0.046 0.057 0.750 0.149 0.069  0.039
Cp=Cs=0,0..=0 1.000 1.000 0.053 0.069 1.000 0.173 0.076  0.053

Note: The data generating process corresponds to Appendix A.4.2. Unless stated otherwise, designs use
K =100,¢c=5,8=0,p="7/8, 0.c =0.1,0., = 0.5 with 1000 simulations.
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Table 10: Rejection Rates under the null for nominal size 0.05 test for binary X with covariates

TSLS EK MS MO JIVEC ARC L3O LMorc

Cyp=Cs=3VK,0.,=0 0.048 0.123 0.049 0.052  0.047 0.055 0.054  0.060
Cy=2VK,Cg =2VK 0.072 0.111 0.052 0.044  0.041 0.046 0.050  0.053

Cy=2VK,Cs=2 0.171 0.016 0.471 0.088 0.012 0.092 0.060 0.050
Cy =2VK,Cs=0 0.259 0.002 0.960 0.133 0.008 0.135 0.047  0.058
Cy =3,Cs =3VK 0.065 0.132 0.048 0.053 0.056 0.054 0.060  0.049
Cg=3,Cs=3 0.131 0.015 0.108 0.040 0.003 0.042 0.044  0.050
Crp=3,Cs=0 0.247 0.003 0.300 0.086 0.004 0.091 0.062  0.053
Cy =0,Cs =2VK 0.084 0.099 0.054 0.042 0.036 0.043 0.048  0.050
Cg=0,Cs=2 0.178 0.006 0.058 0.042 0.002 0.044 0.052  0.051
Crp=0,Cs=0 0.246 0.006 0.048 0.063 0.005 0.069 0.081  0.050
Cp=Cs=0,0..=0 1.000 0.497 0.042 0.015 0.147 0.049 0.092  0.035

Note: The data generating process corresponds to Appendix A.4.3. Unless stated otherwise, designs use
K=48,c=5,=0,p=7/8, 0. =0.5,0., = 0.1, and g = 0.1 with 1000 simulations.

result, even with heterogeneous treatment effects and non-normality of errors due to the binary setup. The
L3O rejection rate is close to the nominal rate even with a smaller sample size. EK, MS and MO continue
to have high rejection rates in the adversarial designs.

A.4.3 Incorporating Covariates

This section presents a data-generating process that involves covariates. Instead of judges, consider a model
where there are K states. Let t = 1,--- , K index the state and let W denote the control vector that is
an indicator for states. With a binary exogenous variable (say an indicator for birth being in the fourth
quarter) B € {0,1}, the value of the instrument is given by & = ¢ X B. Then, the instrument vector Z is an
indicator for all possible values of k. The structural model is:

Yi(z) =z(B+ &) +w'y+¢&;, and
Xi(2) = [{z/n +w'y — v, > 0}.

In the simulation, every state has 10 observations, of which 5 have B = 1 and the other 5 have B = 0.
The process for generating (v;, €;,&;), Tk, O¢vk, and s, h is identical to the binary case. Hence, mg = o¢yo for
the base group, which constitutes half the observations. For k # 0, 7, is the coefficient for observations from
state ¢ = k and have B = 1, and o¢,y, is the corresponding heterogeneity term. Whenever m; = s, set v = g;
whenever m; = —s, set 7 = —g. In this setup, it can be shown that the UJIVE estimand is 3, and the proof

is in Appendix E. Table 10 reports the associated simulation results, which are qualitatively similar to the
results described before.

B Proofs for Section 3

B.1 Proofs for Section 3.1
First, I prove a quadratic CLT. Let

T = Z s;vl + Z Z Gij'U;Avjv

i jF#i
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where v; is a finite-dimensional random vector independent over ¢ = 1,...,n with bounded 4th moments, s;
is a nonstochastic vector that weights the v;’s, and A is a conformable matrix. Let 1{-} denote a function
that takes value 1 if the argument is true and 0 if false.

Lemma 5. Suppose:
1. Var (T)_l/2 is bounded;
2. 5. s —0; and

3. |GLG||r+||GuGY||F — 0, where G, is a lower-triangular matriz with elements Gr, ;5 = Gi;1{i > j}
and Guis an upper-triangular matriz with elements Gy,;; = Gi;1{i < j}.

Then, Var (T)"?T % N(0,1).

Proof of Lemma 5. 1 rewrite the quadratic term to produce a martingale difference array:

Z Z GijngUj = Z Z Gij'UZ/'A'Uj + Z Z Gijvz’-Avj

i gt i j<i i j>i
= Z Z (Gij’UZ/-AUj + Gjiv;Avi) .
i j<i

Hence, >, s;vi + 32, >4, GijviAvy = 37, yi, where

Y, = S;Ui + Z (Gijng'Uj + Gji'U;-A’UZ') = 821)1' + 'U;A Z Gijvj + Z Gji’l); A’Ui
J<i Jj<i Jj<i
= siv; + vl A (GLU); + (Gyv),. Av;.
Let F; denote the filtration of y1,...,y;—1. To apply the martingale CLT, we require:
1. >, F [|yi|2+e] — 0.
2. Conditional variance converges to 1, i.e., P (|3, E [B?y? | F;] — 1| > n) — 0, where B = Var (T)~/2.

The 4th moments of v; are bounded. With € = 2, we want ), F/ [yf] — 0. Using Loeve’s ¢, inequality, it
suffices that, for any element [ of the v; vector,

ZsflE [v?l] — 0, and ZE[ (Grv) ll] — 0.

The first condition is immediate from condition (2). The second condition holds by condition (3) using
the proof in EK18. To be precise,

ZE[ (Grv); ] ZE d {GLU ] ZE[GLQ)N}
—ZZGm vl #3320 > GLiGLuE [vi] B [v]]

i j k#j

= ZZZGL G Gr = (GLGL)S:

%

SZZ (GLGL),, = [|GLG I}
i

The argument for Gy is analogous. Now, I turn to showing convergence of the conditional variance.
yi = siv;+vlA(Grv);. +(Gpv), Av;. With abuse of notation, W; = siv; and X; = v/ A (Gpv);. +v/A (Gyv); .
Since Var (BT) = B>}, E [W?| + B*Y, E [X}] =1,

DEBY | F]-1=B") (B[XT| F] - B[X{])42B° Y BEW:X; | Fl+B* Y (B [W? | Fi] - E[W7]),

% % 9
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The previous observations in the filtration do not feature, so E [W? | F;] — E [W2] = 0. It suffices to
show that the RHS converges to 0. For the ), F'[W;X; | F;] term,

B2Y B(WiX: | F)= B?ZE[ (V1A (GLo);, + A (Gpo), ) | F

= B2 B [WiwjA] (Grv), + B> E Wi Al (Gpo);..

It suffices to show that the respective squares converge to 0. Due to bounded fourth moments, and
applying the Cauchy-Schwarz inequality repeatedly, for some n-vector 4, with ||d,]]2 < C,

2
(ZEWU (Grv); ) 2 0,GLGLOy < [|0u|3IGLGLI2 2 [IGLGLIF,

and the same argument can be applied to the Gy term. For the other term,
2 2 / / / / / 2 / / / / / 2
SB[ F]-EB[x2]) =Y (B (vA(G), + A Gyo),) | Fi| = B| (A GLo) + A Gp) ) |

It suffices to consider the G, term, as the Gy and cross terms are analogous:

> (B [(0A(GLo),)” | F] = B[ (1A(GLo))°])
= Z ((Grv);, AE o] A (Grv); — E [(Gpv), A'viv;A (Grv); e

Since 3, (Grv), A'E [vv}] A(Grv), is demeaned, it suffices to show that its variance converges to 0.
Due to bounded moments,

Var (Z (Grv), AE[viv]] A(Gro), ) < Z Z (GLGY)? = [|GLG, 1%,
which suffices for the result. O
Proof of Theorem 1. Write the JIVE in terms of reduced-form objects:
Byvm = 205 20521 G YiXs 2052052 G (Byi + Gi) (By + 1))
2o GuXaXy 320205 G (R +mi) (R + ny)
_ i 2y G Byily + 37 2051 Gy (G + Ryamj + Gimy)
Y2 GuRiRy + 32,50 Gig (Rinj + Rymi + min;)
Use 5™ =32, >, GijRiR; to denote the object that is not normalized. Then,
Brivm — Borvs = 2o 2y Gig Byl + 32005, G (GRj + Ryany + Ging) 203 2252 Gij Ry R;
D02z GijRiRy + 37,3754 Gig (Rinj + Rym + minj) > 2jzi GijRiR;
i 2aji Gig \Gidty Yillj inj)) — i 2aj#i Gig il G T 175
D00 2i Gij (GRj + Ryinj +Gmy) ) — B 205 2020 Gig (Ramy + Rymi + min;)
B S* 322 G (Rimj + Rymi + minj) '
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Substitute ¢; = v; + A1; and Ry; = Ra; — Rif8 into the B7ve — Bsrve expression to obtain:

(Zi > i Gij (Rain; + viRj + Vi??j))
S* + 373052 Gig (Rimj + Rymi +mim)

Birve — Biive =

Then, divide by vV K to obtain the expression as stated. To see the equivalence with the T objects,
1 1
7[{ Z Z Gijein = 7? Z Z Gij (ViRj + vinj + RAZ'R]' + RAinj) )
i jFi i jFA

with

Z Z GijRAiR; = Z Z Gij (Ry; — RiPB) R;

i g i g
DD i Gij Ry R,

= GinYiRj — G”RZRJ < J =0,
zﬁ': ; 21: ; 22 GijRiR;

while T'x x is immediate.
Next, I show that the joint distribution of / TE (Tee, Tex, Tx x) is asymptotically normal and derive the

mean. Using the Cramer-Wold device, it suffices to show that ,/%(clTee + coTex + c3Txx) is normal for
fixed c’s, where

K 1
\/ a(clTee +eTex +e3sTxx) =1 T >3 Gij (viR; + vivj + RaiRaj + Raivy)
e
1 1
N Z Z Gij (ViRj +vinj + Raim;) +c3 N Z Z Gij (miRj +minj + RiR; + R;m;) .
I 12 I 2

+ co

The object T' = 4/ %(ClTee +eoTex +e3Txx) — Cl\/% >z GijRaiRaj — 03\/% doid i GijRiR;
can be written in the CLT form by setting:

. { 324 (Gij + Gji) Rj+ 23, GjiRRag ] and
Yol e (G +Gi) Raj ey GiRy |

so that

1 1
T = \/Tin XZ:S;UZ + \/77 Z Z GUU;AU]'.

i i
Bounded 4th moments hold by Assumption 1(a). To apply the CLT from Lemma 5, I verify the following:

1. Var (T)_l/2 is bounded;

2. &Y, sh — 0 for all [; and

3. ||GLG,||r+||GuGyllF — 0, where G, is a lower-triangular matrix with elements G, ;; = \/%Gijl {i > j}
and Gy is an upper-triangular matrix with elements Gy ;; = \/%Gijl {i<j}.

Condition (2) follows from Assumption 1(d) and applying the Cauchy-Schwarz inequality. Condition (3)
is immediate from Assumption 1(e). For Condition (1), I show that Assumption 1(b) and (c) imply
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1/2

that, for any nonstochastic scalars cj,ca,cs that are finite and not all 0, Var(T')~ is bounded. Since

Cov (Zl iV D i D it Gijngvj) =0,

Var (T T—Var (Z s; vl> + Var (Z ZG”v Avj) , (18)

i i jFEe

so it suffices to show that either term is bounded below. The second term is:

ar (Z Z Gijngvj) = Z Z Z Z GijGrE [v;Avjuy, Av)]

i i i ik 1£k

= ZZG% v Av; JA vZ + ZZGUGWE [v Avjv]AvJ .

i g i g
It can be shown that:

EE [n?] c2c3 B (03] + crc3 B [vym]

. I /:
AE [vjvi] A { coesE 03] + cicsE [vyn;]  GE [n?] + 2c2e1 E [vjm;] + G E [v3] } , and

AE [0;0]] A= GE [15] + cacs E ] cres B [vymy] }

{ 3B (7] + cser Elvjny] + GE [vmy] + ol B [VF] - cicoE vy + 4B [v7]

Hence, for some ¢ > 0, and p; := corr(v;, n;),

. (ZZGM@AW) S5 (@ + GG (3B 8] B 1) + 38 2] B[] + 48 4] B [14)

+£Z¢: G+ Gi;Gys J(chcgE [vini] E [vjn;] + 2c1¢2E [V2] E [vjn;] + 2c2¢3 E [nivi]) E [n3])
—ZX; Gl + GigGya) (& (1= p7) B [f] B [m] + ¢t (1= p}) E [v}] E [v]])

+i; G% + Gi;Gyi) (3p2E [0 E [n?] + SE [V E [n?] + &p3E [vP] E [v7])

#3236 +6u6) (20103p1\/E I E o [E [12] B [12] + 20162 [v2] o, E[n;}E[V;D

+Z; (G + Gi;Gji <2C2c3pi E[ng]E[VﬂE[rﬁ.D
—Zg Gl + GigGya) (& (1= p7) B [f] B [m] + ¢t (1= p5) E [v}] E[v]])

+ Z g (G3 + Gi;Gji) (pi63 \/E 2 E [n?] + 02\/15 W2 E 2] + pjeryJEVE E [V?])Q
>Zi Gl + GigGa) (3 (1= p7) B[] B [m] + ¢ (1= p5) E [v}] E [v]])
> Zg: G}, + Gi;Gji

Py

2 2
The first inequality follows from the observation that (Zl Dk GijGji) < (ZZ D i G?j) by the
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Cauchy-Schwarz inequality, so >, > ki (G?j + GijGji) > 0. The inequality in the final line first applies
Assumption 1(b). Using a similar argument,

ar (z ) Y sivar (o)1 = S S Bl + 2suasa Bl + 5B

2
= Z 1—p)*Enf]sh + (Pisil E[n?] + siz E[Vf]) > (1= pi)’Enlsh

7

?]s%,. Due to Assumption 1(c), at least one of the

A similar argument yields Var (3", sjv;) > >, (1 — p;)2E[n;
> c () L3 sk > ¢ or (iil) >, s% > c. Hence,

following must hold: (i) 7«% Do Dt (G} + Gi;Gji)
Var(T)~'/2 is bounded.

Finally, since v;,7; are mean zero, the expectations are immediate: E [To.] = >, > ki GijRa;Ra; and
ETxx] =322 GiiRiRi. O

B.2 Proofs for Section 3.2
Proof of Equation (8). Expanding the variance,

2
ZZGijein =F ZZGijein =F ZZZZGijeinleele
i i i i i Ak Ik
= Z Z Z Z GiijlE [UinVle] + Z Z Z Z GiijlE [VinRAle]
i Ak 1#k i Ak I#k
Y D3N GiGuE [Rai XXl + > Y Y 0 " GijGE [RaiX;RarX)]
i Ak 1#k i A ko Ik
The first term is:
Z Z Z Z GiijlE [VinI/le]
i ALk 12k
- Z Z Z Z GijGuE [viRjvp Ry + vinjup Ry + viRjvem + vinjven]
i Al k 12k
= Z Z Z Z GijGuE [viRjv Ry + vinjvem)
i jAi ko I#k
- ZZ Z E szszR Rk + Z Z Z GZ]GZlE [Vﬂb%m + ZGWG]ZE [Vlnjyjnl]
i j#i k#i ) l#1 l#j
+ZZ Z Gzkaz Vmngm Z szGk] Vﬂ?j”kﬁj]
i j#i \k#i,j k#i,j
=Y 3 N E[V]GyGuRiRe + Y Y (GLE [vin}] + Gi;Gji E [vinim;v;])
i j#i k#i N E)
= ZZZ E G”szR Rk + Z Z [77]} + szszE [Vﬂh] E [WjVj])
i jF#L ki i jF£u

In the next few terms, the expansion steps are analogous, so intermediate steps are omitted for brevity.
The second to fourth terms can be expressed as:

D DD GiGrE [viX;RarX)] = ZE vini] Y GijR; Y GriRak;

i j#i k l#k J#i k#i
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Z Z Z Z GiijlE [RAinl/le] = Z Z Z GjiGilE [’lﬁlli] RAle; and

i gk IEk i i L
Z Z Z Z GijGr B [RaiXjRarXi] = Z E [n?] Z Z G;iGriRajRAk-
i gk IEk i A ki

The expression stated in the lemma combines these expressions. The corollary follows from setting G = P
and observing that P is symmetric, and that since PR = I, we have Zj# PiR; = Z#i PjiR; = My R;. O

As a corollary, if G = P is a projection matrix and M = [ — P, then

Var Z Z PjeX; | = Z E [v?] MER? + Z Z P2 (E [v2] E 03] + E [nvi] E [n;v5])

Py i g (19)
+2 Z E i) MAR;Ra; + Z E [7]?] M7 RA;.

The proof of Theorem 2 is involved, so it will be split into several intermediate lemmas. First I prove
three lemmas that yield useful inequalities, then use the results. The proof strategy of these lemmas is to
bound the variances above by components that are in the h(.) form so that Assumption 3 inequalities can
be applied. These inequalities are also sufficiently general that other components of the variance matrix
in (7) can be written in the given forms, so repeated applications of these lemmas can analogously show
consistency of the associated variance estimators.

Let Vi = R + Umi where R,,,; denotes the nonstochastic component while v,,,; denotes the mean zero
stochastic component. Following Equation (6), r,, := >, R? + 3, RA, + 3, Dt G3;. Let C;, Cyj, Cijy, any
denote nonstochastic objects that are non-negative and are bounded above by C. I use h'(.) and hF(.) to
denote two different functions that satisfy the above definition for hy4.

Lemma 6. Under Assumption 3, the following hold:
(a) Z;Ly&j;&k Cijk (Zl;ﬁi,j,k hf (4, k1) le> (El;ﬁi,j,k hf (4, k1) le)‘ < sz‘ R?nw

>z Cij (Ek#m‘ i g (i,j,k,l)le) (Zk;ﬁi,j Sisign 8 (3,3, K,1) le)‘ <Oy, RE,,

and ‘Zz Ci (Zj#i Zk;éi,j Zl;éi,j,k hf (4,7,k,1) le) (Zj;éi Zk;ﬁi,j Zl#i,j,k h (i,5,k,1) le)

(b) Z?;éj Cij (Zk;ﬁi,j h? (4,5,k) Rmk) <Zk;ﬁi,j h3]>3 (4,7, k) Rmk)‘ < CZi R?rn

and ‘Zz & (Zj;ﬁi Zk;éi,j h3 (3, 4, k) Rmk) (Zj;ﬁi Zk;ﬁi,j h¥ (i, 5, k) Rmk)

(c) |22:Ci (Zj;éi h3' (i, 7) ij) (Zj;éi hg (i, ) Rm]‘)

Proof of Lemma 6. 1 begin with part (c). By applying the Cauchy-Schwarz inequality,

<CY R%,

<OY Ry

<OY R

SO | XohE (6d) Ry | | S5 (02) R

( JFi J#i
o\ 1/2 o\ 1/2
< [ DoCi | Dohs (i,5) By D Ci| Do hE (i,5) Ry
i J#i i J#i
o\ 1/2 o\ 1/2
§m?xCi Z th(i,j)Rm]’ Z th(i,j)ij
i \Jj# i \j#i

1/2 1/2
< max C; (Z Rfm> <Z R72m> <C Z R2,.
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The proof of all other parts are entirely analogous. O
Lemma 7. Under Assumption 3, the following hold:
(a) Var (Z;;j GijFZ-jVquiV;ngM) S CTn.
(b) Var (ZZ;&#/@ GijFijMik,—ijvliVQk%jVM) <Cry.

(c) Var Z;j#l GijFiijl,fivaliVéi‘/éjVM) <Crp.

(d) Var (217@7’51@7&1 Gz]sz Vlz ik,—ij V2kV3] ]l —Z]k‘V4l) < Cry.

Proof of Lemma 7. Proof of Lemma 7(a).
Using the decomposition from AS23,

Var Z Z GijFijV1iVaiV3;Va,
PRE

= Z G} F7Var (ViiVa;i Vs Vi) + Z Gi;jFijGjiFj;Cov (Vi3 Vai Vs Vaj, Vi Va;Vsi Vi)
i#] i#]

+ Z G FijGrjFijCov (ViiVai Vo Vag, Vi Var Va; Viy) + Z Gi;FijG i FjrCov (Vi3 Vai Vs Vaj, Vi Va; Vai Vak)
itk itk

+ Z GijFijGikFikCOU (Vliv2iv3jv4j;VliVQiVSkVALk)+ Z GijFiijiFkiCOU (Vliv2ivzajv4javlkv2kv3iv4i)

itk i#j#k
2
< 2 [rrilz}x\/ar (V11V21V3J‘/21J):| Z ZG”F” + ZG”F” ZGﬂFJI
’ i i i i

Notice that the terms in Y., . are absorbed into the sum over k so that the final expression can be
written as 37, >, ;> ;- Then, due to Assumption 3(a) and the Cauchy-Schwarz inequality,

2
DD GuFy | <X (DG | F ] =0 ) G

i \g#i i\ i i g
and
o\ 1/2 o\ 1/2
DD GFG | (D GuF || < | D[ D GiF; YD GF
i \i#i i#i i \i#i i \iAi
1/2 1/2
e DD G| =0y > G
i i g i g

Proof of Lemma 7(b). Expand the term:

Z G?,]Fz]Mzk —ZjvleZk‘/Bj‘/Al] Z szszMﬂc —17 (R11R2k + vhRQk + Rlzv2k + UleQk) V3]‘/4]
i#j#k Gavkaly

Consider the final sum with 4 stochastic terms. The 6-sums have zero covariances due to independent
sampling. The 5-sums also have zero covariances, because at least one of v; or vy needs to have different
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indices. Within the 4-sum, the covariance is nonzero only for js # j. We require i3 to be equal to either ¢
or k and ks the other index. Hence, by bounding covariances above by Cauchy-Schwarz,

n
Var Z GijFij Mg, —i 013021 V35 Va
i#£jFk

<maxVar (V1321 V35 Vaj) ZZ Z Z (GijFyjGuFyuMk,—ij Mg, it + Gij Fyj G Fra Mk, —ij M — 1)
i A k#m I#4,5,k

+ max Var (v1;v25 V3 Vi) 3! Z G2 F2M? ik, —ij

ijt i
ik
1/2 1/2
< max Var (v1;v21 V35 Va ) Z G M2, —ij Z F2F M3, —ij
“ i Ak i Akl
1/2 1/2
+max Var (v1v24 Va; Vi) Z GLGUM i Z SFa M i
o i j Ak i A kAL

+ mjaxVar (v15v25 V3,5 Vay) 3! Z ijFijk —ij
ik

To obtain the first inequality, observe that once we have fixed 3 indices, there are 3! permutations of
the v1,v21 V3, V4, that we can calculate covariances for. They are all bounded above by the variance. In the
various combinations, we may have different combinations of G and F', but they are bounded above by the
expression. To be precise, the 3-sum is:

Z GijFijMik,fij (GijFijMik,fij + GikFikMij,fik + GjiFjiMjk,fji)
i#£j#k

n
+ Z GijFijMik,—ij (GiuFjuMji —jk + GriFri Myj,— i + GrjFrj My, —j) -
i#j £k
Apply Cauchy-Schwarz to the sum and apply the commutative property of summations to obtain the upper

bound. For instance,

2

n
> GijFijMi ;G FjMji g | < Z G FS M,y Z G3 ik
i#j#k i#j#k i#j#k

Then, observe that ), Z];Asz;ﬁ” ij]k ﬂ k= Z Zk#Z#JkG F Mﬂ_]k
=i i Zk#JGZ]Ff]Mfk _;;- Due to AS23 Equation (22), >, M, 2 k=001 ) SO Z#HékG F2M?

g7 i ik, —1g
c> ZH&Z G?]FZQJ <03 E];ﬁz Gzzj' Similarly, Ziy&j;ék;ﬁl G2 G2 Mfk e 0O(1) Zz;ﬁﬁﬁk G3; Mzzk —ij
O(1) >0, G7;, which delivers the order required.
To deal with 3 stochastic terms,

<

n n
Var Z GijFijMig,—ijR1v21,Va;Va; | = Var sziVssz;j Z Grj Froj Myi,—1j Rk
i#j#k oy oy

< ZVar (v2;V3; Vi) Z G FrjMyi i R Z G FrjMyi 1 Rix + Z GriFiMyj,— iRk
oy oy oy oy
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n
+ max Var (v, Va; Vi) Y - > | D GujFijMyi iR | | D GraFriMpi ki Rax
" i3 1Fi \Ii kil

< ZZVM (v2iV3;Vaj) Z G Froj Myi,— 1 Rk Z Groj Froj M, —1jRug + Z GriFiMyj, iRk

T oy oy oy
2
+ max Var ('UQiVZ%jVZLj)Z Z Z GhjFrjMyi —kjRix | — max Var (Uzz'VL?,jVZ;j)ZZ Z Grj Frj Myi, 1 Rax
" i \i#i ki " i A \Fi
2

< H%E;XV?LI“ (UQng,j‘/zlj)Z Z Z G Frj Myi R,
’ i J#i k#i,g

n
+ZVar (v2; V3 Vi) Z G FrjMyi 1 Rk Z GriFyi Myj iRy,
] gy oy

To get the first inequality, observe that, if for [ # i, j, we have vq; instead of V5;Vy;, the covariance must
be 0. We can then bound the order by using Assumption 3 and Lemma 6. Similarly,

n n
Var Z GijF;j Mg, —ijv1iRai Vs;Va; | = Var ZU1¢V3jV4j Z GijF;jMig,—ijRok
i#j#k i#j k#i,j
2
< Hil%XVar (UuV?,jV4j)Z Z Z Gi;Fij My, —ijRox,
’ i \J# kL

—I—ZZVM (v1:V3; Vi) Z Gi;jFij My, i Rog Z GiFji My, —i; Roy,
i gt ki, oy

since the expansion in the intermediate steps are entirely analogous.
Turning to the sum with two stochastic objects,

Var Z GijF;jMig, —ijR1;Roi V3; Vi | = Var ZV&'VM Z Z GiFjiMjy,—i; RijRax,
itith i i ki
2 2

= ZV?H (V3iVai) Z Z GjiFjiMjy, ;R Rop | < miaxVar(VgiVM)Z Z Z G;iFjiMjy.,—ijR1j Rok
i i k] i\ kg

With these inequalities, applying Assumption 3 suffices for the result.
Proof of Lemma 7(c). Expand the term:

Z GijFij My, —ijViiVai VsV = Z GijFij M1, —ijV1iVai (Ra; Ry + Rajva + vaj R + vsjvay) -
i#£j#l i#£jF£l

With four stochastic objects,

n
Var Z GijFijMji,—iV1iVaivsjva
i#£j#£l
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n
Sgnja;ivar(vli‘/éwsﬂzu) Z Z (GijFyiMj1,—ijGiy Fiy i M, —iyj + Gij FijMj i Giyi iyt Myj 1)
w i#j AL ia 5,0

+ Hla;( Var (Vli‘/gi’l}gj’l)zu) 3! Z GZ'F?'MJ‘QI,fij'

YA
T
7 i#j#l

Simplifying the first line,

Z Z (GijFijMji,—i;Giyj Fiyi Mt —inj + GijFyi My, 5 Giyi Fiyt Myj i)

iti A is gl
1/2 1/2
n n
2 2 “r2 2 2 A2
<| > GGeM > EIFLMG
i#i At i#i At
1/2 1/2
n n
2 2 r2 2 12 A2
+| Y GHGLM Y. FRFLME iy,
i Al i#i At

These terms have the required order due to a proof analogous to Lemma 7(b). Next,

n
Var [ Y GiyFy My, _ijViiVaiRsjoa | = Var | Y0 ViiVaiugy | Y GuFyMyj—i Ry,
i3l i A oy

< ZZVM(VumeJ‘) Z GiuFuMj R Z GuFyMyj—yRs + Z Gj1Fj My, — i Ry
A E l#i,3 l#i,3 l#1,j

+ma_XVaI“(V1¢V2iv4j)ZZ Z Z GiuFuMy, iR Z G Fi My, k1 R
I i G iy \IF0d hia |
2

< Hll%XVar(VuvazLj) S0 GaFudy; R
’ i \J# L

YO Var (ViiVaiog) | Y GaFuMy—aRs | | D GjuFjMi; —ji Ry,
i j#i I#4,5 1#i,5

Further, Var (Z:.;j#l GijFiijh_ijVMVgiviju) can be bounded by a similar argument. Turning to
the sum with two stochastic objects,
2
n
Var Z GijFijMji —ijV1iVaiRaj Ry | = ZVar (V1iVa;) Z Z GijFij M _ijR3; Ry
1#£J#L i JF£I#,g

These inequalities suffice for the result due to Assumption 3.
Proof of Lemma 7(d). Expand the term:
Z GijFij Mg, —ijMj1 —ijxV1iVor, Vaj Vi
i#j#kAL

n
= Z GijFij Mg, —i; M —ijiViiRox (R3jRay + Rajva + va; Ray + vajoar)
i£ AR
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+ Z GijFij Mg, —i; M1 —ijxViivag (Raj Ry + Rajog + vsjRay + vsjvay) .
i At

Consider the vgi line first. We only have the 4-sum to contend with. For 5-sum and above, at least
one of the errors can be factored out as a zero expectation. Hence, by using Cauchy-Schwarz and the same
argument as above,

Var E Gl] k: ,—1j jl —z]k‘/lzv2kv3jv4l

i#j kAL
2 12
< IEE}CXIVM (Vijvaguz var) 4 Z G Fy Mk ﬂjM L—ijk
i £kl
1/2 1/2
n n
<oy @i <oy arac(yal (Y
i#j#k i#] i#] i
By using the same expansion step as before,
Var Z Gz] zk: 72]V12U2kv3] Z Mjl,fiijM
i#j#k I#1,5,k
n
<m]a]:;<Var Viivarvs; Z M _ijiRa Z (GijFijGigj Fiyj Mg, —ijMiyk,—ij + Gij Fij Gy Fiyie Mij it My j, —ik)
. I#4,5,k i #k i

+ mai(var Vlivgkvgj Z Mjl,fiijM 3! Z Z Z G2 FZMk i
“ 14,5,k i g ki

The 374 oksiy (GigFijGing Fiyy Mik, —ijMiyk i + Gij FijGip FipieMyj i, My, 1) term has the required
order due to the same argument as the proof of Lemma 7(b). Next,

n
Var E GijFij Mk, —i; M1 —ijViivar Rajoq | = Var E V1ivagva; E GaFuM;k, —aMyj R
i#jAk#l i#jF#k I#i,5,k

<maxVar (Viivarvay) E E E GuFuM, My _qr R E Gt FiyiMiy ke, —igi Mij,—ini Rat
bk i#j#k iai gk \I#ij.k I#i2,j.k

+maxVar(thgkv4j g E E GauFuM,, —aMyj iR E Gist Figt My j,—int Mige,—in15 Rt

1,5,k . T

i#j £k iaFEi,gk \1#60,k I#i2,5,k
2
) . .

—|—H1a,};(Var(V11’02kU4] ) 3! E Mzk —ij E GuFyuMik,— M —ar R

e i#j#k I#i.5.k

2

<maxVar(thgkv4J ZZ Z Z G Fy Mg, 7lelg,lekR3l
0,5,k k j#k \i#k,jl#i,5,k

—maXVar (V14v2,v45) ZZ Z Z GuFyuM;,,—qaMi; —urRs
k j#ki#k,j \1#i,j.k
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+mal)€<Var(VuU2kU4j)ZZ > > GaFuMi _aMyj xR > Y GuFuMy _qMy, —;Rs
“d> & itk \idtk.jltigk ikl ik

—I}}J?}?Var(Vuv%wj)ZZ S D GuFuMi, My xR > GaFuMij My, —;Rs

k j#ki#tk,j \l#i,jk I#i,5,k
2
n
+r211]a]>€<Var(V1ivgkv4j)3! Z Mfk’,ij Z GuFyMiy, —a M _arR3
0 i j£k 11,k

The first term in the vy line is then:

n n
Var Z GijFij Mg, —i; M —ijxVijvarp Ra; Ry | = Var ZGijFijMij,fikvliUZj Z Z My, —ij1 Rk Ry
i#jFkFL i#] k#i,5 1#1,5,k

2
n

SITI_IE}XVar(Wivzj)Z GijFij Z Z Mij, i My, —ijr Rasx R

i£] ki,j 1#i,5,k
n
+H}&XVar(V1wzj)Z Gi; Fij Z Z M;j i My —iji R Ra GjiFy; Z Z M; i My, —ijx 3k Ra
- it kg I g,k kit j I,k
n
+Hl1aXVar(V1z'02j) Z Gi; Fij Z Z M;j i My —ijx Rar Ry
7 i) ki L,k

Gi,jFiyj E E Mg, ik My, —in 5k R3p Ray
k#iz,j l#i2,5,k

2
n
SHZ,la,XVaI"(VuUQj)Z GijFij Z Z Mij,—i My, —ijr RarRai
X i#] K] I,k
n
+H’_la_XVal"(V1iU2j)Z GijFij Z Z Mij,—ir My, —ijeRarRa | | GiFyi Z Z M, 1M1, —ijx Rax Ra
" i#] ki 10,1,k Kt U1,5,k
2

+maxVar(V1i02j)Z Z Z Z GyjFij Mij it Myt —iji Rar Rag

i,j - — = =
J i#j k#i,5 1#4,5.k

- rrl_lngar (Viivz5) Z SUDY. DD GiFi My ik My, —ijxRarRu
JiA] \k#4Ljl#£65k
Now, we turn back to the Roj expression to complete the proof:
n
Z GijFijMik,—i Mj1, ik ViiRor (RajRar + Rsjva + v3; Ry + vsjvar) -
iti Akt

Consider the term with three stochastic terms first, and simplify it using the same strategy as before:

n n
Var Z GijFij Mg —ij M1, —ij.ViiRokvsjvg | = Var Z G FijV1ivsva Z My i Mg, —i51 R
i#£jARFEL i#j £k l#4,5,k
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3

n
< ma}i{\/ar (Vi4v35va8,) E E GijFij My, —ij M, —i1Ro | — E E E GijFijMiy,—ij Mg, —ijiRa
“ k#j \i#k,j l#i,5,k k#j i#k,j \1#1,5,k

+ max Var (Vi;vs;vak) SIND. Y. GiyF MMy —ijiRor | | Y. > GiwFix My, —ireMyj, —ina Roy
> k j#k \i#k,jl#t,5,k i#k,j 17,5,k

—ma?Var (Vi4v35048) E E E E GiiFij My _ij Mk —ijiRoy E G Fi My, — it Mg, ik Ry
575

k  j#ki#tk,y \l#i,5,k I#£i,5,k
n
+ max Var (V1;v3;va5) 3! Z GijFij Z M, —i M, —ij1Ro
1,5,k - —
ititk ik
Next,

ZZ Z Z GijFijMik,—ijMjl,—ijk‘/liR2kU3jR4l

i j#i k#i,g 1#i0,5,k

2
n
SﬂilaXVar(Vumj)Z GijFij Z Z My, —i5Mj1, i Rog Ray
N i#] i 1,5,k
n
+ max Var (Vlivsj)z GijFij Z Z Mg, —ijMji,—ijnRox Rt | | GiFjs Z Z Mg, —ij My, —iji Rox R
J it k21, 1214,k k£, 11,5,k
2

+ma_xVar(V1W3j)Z ZGz’jEj Z Z Mig,—ijMji—ijuRox Ru

1] j i£j k#i,j 14,5,k
2
n
— II}&XVBI (Viﬂ}gj) Z G”FZJ Z Z Mik,*iijl,*iijQkRU
»J i k#i,5 1#4,5,k
Finally,

Var Z GijFijMig,—ij M1, —ijxViiRor Rsj Ra ZZVM(VM) ZZ Z GijFijMi—ijMji, —ijx Rop Rsj Ry
i£jF#kF#l i J# k#i,5 1#0,5,k

O

Lemma 8. Under Assumption 3, the following hold:
(a) Var (Z;;ﬁj#k Gz‘ijVUVQkVSiVZu) < Cry.

(b) Var (Z;j#k#l GijFikMil,fijkvljv%vzﬁvu) < Cry.

Proof of Lemma 8. Proof of Lemma 8(a). Expand the term:

Z GijFiVijVorVaiViy = Z Gi; Fir,V3;Vai (RijRok + Rijvar + v1;Rok + v15v21) -
ik ik
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With four stochastic objects,
n n
Var Z Gij Fir VaiVagvijoar | < max Var (Va; Vi v1va) Z Z (GijFir.Giyi Fiyie + Gij Fir,Giy i Fiy )
i#j#k ” i#§#k a5k

+ max Var (V3;Va;vs;v4) 3! Z G?ijk'

0,4,k =
1#j#k

Observe that, due to Assumption 3(a),

Y. GyuFuGuFiy =Y | Y GyFu | | Y GiyFi —Gi;Fu

i#jEkAL ik \i#ik 1#4.k
2
n n
=D | 2 GuFu| - > GLF
gk \i#dk Ak

has the required order, which suffices for the bound. Next,

Var Z GijFip V3 Vai Ry juag

ik
= Var ZZFijVBiVMUQj Z Gix Ry
i i k#i,j
S ZZV&I‘ (V31:V4¢UQJ‘) Z FijGilek Z FijGilek + Z Fjiijle
i g ki, kti,j k#i,j
+II}&XV8,I‘ (V31‘,V41‘Uzj)zz Z Z FijGilek Z Fisziglek
! i G iaAig \k#i kinl

2
< IIZJE;XVaT(‘/},inuUzj) S D. FyGinRux |+ Var (VaiViivg;) | D FijGinRux > FjiGjxRak
7 i \d#i ki i i ki, ki

Similarly,

n

Var Z GijFiVaiVaiv15 Ry | = Var ZZV&‘VMUIJ’ Z GijFipRoy
itk i i g

2
< max Var (Va;Vawi) Y | [ D0 D GiyFuRa | +> | D GijFiRax > GjiFjpRa

i,J - — = — ~ =~
@ J#U k#i,j J#L \k#i,J k#i,j

Turning to the sum with two stochastic objects,

Var [ Y GijFuVaiViiRyRor | = Var [ > VaiVii [ > > GijFiRijRaox
i#i#k i J#i k#i,g
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< m?xVar(VgiVM)Z Z Z GijFiRijRog
4 J#i kFi,j

Proof of Lemma 8(b).
Decompose the term:
Z Gij Fu Mt —iji Vi Vai Vai Vi
i# Ak

n
= Z GijFi My, —ij1VaiR1j (Rak Ry + Ropva + vor Ray + vorvar)
it jEhA

n
+ Z G Fir My, —ij1.Vaivi; (Rog Ray + Rogvar + vap Ray + vorvay) -
i#£jEkFEL

Consider the vy line first.

n n
§ : ¥ 2 : 2 2 ar2
Var GijFikMil,,ijngivljvgkml S lIIJIBI;X Var (Y@,ivljvgkv4l)4! GijFikMil,fijk'
i#j#k#L i it jEkAL

Next, by using the same expansion and simplification steps as before,

n n
Var E GijFipe My, — ;51 V3i01v2, Ray | = Var E G Fi, V3301095 E My, i Ra

i Akl i#j#k I#i,5,k
2 2
Smaiivar(‘/éivuvzk)zz Z Z GijFirMi —ijuRu | — Z Z GijFie My, —iju Ra
“J k jAk ik 11,5,k i#j,k \17i,5.k

+%?«i(var(v3ivljy2k)zz > ) GijFaMy, ijiRy > ) GiFijMy, ijxRu

kog#k \i#dk l#i5k i,k 14,5,k

— max Var (Vaivijoar) D> > | D GijFiMi,—ijuRa > GikFyiMi,ijxRa
b ke jtkidtik \lstik I35,k
2

n
2 2 Y
+ rzr’lji?.]i( Var (Vgivljvgk) 3! Z G”sz Z Mil,—iijle
i#j#k I#i,5.k
and

n

n
Var Z GiiFipe My —i51 V301 Rogva | = Var Z G FiV3iv1 504, Z My, —ijiRo

Cavkalial) Gavkals I#i,5,k
2 2
Smaii\/'ar(Vsmij)ZZ > Y GuFuMy _inRau | = > | > GijFuMik _ijiRa
i ka#k \ \idk ik i#ik \I#ijk

+ma}>€<Var(‘/:»,iv1jU2k)ZZ Z Z GiiFix Mig, —ijiRoy Z Z GixF;j My i1 Roy

Z’ b . . . .
/ ko ik \ijk gk i ok Ui,k
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—maxVar (Vaiv1,va8) ZZ Z Z GijFix Mig,—ijiRoy Z GirFij My, —ij1Ro

k j#ki#tjk \l#i,jk I#£i,5,k
2
+maxVar(V31v1]v4k ) 3! E G E My, —ij1Ro
Ik i#j#k 10,4,k

B 2
with (s Mit,—ijtRat ) < C. Finally,

n n
Var [ Y GijFMy,_ijiVaivijRoxRa | = Var | Y GyVaivn; Y Y FiMi —ijeRorRal
i£j#kFHAl i#j k#i,j 174,35,k
2

<maxVar (Vsiv15) Zng Z Z Fy My, _ijkRox Ry

i#£] k#i,j 1#1,5,k
n
+max Var (Vaivi) Y | Y D GijFi M, ijx RorRu > > GiFjMj i RoxRa
“J its \ ki, I,k ki j 17,5,k
2 2
+ma_xVar(V3iv1j)Z Z Z Z Gij FirMit —iju Ror R —Z Z Z GijFix My, —ijk RorRay
" j i£] Wi U,k i) \ ki .5,k

NOW, return to the le line: Z?;éj;ék;él GijFikMil,fijszSile (RQkR4l + R2kU4l + ngR4l + ’ng’U4l), SO

n n
Var E GijFin Mt —iji VaiRijvapvy | = Var E G Fii Vaivapva; E M;j —ar R

i#JF#RF i#jF#k l#1,5,k
2
<maxVar (Vaivarvag) | DD 1 D0 Y GaFuhlij—annRu | =D > > | Y. GuFuij _xRu
J k#j \i#j4,kl#i,5.k J k#jiFik \1#i5.k
+max Var (Vaivarva;) SIUD. Y. GuFudy_awRu | | Y. D GaFijM —a;Ru
pk i kA] \itik ik i,k U5,k
—maxVar (Vaivarvag) D > > | > GaFuMij xR > GaFijM ;R
J k#jiFgk \I#i,5,k I#i,5,k
2
n
+maxVar (Vaivav45) 3! Z Fiy, Z GuM;j —an Ry
ok itk \ gk

and

n n
Var [ Y GijFaMy,_ijiVsiRijoarRa | = Var | Y FyVivg; Y Y GipMi —ijeRinRa
Gatkalital i#] k#i,j 174,35,k

2
n

< max Var (Vavg;) > | Y Y FijGiMi, _ijuRuxRa
" i£) \Wig 10,k
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n
+H117axVar(V3ﬂJ23 DD Y. FyGuMi ijgRuRa | | Y > FiyGieMy, _ijuRixRa

i \ ki Ik ki, Ligk
2
+ max Var (VSi'UZj)Z Z Z Z Fy;Gir Mt —ije RirRa —Z Z Z Fy;Gir M —ije Rix R
7 J i#] k#i,5 17,5,k i#j \k#i, 1#i,5,k

The Z#]#k# G FkMZl —ijk V3iR1j Ropva term is symmetric, because it does not matter which R, we
use. Finally,

2

Var | > GiFMy, _ijiVaiRijRoeRa | = Var (Vai) | Y > Y GijFiMi,—ijiRijRor Ry
i#j Ak i JF#1kFGG IF gk

Lemma 9. Under Assumption 3, the following hold:
(a) Var Z:;éj szVthlvgjwj) S C’I"n,'

(b) Var Z;;&j;ﬁk G?iMik,fijvliVQkVBjVZLj) < Cry;

(d) Var

(c) Var (Z?#j#l G?iMjlﬁij‘/liV%VéjVM) < Cry;
(ZZ;@#k#l G Vlz ik —z]VvZkV?)j _]l —zka4l) < Crn;

(e) Var (3204, GjiFkivlj‘/QkVZii‘/éli) < Cry;

(f) Var (ZZ¢]¢]€¢Z GjZFk"L il —7.]kV1]V2kV3zV4l) < Crn-

Proof of Lemma 9. The proof of Lemma 9 is entirely analogous to Lemmas 7 and 8 just that G; is used in
place of G;;. O

Proof of Theorem 2. Proof of Unbiasedness
The variance expression can be equivalently be written as:

2 2
Vim = Z E [Vﬂ Z Gi;R; | +2 ZGinj ZGjiRAj E[vin]) + E 77Z Z GjiRa;
@ J#i J#i G#i i
+ Z Z G 77] + Z Z GG B [nivi] B [njVj] y
i gL i j#i
(20)

To ease notation, let:

Ay = Z ZGinjGikaei (e; — QiTA,—ijk) »

i ki
Aoy i= Z ZGinijiekei (X5 — QiT—iji) »
i ki
Asgj = Z ZGjieijiekXi (X5 — QiT—iji) »
i ki
Agij = X; Y M —ijXrej (e — QjFa—ijr) , and
oy
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ASZ] = ezzMzk Zij‘eJ (X Q T*Z]k)

k#3j

Take expectation of Ay:

E Z Z Z G X;GirXrei (ei — Qifa,—iji)

i ji ki

=Y > > GyE[X)]

i jFL kFig

GikE [Xi] Elei (e —

Evaluating the first term,

2.2 2 GaBIX

GiE Xk Elei (e; — QA —ijk)]

J#i k#i,j

=D > GiRiGuR (E [€f] - EleQifa, i
i i ki

= ZZ Z Gi;R;jGip Ry E [e;v]
i j#i k#i,J i j#i ki

Using an analogous argument for the second term,

> GLE[XF] Ele: (e

i g

Q TA zjk

Combining them,

B |:Z Z Z GinjGikaei (ei - Q;%A,—ljk

QiTA,—ijk) +ZZG e; (e; —

D=>> > GiRGixRi (E

=3 3> GiR,GiRiE [v

QiTa,—ijk)] -
i jF

[e?] — E [e:Q}7a))

i j#i kF#ij

=22 > GuRiGaRiE V]

=> > G (R +E[5])E[].

e

420 Gh (B +En]) B[]

i j#i k#i i jF#£i k#i,j )
=3 3N GyR;GuRE [V}] +> Y GLE [V E [n}] .
i j#i k#i i jAL
Similarly,

E[Ay) = (Z G”R) (ZajiRAj) E
J#i J#i
2
[A?n - (Z G]ZRAJ>

J# J#i

For the A4 and As terms, observe that:

+Y G3E

[vimi] + Z Gi;GjiE niv;) E [njv;], and

J#i

2 E[VJQ]

-1
Xi—Qif_ij=Xi—Q} Y (Z QlQE) QrXp=Xi+ Y Mip i X = Y M —i; X,

k#i,5 \1#%,]

where the final equality follows from Mm_ij = 1. Then,

E[Ayujl=F | X; ZMik,finkej (X; — Q;fA,ijk)]

=y
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k#i,5 k#j

= B[ XMy _ijXne; (X; — Qj7aijk)]
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=F

Xi ZMik,—ink] E [ej (ej - Q;%A,—ijk)] = E[ (X Q T_,LJ)] [1/32] =F [7712} E [VJZ] .
k#j

Proof of Consistency
> €
Var (21 Zj#l Gijein>
<

Similarly, E [As;;] = E [v:] E [n;v;]. Combining these expressions yields the unbiasedness result.
By Chebyshev’s inequality,
I ( VLM — Var (Zz Ej;éi Gijein)
1 Var (Zl (Ah + 245 + Agz) — Zz ngéi G?iAMj - Zl Zj;éi GijGjiA51j>
2 2
{Var (Zz Zj;ﬁi Gijein)]

Observe that the numerator can be written as the variance of the estimator only because VL M is unbiased.
I first establish the order of the denominator. As in the supplement, denote R; := =5 ot GijR; and Rp; =
Z]# GjiRaj. Further, to simplify notation, let p; := corr(n;v;).

Since E[v?] and E[n?] are bounded away from zero and |corr(n;v;)| is bounded away from one by As-
sumption 1(b), the first line of the Vs expression in Equation (20) has order at least >, ]:212 +>, RQAZ., and
the second line has order at least >, >, ; G?;. To see this, for some ¢ > 0, the first line is:

ZE R2+2RA1RE[V17)1]+R ZE R2+2RAszpz E[2]E[T]22]+R2ATE [nlz]
>Z( 2R+ RAE [n2]) (1 |pi) +Z|pz< [ RY 4 RAE [0f] = 2R R EWEW])

-3 (LA R [)upl-|>+z|pi(¢E[uﬂR%ﬁzimnﬂ)?
>Z( ?] R? + RAE [n; ])(1—\pz >cZ(R2+Rm),

and the second line is:

S 36 E[i] +) ) GiGyE avi] E Injvi]

i g7 i g
= S G ERA B[]+ Y S GG E i Elagwl + 5 Y0 5 GLE 4] B[]
[ E= A ES A E
,ZZG E [1?] +ZZG”GNWJ\/E E 2] \/E [v]] ZZG
i jF i jAi i jF
%ZZG%EW]E =) + 3 2 S GLE [ B ) (1- 4))
i jAL i jA
+5 G ) B[] m+ZZGwGﬂpWE R NCIC L R ) e
i j# i J#z i g
1
= GBI B (1) + 5 3 GhE ) (1= 43)
i j# i g
2
+;ZZ<GW¢ EWZE [n7] + Gjip; E[VﬂE[TI?])
i g

o4

(7]

E [n7]



> LSS @GR B (- + 5 S GRE R B (-7 2336

i g i g i

Vi =Y RBP4+ Rii+) Y Gfi=ir. 1)

i jFe

Consequently,

2 2

Due to Assumption 1(c), 37, >, (ij + Gi;Gji) = K. Since (Zz D i GijGji) < (Zz > i ij) ’
Do Zj# ij = K — oo. Hence, Vi diverges, as r, — co. By repeated application of the Cauchy-Schwarz
inequality, it suffices to show that the variance of each of the 5 A terms above has order at most 7, (i.e.,
bounded by any of the three terms in Equation (21)). If this is true, then since the denominator has order
at least r2, the variance estimator is consistent. Since the derivations are analogous, I focus on Var (3_; A1;)

and Var (Zl Dk GjiA4ij>. The Al and A2 terms have the form:

SN GiFuVi > VarVai (Vai — Qifa—ije) = 3> > Y GijFieVi;VarVaiMi sV

i g k#i i j#i ki £,k
=333 > G FuMu Vi VarVaiVa + D > GijFiViVarVai Vi
i jF#i kFigl#Gk i JFkFig
+ Z Z Z GijFijMit,—i;V1;Va;VaiVa + Z Z GijFijVi;Vo;VaiVai.
i gFLIFL] [VE

In particular, Al uses FF = G,V; = X, V5 = X, V3 =¢,Vy = ¢, while A2 uses F = G',V; = X,V =
e, V3 =e¢,Vy = X . By applying the Cauchy-Schwarz inequality, it suffices to show that the variance of each of
the sums has order at most ,,. The terms ), Zj# GijFijV1jVa;V3iVy and ), Zj# Zl;ﬁi,j GijFij My, —i5V1 Vo ViV
are identical to the result in Lemma 7, with the latter result being obtained by switching the ¢ and j indices.
The remaining terms have a variance that has a bounded order by Lemma 8. For A3, we can use Gj; in

place of G;; above, and use F = G',V; = e, Vo = ¢, V3 = X, V) = X so that the order is bounded above due
to Lemma 9. A4 and A5 can be written as:

ZZGjiFilei ZMik,fijV%VBj (Vaj — Qfa—iji) = ZZZ Z GjiFsjViiMik, —i5Vor Vaj M —ijiVau

i A oy i g kg Lk
= Z Z Z Z G]z zk ,—1J ]l —zgk‘flzv2k:‘/3]‘/4l + Z Z Z G]z 119 _”‘/11‘/2]{,‘/3]‘/4]
i g kg 1#G,g,k i L kF]
+ Z Z Z G]z l —z]‘/lz‘/éz‘/?)] V4l + Z Z G]z ‘j‘/liVQi‘/ZijV4j~
i g lAL i jFi

In particular, Ad uses F = G',V}, = X, Vo = X,V3 = ¢,V), = ¢, while A5 uses FF = G,V = ¢, V5 =
X, V53 =e,Vy = X . By applying the Cauchy-Schwarz inequality, it suffices to show that the variance of each
of the sums has order at most r,,. This result is immediate from Lemma 7 and Lemma 9. O

C Proofs for Section 4

Proof of Lemma 1. The joint distribution of (Y, X"’ is:

Y N ZT('Y Inw“* Inw(n
X Zr || Inwey  Inwpy ’
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Stack them together with their predicted values PY = Z (2'Z)"' Z'Y and PX = Z (2'2)"" Z'X:

Y Zry Lywee Lnwen weeZ(Z2'2) 2" wenZ (2
X N Zr Twen Ty wenZ (2'2)71 2" w2 (2
z@z'z)ytzy | 7T Zry || weeZ(2'2)71 2" wenZ(2'2) 2 weeZ(2'2) M7 wenZ (2
AVAAREADS Zm wenZ (Z2'2) 12" w2 (2'2)7 2 weyZ(Z'2) 7wy Z (2

Then, the conditional normal distribution is:

Rl (P AR

Z(Z2'2)t 7'y PY
=N B V)=N v
([ VAVAARADS PX
Hence, PX and PY (i.e, Z'X, Z'Y) are sufficient statistics for my, .
To show that (s)s1,s)s2,8582) is a maximal invariant, let F' be some conformable orthogonal matrix

so F'F = I. For invariance, let s = Fsy. Then, si'si = s{F'Fs; = s}s1. Invariance of (s)sg,shss) is
analogous. Maximality states that if s}’sf = s|s1, then sf = F's; for some F. Suppose not. This means

*/ %

st = Gs1, and G is not an orthogonal matrix but yet sj’s} = sjs;. Since G is not an orthogonal matrix,
G'G # I. Hence, si'st = s1G'Gsy # ss1, a contradiction. To obtain the distribution,

MR

Since Var ((Z’Z)‘l/2 Z’n) = (2'2)"Y? 200,y 2 (2'2)V? = Iy,

o] N(( <(ZZ’,ZZ>;5;T; ))

(2'2) Y2 2" (Zry + Q)
(Z'2) M7 (27 + )

(22" 7
(2'2)"" 2"y

(Z'2)* 1y
(2 2)"* =

+

Proof of Proposition 1. Let
HY L (Z,Z)l/2 Ty
)=\ @2 )
With this definition, (74, Z'Zny,n'Z' Zny , 7' Z' Z7) = (11}, Iy, 11511, IT'II), and
s1 Iy
()~ (%) mem)

Split s; and s into the II component and a random normal component: s = Ilyg + 21 and sop =

II; + z9x. Then, for all &,
<Zlk)NN<<O> [WCC Wen ]) and
22k 0 ’ Wen Whn ’

8181 >k Stk > (Myg + 2p)’
sise | = Xpswsar | = ok (Mye + 21x) (Mg + 221)
5552 Dok 5ok > (i + zo)

e Iy + 2370 Mypz + 35, 23
= X Hyelly + ng Oy gzor + D) Hpz1k er Dok 1k 22k
Dop g+ 230 Hyzap + 32 29
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Under the assumption, II'TI/v/K — Cs, so ﬁ > I7 — Cs. By applying the Lindeberg CLT due to
bounded moments,

> ok Hiezik 0
Yo Oy 2k 0
1 >k Oy 2ok 0
y— Zk HkZQk ~ N 0 ) Vv ’
\/E Zk Z1kR2k vV KWCU
Dok Z%k \/Ewnn
Dok Pk \/FWCC
where V is some variance matrix. By assumption, \/% > Myl — Cy and \/% > 2, — Cyy, so
1 81181 1 s Zkﬂ%+22knY§1k+zk Z%i
— | s1%2 | =—= e Wy elly + 30 My gzor + D) Urzae + D 21620k
VK 8582 VK Do T 4230 rzap + 20, 25,
>k Mizik
Yo Hyrzik
Cyy 1 > ox My rzak
N Cy + A—— Zk I, 2ok s where

C VK Dok k22K
Dk Z%k
Dk 2k

02 0 0 0 0 1
A= 1 01 01 00
00 0 2 0 10
This means:
1 shs1 Cyy + \/EWCC

e 8,182 XN Cy + \/I?an ,AVA/
\/? SI232 C+ \/Kw'rm

Let ¥ = AV A’ to obtain the result as stated. To derive ¥ explicitly, I derive V' by applying the Isserlis’
Theroem. As a special case of the Isserlis’ Theorem for X’s that are multivariate normal and mean zero,

E[X1XoX3Xy]| = E[X 1 Xo| E[X3Xy]| + E[X1X3] E[XoXy] + E[X1 X4 E[X2X3].
Another corrolary is that if n is odd, then there is no such pairing, so the moment is always zero. Hence,

E [z%kzgk] =F [z%k] E [zgk] + 2F [z1p20k) B [216228] = Wecwny + ngn, and

Var (21422k) = Wecwny + Wiy-

Similarly,
Var (z%) =F [zgk] - w = 3w "‘427?7 Qw?m,
Cov (21, 21k22k) = B [kaz%} E [z14] E [z1k22k] = 0,
Cov (zlk,zlkZ%) =F [ 1k22k} — [zlk] E [z1520k)
= BWenWee — WeeWen = 2Wenwec,
Cov (234, 231,) = E [25423,] — weewnn = 2“’(77’ and
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[ & ZaThwee g 2 Willviwee g 30 Wallviwey e 2o Miwe 0 0 0
: 7 2ok Uy e K 2k H%/kan K 2 ellypwen 0 0 0
: K Zk L5 wnn i74 121@ HkHQYka; 0 0 0
V = K Zk‘ kann O ) 0 0
: WeeWnn + Wiy 2WenWnn  2Wenwee
Qw%n 2w2n
i 2wee
If 25,002 = 0,4 >, Mpllyr — 0,4 >, 113, — 0 under weak identification, then we obtain the %
expression stated in the proposition. O

Proof of Proposition 2. Fix any alternative (7rA,7T{}) € S with corresponding (uf,u‘;,ug‘). Due to the

restriction in S,

H A _ o012,,A
M}I K1 22 M2
e
023
K3 B3 = oo M2

is in the null space. Construct Neyman-Pearson test for ! vs p#. The Neyman-Pearson test rejects for
large values of:
2
1 (u3)

2 g29

AN (W7 %) ~ o9s "
Hence, the most powerful test rejects large values of X5, which is what LM does. By Lehmann and
Romano (2005) Theroem 3.8.1(i), since LM is valid for any distribution in the null space (by Theorem 1)

and it is most powerful for some distribution in the null space, LM is most powerful for testing the composite
null against the given alternative (TI'A, Wé). O

Proof of Proposition 3. Let p € M = {u : 3 > 0,uz > 0,43 < pius}. 1 first show that M is con-
vex. For X\ € (0,1), it suffices to show, for p, and p, that satisfy p3, < piapse and u3, < pippsy, that
(Miza + (1= X) pizp)? < (Mpaa + (1 = A) pas) (Aptsa + (1 — A) psp). This set is intersected with the set that
satisfies 1 > 0 and pg > 0, which is clearly convex. The following is negative:
(Miza + (1= X) p12p)? = (Mara + (1= A) pr1n) (Masa + (1= ) prs)

=N 13, + (1= N7 3y + 20 (1= X) pizapion — N paapisa — (1= N) prappay = A (1= A) (t1oh0 + fratian)

=A% (43, — t1akza) + (1= N)? (13, — paoias) + A (1= N) (22afion — H1bli3a — Hialisy)

<A (1= A) (2V/B1akiniiniay — H1bH3a — f1af3b)

<= M1 =X (Viiehse — Virakia)’ < 0.

The first inequality occurs from applying p3, < f1ap3e and ugb < M1ppsp, SO M is convex. Let m ~
N(p,X) denote a statistic drawn from the asymptotic distribution, with m; being a component of the vector
m, so that mg is the LM statistic. Using the linear transformation from Lehmann and Romano (2005)
Example 3.9.2 Case 3, we can transform the statistics and parameter such that mo is orthogonal to all other
components. In particular, consider the following transformation L:

022 = _ o012 [__ 0O22 0
011022*0% 022 011022*0%
1
L:= 0 s 0
0 __023 022

22

o22
0330220353

033022— 03,

o8




Then,

013022—012023
2 2
(011022—012)(033022—0’23)

1 0
Lm ~ N | Ly, 0 1
0

013022—012023
2 2
(011022*012 033622*023)

1

The parameter space of Ly € L is also convex because L is a linear transformation: take any pg,us €
M, then observe that ALp, + (1 — XN)Luy, = L (Mg + (1 —A) ). Since M is convex, and every el-
ement in M is linearly transformed into the space on L, we have Ap, + (1 —A)pp € M and hence
L (Mg + (1 —X) ) € L. Since Lm is normally distributed and £ is convex with rank 3, the problem
is in the exponential class, using the definition from Lehmann and Romano (2005) Section 4.4. Since
the joint distribution is in the exponential class and the restriction to the interior ensures that there
are points in the parameter space that are above and below the null, the uniformly most powerful un-
biased test follows the form of Lehmann and Romano (2005) Theorem 4.4.1(iv), by using U = my and
!

T = \/%m3 — 723 Mma, | =22 —my — AL mg | in their notation. To
33022 =035 \/022(033022_0_33) 11022074 \/022(,7110—22_0’{’2)

calculate the critical values of the Lehmann and Romano (2005) Theorem 4.4.1(iv) result, observe that [Lm)],
is orthogonal to [Lm|, and [Lm],, so the distribution of [Lm], conditional on [Lm], and [Lm], is standard
normal. Since [Lm], is standard normal, it is symmetric around 0 under the null, so the solution to the
critical value is +1.96 for a 5% test, due to simplification in Lehmann and Romano (2005) Section 4.2. The
resulting test is hence identical to the two-sided LM test. O

D Proofs for Section 5

Proof of Lemma 2. The A expressions can be written as:

A=Y NN My G X G Xy, (Vi) — XiYiBo — YiXBo + XiXi83) ;

@ ji ki Ik

Ay =3 N NN My Gy X;Gri Xy (YiYa — XiYaBo — YiXyBo + Xi Xuf33) ;
@ ji ki Ik

As = Z Z ZZMil,fiijlGjiniXi (Y;Yie — X;YiBo — YiXnBo + X; Xif35) ;
@ ji ki Ik

Ay = Z Z Z Z Mji,—ijeMi, ;G5 Xi Xi (YY1 — X;Y1B0 — Y;XiBo + X; X155 5 and
i i kA IEik

As = Z Z Z Z Mg, —ij M —ij1Gij G Xp Xy (Y;Y; — XiY;80 — YiX 80 + XiX;83) -
i kg ik

Since these terms have a quadratic form, the variance estimator is also quadratic in (2, i.e.,
Viar = Co + C18o + Caf3E,

where the C’s can be worked out by collecting the expressions above. For instance,

Co=> 333 My _inGi X;Gu Xp iV + 2 Y "> My, _ijuGij X;Gri X1 YiYe

i i ki LAk i ji ki Ik
+ Z Z Z Z M, —ijn X1GiGri X:Y; Yy,
i g ki LAk
N Z Z Z Z Mjl7*ijkMi’f>*ijG?iXiXk}/jn - Z Z Z Z Mig,—ijMji,—ij1Gi; G X1 X1 Y3 Y
i@ g kg Ik i@ g kg Ik

C; and Cy are analogous by collecting the coefficients on Sy, 32 from expressions A; to As. The test does
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not reject:

(Pxy — Pxxf0)’
Co+ C1Bo + C283 —

<q& (Pix —qC2) B3 — (2PxyPxx +qC1) Bo + (Pxy — qCo) <0
Solutions exist when:
D := (2Pxy Pxx +qC1)* — 4 (P¥x — qCs) (P¥y — qCo) > 0.

The rest of the lemma are immediate from properties of solving quadratic inequalities. O

E Proofs for Appendix A

E.1 Proofs for Appendix A.1
Proof of Equation (14).

E [‘i’Mo] =FE Z Zpij (Rj+m5) | (Rai +v:)* + ZZ (Ri +m5) (Rai + vi) (Rj +1n5) (Ra; + v5)

i JFi i jFi
2 2
=F Z Z Pinj + Zpijnj (RA’L + Vi)z
i J#i J#i

+FE Z Z Pfj (R;Ra; + niRai + Rivi + mivy) (RjRAj +njRaj + Rjv; + ’I7j1/j)

i g
2 2
ZM2R2 RAz-f—E -l-ZR Zpijnj +ZE[V3]E ZPijnj
j#i i Jj#i

+> > P} (RiRai+ E[niwi]) (R;Raj + E [njv5))

i G
Z MER? (RA; + E[vF]) + )Y PRE [0} (RA; +v7)] + Y D Ph (RiRai + E lnail) (R Raj + E [nv])

i g i g
—ZMZ%RZQR ZM%R? HED I E[m]+> Y P:RAE
[AVE [VE

+> > P (RiRaiR;Ra; + E [nivi] RjRaj + RiRaiE [njvj] + E [mivi] E [n;v5])

i JF

As a corollary of Equation (8) and Equation (14),

Z Zpijein -k [\iIMO] ZMz (2R;RaE [vini] + E [7712] RA,; — RfRzm')
i gt

- Z ZPQ (RAE [n}] + RiRa;R;jRaj + E [nivs] RjRaj + RiRAE [n,v5])
i JF

which reflects the bias of the estimator.
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E.2 Proofs for Appendix A.2

Proof of Lemma 3. Suppose not. Then, for some real 3y,

E[Te] =Y Y PjRaiRaj =Y > Pij (RyiRy; — RiRy;By — RyiR;Bo + RiR;53) =0
[ E [ E

Solving for Sy,

2
25,3, PyRiRy; = \/4 (030 PiRiRy;) =4 (00 PyRiR; ) (05,4 P Ryifiy; )

Bo =
2 (Ei >t PiniRj>
In our structural model, R; = m(;y and Ry; = Tyy(;). The term in the square root can be written as:
2
D4 (Z mm) L (Z W,z> (Z W;ak>
k k k
Using Table 6, >, 77 = gSQK, LT, = (%sQﬁQ + h2) K, and ), mpmy = gszﬁK, we obtain
1 5 > 5 5 5
D= (2:28K) — (22K (2282 4 n2 ) K = —22h2K2 < 0.
0= (§90K) - (5) (50 + g
Since h # 0 and Ks? > 0, there are no real roots of 3y, a contradiction. O

E.3 Proofs for Appendix A.3

Proof of Lemma 4. 1 work out the p’s first. Using the judge structure, ), M2 = ok (621)2 Y Z#i Py =
>k CZI. We have also chosen 7y, o¢yi such that Y, 7, = 0,>", 0o = 0, Tkoeor = 0. Then, we get the
result for means:

M1 ﬁ Yople=1) (ﬁﬁ? + 27 Bocyr + U?m) VE (c—1) (82ﬂ2 T hg)
H2 = \/%Zk(C—].) (7Tk5+7rko@k) = \/E(C—l)szﬂ
a fzk( 1) VK (c—1)s?

Using a derivation similar to that of the lemma for V), expression,

Koo =YY" " (GjiGriE [¢?] RjRi + 2G4;GiiE 1G] Ry Ry, + Gi;Gin E [1] Ry Ry,

T g kA
+ Z%: (GHE ] B [G] + GiiGiiB iG] B [n;¢51)
T
Ko =Y > 3 E[G] RyjRyk (GjiGri +2GiiGri + Gi;Gix) + > Y E[G] E[(] (G} + GiGii) 5
i j#i k#i N E
Ko3z = Z Z ZE 7] RjRy, (GiGri + 2Gi;Gri + GijGir) + Z ZE 7] E [n7] (G2 + Gi3Gy4)
i g kA i g
Koy = Z Z Z GjiGiB [G7] RjRyk + 2G;Gri B [(F] Ry Ry, + GijGir. B iG] Ry jRy,)
i g kA
+ Z g EmiG] E ] (G5 + Gi;Gji) ;
i g
Kows =) > > (GjiGuE [11}] Ry Ry, +2Gi;GriE [i7] R Ryk + GiyGauE 1G] R;Ry.)
T i ki
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+ Z ZE [m:G) E [77]2} (G?j + G;;Gj;) 5 and

i gt
Koz = Z Z ZE iG] Ry jRi (GjiGri + 2Gi;Gri + GijGir) + ZZE (0:G) E [1;¢5] (G?j + G;;Gji) -
gt ki T g

The equalities hold regardless of whether identification is strong or weak and whether heterogeneity
converges or not. Without covariates, G = P is symmetric and the above expressions simplify. For instance,

2

c—1 c—1

Koy = % (weeki, + 2wenpmiTy s + Wk y) + Y ——
A k

(wﬁﬁkwcck + wgnk) .

Evaluate the terms in the expression. For higher moments of 7z, Y., 77 = Ks?, >, 78 = 0,>_, 7f =
s*. Similarly, >k 71;2’051, = 0. Treating the heterogeneity in the same way, ), agv = Kh2. Then,

ZWCCkﬂ'i = Z (TRoee + 2mpBocok + 2Mk0ee + e — a?vk + 0B + Tpyoee + 20?1% +20.,83) 7
k k

=s’K (820'55 + 0ee + 00 3% + Ovu0ee + h? + 2ogvﬁ) ; and

ngnkﬂkﬁ/k = Z (TkOevk + Ovof + Ocv) T (T + Oeuk)
k k

= Z (awﬂQﬂ'i + O’EUTl'iﬂ + ﬂiogvk) = s°K (owﬂz + o0+ h2) .
k

Now, for the P2 part,

Zwvmkwcck = Z Ovy (Thoee + 2T Boco + 2Mp0ee + Oce — Ugvk + 0B + Tpuoee + QUgvk +20.,3)
k k

— Z Ovu (71']%0'55 + 0 — O'gvk + owﬂQ + Ouu0ee + QUgvk + 2051,3)
k

= Koy (32065 + 0ce + UU'UBQ + Op0ee + h? + 2UE'UB) ; and

ngnk _ Z (Wkaka:ﬂ-kaka + O'Uvﬁﬂ-ko-ﬁvk + Oy Mg Oepk + WkakaUUB + O"UUﬂUUUﬂ + Uavavvﬁ)
k
+ Z TOgvkOey + Ty + 051})

Z ’/deévk + 02,82 + 0cr 00+ 0ppB0oey + 02 V) =K (52h2 + (0w + JEU)2> .
k

Combine the expressions for 099 and impose asymptotics where s — 0 and h — 0:

UQQ—KZ Cil h2 Z

c— 1
= c (va (Uee + vaﬁ2 + OwuOee + 20‘6115) + (vaﬁ + Uav)2) + 0(1)-

(va Oce + vaﬂ + OyuOge + h? + 20—51}5) (O'vvﬁ + Usv)2> + 0(1)

Next, evaluate a few more sums that feature in the other o expressions:

Zw@ﬁ%k = Z (7‘(%0’55 +2m Bocok + 2Tp0oe + 0o + oo + Owo0ee + ngk + 21751;5) (W%BQ + 2Mp 00k + agu)
k k

1 1
Ve chcwik =% Z a?v (71',%055 + 27 BO¢ok + 2TROce + Oce + ow B + Opu0ge + agvk + 205Uﬁ)
k k

= h2 (065 + vaﬂ2 + Oyu0ge + h2 + 20—51}6) = 0(1);
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1 1 2
7 ZW?C =% Z (’/T%O’gg + 21 Bocok + 20 + Ooc + ouu% + Ovu0ge + ngk + 2051,6)
k k

1
= K Z (Uea + quﬂQ + OpuOee + Ugvk + 205v6>2 = (Uea + O'vvﬂQ + Oy Oee + 2Uav5)2 )
k

1
K Zanﬂ%k
k

1
} Z (ﬂ—ko—ﬁvk + vaﬂ + Usv) (’/TzBQ + 27rk(7§vk + Ugv)
k

h? (048 + o) = 0(1); and
1 1
? ZWCUWCC - ? Z ('/Tko—{vk + J”Uﬁ + 05”) (,/T’%CTEE + 271—]@60-51)]6 =+ 27”?0—65 + 0 + Um;ﬁ2 + Oypv0gg + Ugvk + 20—51}6)
k k
1
K Y (0B 4 0e) (0ce + 0uuf? + Tuu0ee + 0fuy, + 20205)
k

= (Opuf8 + Tcv) (055 + opu 8% + Owu0ee + QJEUﬁ) +o(1).

Using these results,

c—1
022 = (Um; (Uss + 0111162 + Oy Oge + 20—6’06) + (vaﬁ + Usv)2) + 0(1);
c—1 2 2
011 = QT (066 +0u 3+ Opp0ee + 20—6’05) + 0(1);
-1
oo o(1);

c—1
012 = 2T (vaﬁ + Us'u) (Use + O-’U’U/BQ + Oyy0¢g + 20—51}6) + 0(1)§

(0puf + 0cy) +0(1); and

c—1
o153 = 27 (v + agv)z + o(1).

Hence, 013 = 035/033 + o(1) is immediate. Further, for o1,

2 2c71 B+ 2
2@ < o9 — 023 ) _ zavvﬂ+asu (0_22 i ( c (UMB UEU)) ) +0(1)

c—1 92
033 20’33 Oy 2 X ZTO'UU

:26—1

(UUU/B + O'ev) (Uae + G‘"uvﬂ2 + Oyu0Oge + QO-EU/B) + 0(1) =012 + 0(1)
Finally, the 017 can be obtained:

4 o2\’ 2 c—1 2
b (022 -z ) = c—l 2 < (U'uv (066 + O-’UU/B2 + OpuOee + h? + 20’51}/8))> +o(1)

033 2033 [op1 C

c— 1
=2— c (Uee + quﬂ + Opv0¢e + 205v5) (1) =011+ 0(1)-

O

Proof of Proposition 4. The first two are straightforward: Cs = ps/(c—1) and 8 = po/us imply us =
(¢—1)Cs and ps = (¢ — 1) CgB. For py, observe that:

u% 1 2
h—\/\/» p — —= :\/\/?(,ul—C’sﬁ), and

Cy=VEKh? =/ (c—1) — Cgﬁ
(c=1) (CsB® +C) = (¢~ 1) (CsB® + pun/ <c ~1) - Csp%) = m
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: : _ c— _ 1 g23C 2
as required. Next, since 0y, = , /2(C ) 033 = » 1s immediate. Similarly, with o, = -~ (2(0_1) — 05, ),

093 = 2%10% (0vuB + 0cy). From these two expressions, we can observe that:

2 C 0'23
o o = —
( vvﬁ'i' E’U) 2(07 1) 0_33
2
To obtain an expression for o9y, rearrange o.. = 01 o (O’QQ - %) + % > 0:
2
o33 , ¢—1 2
022 = 0733 + c (UEEUU’U - Ugv)
c—1 9
= - (UU’U (Uas + vaBQ + OpuOee + QUavﬁ) + (vaﬁ + Uav) ) + 0(1)7

where the final step uses o¢e = h/0,,. This expression for o9 is of the form required in Lemma 4. Then,
det (Lsp) = OccOte0uy — oech? — Jggaw + 20c¢0c0h — 055(73@

o
2 2 2 v |
= 0ecO¢eOyy — Occh™ — 0¢e0%, = 0cch — 0.ch” — h—"; and

O-U’U
o2 2
det (Xgp) /h=0ce — =% —0cch=0.. — =% +0(1).
vU O-'U’U
2 2
An analogous argument holds for ¢y, = —h. From the 022 equation, o.. — ZE“ =5 (agg - Z—zz) >0,
which delivers the result that det (Xsr) /h — Cp > 0. O

E.4 Derivations for Appendix A.4

Derivation for continuous setup without covariates.

This subsection derives expressions for relevant objects in the reduced-form model. Comparing the first-
stage equations, n; = v;. As a corollary, for all i, F [T]f] = 0yp. Then, (; = Z! (n8; — 7y ) + v;0; + ;. Define
Ty using E'[(;] = 0 and E [v;3;] = E [v; (8 + &)] = 0¢or(i), which implies 7y = 743 + 0¢yr. Hence, we can
rewrite (; as:

Gi = Tr(6)§i — Tevk(s) + Vil + vi&i + €.

By substituting the expression for (;, the covariance is E [1;(; | k] = mpoeur + 0vof3 + E [02&] + 0cy.
By Isserlis’ theorem, E [v2¢;] = 0, so E [:¢; | k] = Tr0cok + 0vof8 + 02p. The variance of ¢; can be derived
analogously. Since E [0 5?] = 04082 +0uu0ee +20%,;, by applying Isserlis’ theorem, by putting the expressions
together, with wy, := E[n? | k(i) = k], wenr := E[Gmi | k(i) = k], and weeg == E[¢? | k(i) = k], we obtain:

Wynk = Tops
Wenk = TEOgvk + O3 + 0y, and (22)
Week = MiOee + 2Tk B0¢uk + 2Mi0ce + Oce + 0Fp, + Ouuf3° + OuuOee + 2020 5.

In this model, the local average treatment effect (LATE) of judge k relative to the base judge 0 is:

LATE, = ¥k ﬁ+05”’“ (23)
Tk Tk

Derivation for binary setup without covariates.
The reduced-form residuals are given by:

1 —my if v <myg
ni | vi = { . ;and G = ) Bi — Ty k@) + 0B + i
—Tk if v > T
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Imposing E [(;] = 0, Ty ) = k)8 + E [1:8:], where E [n;8;] = — (1 — 5) (2p — 1) 0¢yx. Hence,
Tyk =mf — (1= 5) (2p — 1) o¢ur.
Following the same argument as Section 2, due to the judge setup, the estimand is:

Do TvkTk Y (MRS — (1 —5) (2p — 1) ocuk) Tk
kT kT
because Zk O¢uk T = 0 by construction.

Derivation for binary setup with covariates.
Consider the structural model:

=8

Yi(z) = 2(8 + &) +w'y + &, and
Xi(z)=I{Zm+w'y—v; >0}.

Let N; denote the set of observations in state t. Then, using the G that corresponds to UJIVE,

Yo D GuRviRy=) > Gy (mviw + ) (o) +%0)
i€NY FEN\i 1€ENy jEN \i
=3 Y Gij (myrmyTre) + Ve Th(G) + TR VG) T V@ NeG))
1EN: jEN\i

1 1
:1_1/ Z 5><4><E(Wkak+7twk+WYk7t+7t)
ke{0,t}

Z Z 77Yk( YTk(G) T VeTk() T Ty k(i) Ve T %2)
lGNt ]eNf\'L

= Z 5 (mykm + ek + Ty e + 7)) — 3 Z 5% 4 (myrme + Yy emi + Tyeyxe +95)
ke{0,t} ke{0,t}

1 1
- 55 x 5 (mymo + emo + Tyeve + 1) — §5 x 5 (Tyoms + veme + Tyove + V1)
5
=5 <9> (Ty oo + Ty T — Ty tTo — Ty oT¢) -
Recall that my, = mp8 — (1 — 5) (2p — 1) 0¢pr. Impose og0 = 0 for all k, so that myo = 0. Then,

yr = T8 — (1 —5) (2p — 1) o¢ur-

Using the result directly,

) 25
> > GijRyiR; =5 < | (ryomo + Tyim — Tyimo — Tyom) = Ty eme.
_ , _ 9 9
€N JEN\i
Analogously, » ;cx, de/\/t GijRR; = —ﬂf Hence, as long as ), o¢yem = 0, which is the case for

the construction in the main text we stlll recover (3 as our estimand:
2 2z GiByily 3wy 30, (B — (1= s) (2p — 1) ogur) e
> i i GijRiR; 2T T
_5_ > (1=5)(2p—1) ocnim _ 5
Dot 7

This happens in our construction regardless ;.
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