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Abstract

This paper proves a new central limit theorem for a sample that exhibits two-way depen-

dence and heterogeneity across clusters. Statistical inference for situations with both two-way

dependence and cluster heterogeneity has thus far been an open issue. The existing theory

for two-way clustering inference requires identical distributions across clusters (implied by the

so-called separate exchangeability assumption). Yet no such homogeneity requirement is needed

in the existing theory for one-way clustering. The new result therefore theoretically justifies

the view that two-way clustering is a more robust version of one-way clustering, consistent with

applied practice. In an application to linear regression, I show that a standard plug-in variance

estimator is valid for inference.
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1 Introduction

Clustering standard errors on multiple dimensions is common and attractive in applied econometrics

because it allows observations to be dependent whenever they share a cluster on any dimension.

Though more broadly applicable, a common instance of two-way clustering is in linear regressions,

where a researcher wants to do inference on the coefficient of interest when the residual is two-

way clustered. The variance estimator proposed by Cameron et al. (2011) (henceforth CGM) has

thus been widely applied to contexts with such two-way dependence.1 For instance, Nunn and

Wantchekon (2011) clustered on ethnic group and district when studying the effect of slave trade

on trust; Michalopoulos and Papaioannou (2013) clustered on country and ethnolinguistic family

when studying the effect of pre-colonial institutions on development; Jackson (2018) clustered on

teacher and student when studying the effect of the teacher on students’ skill; Neumark et al. (2019)

clustered on resume and job ad when studying the effect of age on getting a call-back. The existing

justification for the asymptotic validity of the CGM estimator and other inference procedures in

two-way clustering (e.g., MacKinnon et al. (2021); Davezies et al. (2021); Menzel (2021)) relies on

separate exchangeability, which implies homogeneity of clusters, a restriction that is not required in

one-way clustering. This paper provides sufficient general conditions for valid inference in two-way

clustering by proving that, even with cluster heterogeneity, a central limit theorem holds, and the

CGM variance estimator is consistent.

An environment with two-way clustering permits dependence whenever observations share at least

one cluster. To fix ideas, consider Jackson (2018): observations of the same student or of the same

teacher are plausibly correlated, but two observations of different students and different teachers

are assumed to be independent.2 The CGM variance estimator accommodates such dependence,

and a subsequent literature provided a theoretical basis for its validity: MacKinnon et al. (2021)

obtained sufficient conditions for validity of the CGM estimator in regression models; Davezies et al.

(2021) obtained analogous results for empirical processes. Menzel (2021) also showed the validity

of a bootstrap procedure for two-way clustering that is robust to asymptotic non-normalities.3

1CGM has 3886 citations on Google Scholar at the time of writing.
2This setting permits more general dependence structures than one-way clustering. If there is one-way clustering by
student, then two observations from different students are automatically independent. In two-way clustering, two
observations from different students are not necessarily independent because they may share the same teacher.

3Menzel (2021) pointed out that a purely interactive data generating processes unique to two-way dependence has an
asymptotic distribution that is not normal. Section 2 will consider this process and show how the assumptions of
this paper rule it out.
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The theoretical basis for inference thus far relies on separate exchangeability, the assumption that

random variables are exchangeable on either clustering dimension, though not necessarily both.

However, separate exchangeability implies identical marginal distributions. Separate exchangeabil-

ity in the student-teacher example thus implies the random variables for all students must be drawn

from the same distribution, including students of different cohorts over time. As Wooldridge (2010,

p. 146) notes in the discussion of pooled data in his graduate textbook, distributions of variables

tend to change over time, so the identical distribution assumption is not usually valid. In other

examples, separate exchangeability implies that countries (Michalopoulos and Papaioannou, 2013)

and jobs (Neumark et al., 2019) are identically distributed. Applied researchers surely would want

size to be controlled in such heterogeneous environments, but the existing theories that rely on

separate exchangeability do not imply this result. Further, in linear regressions with regressor Xi

and residual ui, asymptotic theory is applied to Xiui. Separate exchangeability of the product

implies that the regressors must also be separately exchangeable, which is not plausible when the

regressors include a time trend, say.

In contrast, existing asymptotic theory on one-way clustering (e.g., Hansen and Lee (2019); Djogbe-

nou et al. (2019)) allows the distribution of the random variable to be heterogeneous over clusters.

Since the only available conditions for the validity of two-way clustering require separate exchange-

ability, the literature lacks conditions for two-way clustering that generalize one-way clustering and

permit heterogeneity over clusters. This paper fills the gap, and thus justifies two-way clustering

as a more robust version of one-way clustering.

Example 1. To illustrate separate exchangeability, consider an additive random effects model.

Individual i who belongs to cluster g(i) on the G dimension and cluster h(i) on the H dimension

is characterized by a random variable Wi generated from Wi = αg(i) + γh(i) + εi, where cluster-

specific α1, . . . , αg, . . . , αG, γ1, . . . , γh, . . . , γH and individual-specific ε1, . . . , εi, . . . , εn are mutually

independent. If we assume separate exchangeability, then αg, γh, and εi are iid.4 In contrast,

under one-way cluster asymptotics, the cluster-specific error αg need not be identically distributed.

The general conditions provided in this paper permit valid inference even when αg, γh, εi are not

identically distributed in this model.

4To see this, for individuals i and j where g(i) ̸= g(j), h(i) = h(j) = h, separate exchangeability implies αg(i)+γh+εi
d
=

αg(j) + γh + εj . Since αg, γh and εi are independent, εi
d
= εj and αg

d
= αg′ .
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The main result is a central limit theorem for two-way clustering with heterogeneous cluster sizes

and distributions. This result is proven using Stein’s method. It adapts the strategy from Ross

(2011) Theorem 3.6: I first derive an upper bound on the distance between the distribution of a

pivotal statistic and the standard normal, then show that this distance converges to zero asymp-

totically. This proof strategy hence yields intermediate results on non-asymptotic Berry-Esseen

type bounds that provide worst-case bounds on the quality of approximation between the pivotal

statistic and the standard normal, which may be of independent interest. I apply the theorem to a

simple setting of a linear regression, but it is more broadly applicable to many other econometric

procedures that exhibit a similar clustering structure.

This paper contributes to the literature on multi-way clustering and Stein’s method. This paper

differs from the existing literature on multi-way clustering (e.g., MacKinnon et al. (2021); Davezies

et al. (2021); Menzel (2021); Chiang and Sasaki (2023); Chiang et al. (2024)) in that it does

not rely on separate exchangeability. Stein’s method has been applied to other contexts such as

two-way fixed effects (Verdier, 2020), spillover effects (e.g., Chin (2018), Leung (2022) and Braun

and Verdier (2023)), and network formation (e.g., Chandrasekhar and Jackson (2016)). Unlike

the aforementioned papers, this paper speaks directly to multi-way clustering, and it makes a

modification to the proof of Ross (2011) Theorem 3.6 to obtain the result instead of applying the

theorem directly.

2 Setting and Main Result

2.1 Setup

Consider a setup with two-way clustering on dimensions G and H for random vectors {Wi}ni=1,

where Wi := (Wi1,Wi2, · · · ,WiK)′ ∈ RK and i = 1, . . . , n is the unit of observation. For example,

G could denote states and H could denote industries. Clustering in more than two dimensions is

possible, and derivations are entirely analogous. This section establishes a central limit theorem

(CLT) for
∑

iWi, as n → ∞. Here and in the following, sums are over (subsets of) {1, 2, . . . , n}.

For C ∈ {G,H}, let NC
c denote the set of observations in cluster c on dimension C — this setup

partitions the sample on the C dimension.
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Let g(i) and h(i) denote the cluster that observation i belongs to on the G and H dimensions

respectively. These cluster identities are nonstochastic and observed. Let NC
c := |NC

c | denote the

size of cluster c on dimension C ∈ {G,H} and Ngh := |NG
g ∩NH

h |. These cluster sizes are allowed

to be heterogeneous in a way that will be formalized in the assumptions below. Wi is assumed to

be independent of the joint distribution of {Wj} for j /∈ NG
g(i) ∪ NH

h(i) =: Ni, i.e., when i and j do

not share a cluster on either dimension. Hence, Ni is the set of observations that are arbitrarily

dependent with i. This environment is stated as Assumption 1.

Assumption 1. With Ni = NG
g(i) ∪NH

h(i),

(a) Wi⊥⊥ {Wj}j /∈Ni
for all i.

(b) For observations i, j and k ∈ Ni, l ∈ Nj and all nonstochastic µ ∈ RK , if j, l /∈ (Ni ∪ Nk),

then Cov(µ′WiW
′
kµ, µ

′WjW
′
lµ) = 0.

While the dependence structure is implicitly described in the setup of many clustering papers (e.g.,

Hansen and Lee (2019); Menzel (2021)), Assumption 1 makes the dependence structure explicit. As-

sumption 1(a) is a dissociation assumption similar to Definition 3.5 of Ross (2011) required to apply

Stein’s method. Assumption 1(b) is required because, for a scalar Wi, a crucial step of the proof re-

quires E[WiWjWkWl] = E[WiWk]E[WjWl] when j, l do not share any cluster with i, k. Even when

Wi⊥⊥ (Wj ,Wl) and Wk⊥⊥ (Wj ,Wl), we cannot conclude that E[WiWjWkWl] = E[WiWk]E[WjWl]

in general, because independence of marginal distributions does not imply independence of the

joint distribution. Assumption 1(b) hence makes an assumption on the joint distribution. It can

alternatively be stated as (Wi,Wk) ⊥⊥ (Wj ,Wl), which is stronger but more interpretable than

the zero-covariance assumption. I further discuss the relationship between Assumption 1 and the

existing literature in Section 2.3.

Assumption 1 is agnostic about the dependence structure between Wi and Wj when i and j share

at least one cluster. It also allows the data generating process to be arbitrarily heterogeneous

across different clusters, mimicking the heterogeneity permitted in one-way clustering (e.g., Hansen

and Lee (2019); Djogbenou et al. (2019)). Since one-way clustering is a special case of two-way

clustering where the H cluster consists of single observations, the result here generalizes the existing

results in one-way clustering. In contrast, the existing literature on two-way clustering assumes

separate exchangeability that additionally imposes identical distribution over clusters, so it does

not generalize the results on one-way clustering.
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For positive definite matrix Q, let λmin(Q) denote the smallest eigenvalue of Q. Then, let Qn :=

V ar (
∑

iWi) denote the variance of the sum and λn := λmin(Qn) denote its smallest eigenvalue.

For example, when K = 1, Wi is a scalar and λn = Qn = V ar(
∑

iWi). K0 is used throughout the

paper to denote an arbitrary constant.

Assumption 2. For C ∈ {G,H}, and k ∈ {1, 2, · · · ,K}, there exists K0 < ∞ such that:

(a) E[W 4
ik] ≤ K0 for all i.

(b) 1
λn

maxc(N
C
c )2 → 0.

(c) 1
λn

∑
c(N

C
c )2 ≤ K0.

Since the objective of this paper is to prove a CLT, Assumption 2 imposes restrictions that rule out

data generating processes that are asymptotically non-Gaussian. One such example is explained

later in Remark 1. Nonetheless, as reflected in Table 1 of Chiang and Sasaki (2023), such a

non-Gaussian regime is an exception rather than the norm when considering a generic separately

exchangeable process.

Assumption 2(a) requires the fourth moment to be bounded, which is stronger than the moment

condition in one-way clustering (e.g., Equation (7) of Hansen and Lee (2019) and Assumption 1 of

Djogbenou et al. (2019)). The proof in one-way clustering usually verifies a Lindeberg condition

then applies the Lindeberg CLT because blocks of observations are independent of each other.

With two-way dependence, we no longer have independent blocks because each cluster can have

observations that are dependent on observations from a different cluster when these observations

share a cluster on a different dimension. Hence, a different proof strategy is required. The proof

in this paper uses Stein’s method, which requires stronger moment restrictions, but provides a

non-asymptotic bound on the approximation error — details are in Subsection 2.4. By using this

strategy, a bounded fourth moment is required.

Assumption 2(b) requires the size of the largest cluster to be small relative to the total variance.

This condition mimics the sparsity condition in the networks literature (e.g., Graham (2020)).

Intuitively, this condition is required so that the removal of a cluster does not change the variance

substantively. This assumption allows the ratio of any two cluster sizes to diverge to infinity. It is

identical to Equation (12) of Hansen and Lee (2019) and Assumption 3 of Djogbenou et al. (2019) for

one-way clustering. Assumption 2(b) also rules out having components that are perfectly correlated:
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if the components of the vector were perfectly correlated (i.e., µ′Wi = 0 for some µ ̸= (0, . . . , 0)′),

then λn = 0. If cluster sizes are uniformly bounded, and λn → ∞, then Assumption 2(b) is

satisfied.5

Assumption 2(c) is a summability condition that requires λn not to be too small, and requires

λn to be the same order as
∑

c(N
C
c )2, i.e., λn ≍

∑
c(N

C
c )2, C ∈ {G,H}.6 With strictly positive

covariance within clusters, λn ≍
∑

c(N
C
c )2 is satisfied. However, if the researcher were conservative

and clustered on C when the data is indeed iid, then λn ≍ n, which then requires
∑

c(N
C
c )2 ≍ n

for the condition to hold. The assumption that (1/λn)
∑

c(N
C
c )2 ≤ K0 matches Equation (11) of

Hansen and Lee (2019) and Assumption 2 of Djogbenou et al. (2019).

In general, the structure of dependence affects λn while the structure of clustering affects
∑

c(N
C
c )2.

For example, using the common shocks model of Example 1, λn ≍
∑

c(N
C
c )2 when the variances of

common shocks αg and γh are non-zero, but if the variances of αg and γh are zero, then λn ≍ n.

With a balanced clustering structure where g ∈ {1, · · · ,M}, h ∈ {1, · · · ,M} and Ngh = 1, we have

n = M2 and
∑

c(N
C
c )2 = M3. However, if we have one large cluster, say when all observations are

the only observation in their H cluster, i.e., h(i) = i, and on the G dimension, the first cluster has

size NG
1 = n1/4, while all other clusters have size 1, then,

∑
c(N

C
c )2 ≍ n1/2 + (n− n1/4) ≍ n.

Remark 1. Assumptions 2(b) and 2(c) rule out the following purely interactive model. For g ∈

{1, · · · ,M}, h ∈ {1, · · · ,M} and Ngh = 1, we observe Wgh = αgγh, where αg and γh are iid with

mean zero and variances σ2
α and σ2

γ respectively, so there are M2 observations. As pointed out by

Menzel (2021) Example 1.7, this model has an asymptotic distribution that is non-normal, with no

analog in one-way clustering. To see this,
∑

g,hWgh/M =
(∑

g αg/
√
M
)(∑

h γh/
√
M
)

d−→ Z1Z2,

where Z1 and Z2 are independent standard normal random variables. This limiting distribution

is also known as Gaussian chaos. Since maxg(N
G
g )2/λn = M2/(M2σ2

ασ
2
γ) = 1/(σ2

ασ
2
γ) does not

converge to 0, Assumption 2(b) fails. Further,
∑

g(N
G
g )2/λn = M3/(M2σ2

ασ
2
γ) = M/σ2

ασ
2
γ → ∞

violates Assumption 2(c).

Remark 2. Assumptions 2(b) and 2(c) mimic the Lindeberg condition as they divide by the

variance of the sum. Nonetheless, if we are willing to make stronger assumptions on variances, we

5Assumption 2(b) is hence a more general version of sparsity than having the size of the dependency neighborhood (i.e.,
the number of observations plausibly correlated with some observation i) being bounded above. The conditions are
also comparable with Verdier (2020) in the two-way fixed effects literature: when the neighborhood size is bounded,
λn ≍ n, which matches his assumption 2(c).

6For sequences an and bn, an ≍ bn if and only if there exists K0 < ∞ such that an/bn, bn/an ∈ [−K0,K0] for all
elements in the sequence.
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can rewrite the assumptions in terms of primitives. Consider the simple case where Wi is a scalar.

If we assume that E [WiWj ] ≥ c > 0 for all i and j ∈ Ni, then Assumption 2(c) is satisfied as

λn ≥ c

(∑
g

(
NG

g

)2
+
∑

h

(
NH

h

)2 −∑g,h

(
NG∩H

(g,h)

)2)
≥ c

∑
g

(
NG

g

)2
and λn ≥ c

∑
h(N

H
h )2. Then,

as long as the largest cluster is small relative to
∑

c

(
NC

c

)2
, i.e., maxc(N

C
c )2/

∑
c

(
NC

c

)2 → 0, (b)

is satisfied. Consequently, a stronger way to state (b) and (c) is that maxc(N
C
c )2/

∑
c

(
NC

c

)2 → 0

and E [WiWj ] ≥ c > 0 for all i and j ∈ Ni.

2.2 Main Result

The main result is that the sum of a sequence of two-way clustered random variables is asymp-

totically normal. Further, the plug-in variance estimator originally proposed by CGM, Q̂n :=∑
i

∑
j∈Ni

WiW
′
j , is consistent. This plug-in expression matches Equation (2.8) of CGM, where W

is used here in place of their û.

Theorem 1. Under Assumptions 1 and 2, Q
−1/2
n

∑
i(Wi−E[Wi])

d−→ N(0, IK). Further, if E[Wi] =

0 ∀i, then Q
−1/2
n Q̂nQ

−1/2
n

p−→ IK .

One-way clustering is a special case of this theorem when one dimension is weakly nested within

the other: examples include G = H so both dimensions are identical, and clustering by county and

state (as counties are nested in states). A sufficient condition for consistent variance estimation is

E[Wi] = 0, similar to Theorem 3 of Hansen and Lee (2019). This assumption is sufficient in many

applications: for example, linear regressions considered in Section 3 are identified by requiring the

expectation of the residual term to be zero. If E[Wi] = µ for all i as in Theorem 4 of Hansen and

Lee (2019), consistency can be obtained under the same assumptions.7

Remark 3. A double array of random vectors, where the random vector Win is indexed by n,

can be accommodated. In this setup, with K = 1 for simplicity, we can define Wn as the class

of distributions of n random variables {Win}ni=1 that satisfy Assumptions 1, 2(a), 2(c), and that

for C ∈ {G,H}, there exists K0 < ∞ and ϵ > 0 such that 1
λn

maxc(N
C
c )2 ≤ K0n

−ϵ (which

is a modification of Assumption 2(b)). Then, for Rn := Q
−1/2
n

∑
i(Win − E[Win]), dW denot-

ing the Wasserstein distance8, and Z denoting the standard normal random variable, we have

7Since (1/n)
∑

i Wi consistently estimates µ, the result follows by using W̃i = Wi − µ in place of Wi.
8See details in Section 2.4.
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sup{Win}ni=1∈Wn
dW (Rn, Z) → 0 as n → 0. Consequently, normality holds for a double array uni-

formly over distributions in Wn. The proof of such a result is the same as the proof of Theorem 1.

In the double array, Assumption 2(c) rules out a balanced setting where component variances are

of order smaller than one: there are O(M3) variance and covariance objects in λn, so when they

are of order rM , λn = O(M3rM ) while
∑

c(N
C
c )2 = M3. Then, any rM that decays at any order of

M violates Assumption 2(c).9

Remark 4. While the CGM variance estimator is valid in this environment without separate ex-

changeability, we must be more careful with bootstrap methods that were developed under separate

exchangeability (e.g., Menzel (2021), MacKinnon et al. (2021)). Bootstrap methods often resample

cluster-specific means, such as α̂g = (1/NG
g )
∑

i∈NG
g
Wi − (1/n)

∑
iWi. Consider a data generat-

ing process where, with αg = (1/NG
g )
∑

i∈NG
g
[Wi]− (1/n)

∑
iE[Wi], odd-numbered g clusters have

αg = −1 and even-numbered g clusters have αg = 2, and there are twice as many units in odd-

numbered clusters as even-numbered clusters. Such a process is not exchangeable. Resampling α̂g’s

with equal probability results in a positive mean, which invalidates naive bootstrap procedures.

The following two subsections discuss technicalities on the dependence structure and the proof

sketch. A general-interest audience may wish to proceed immediately to Section 3.

2.3 Discussion of Dependence Structure

To compare the setup used in Assumption 1 to the existing literature, I carefully define a few

terms used in Menzel (2021), whose setup uses a dissociated separately exchangeable array. Let

Ygh denote an infinite array of observations in cluster g on the G dimension and cluster h on the

H dimension. Ygh is a separately exchangeable array if, for any integers G̃, H̃ and permutations

9These assumptions are primarily used in Lemmas 6 and 7 of the appendix, so an alternative way to pro-
ceed with the proof of normality is to assume their conclusions 1

λ3
n

∑
i

∑
j,k∈Ni

E [|Wi|WjWk] = o(1) and

1
λ4
n
V ar

(∑
i

∑
j∈Ni

WiWj

)
= o(1) directly. In the balanced design where the second, third and fourth moments

decay at the same rate rM ,
∑

i

∑
j,k∈Ni

E [|Wi|WjWk] = O
(
M4rM

)
and V ar

(∑
i

∑
j∈Ni

WiWj

)
= O

(
M5rM

)
.

Then, 1
σ3
n

∑
i

∑
j,k∈Ni

E [|Wi|WjWk] = O
(
M−1/2r

−1/2
M

)
and 1

σ4
n
V ar

(∑
i

∑
j∈Ni

WiWj

)
= O

(
M−1r−1

M

)
. Hence,

the conclusions can still hold if these moments decay at a rate slower than M : for instance, if rM = M−1/2, then

O
(
M−1r−1

M

)
= O

(
M−1/2

)
= o(1).
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π1 : {1, . . . , G̃} → {1, . . . , G̃} and π2 : {1, . . . , H̃} → {1, . . . , H̃}, we have:

(Yπ1(g)π2(h))g,h
d
= (Ygh)g,h,

where
d
= denotes equality in distribution.10 Such an array is dissociated if, for any G0, H0 ≥

1, (Ygh)
g=G0,h=H0

g=1,h=1 is independent of (Ygh)g>G0,h>H0 . Dissociation is how the existing literature

formally incorporates the multi-way clustering structure. Separate exchangeability implies that

the cluster indices are not meaningful, and it is stronger than having identical distributions across

clusters. This environment is a special case of Assumption 1, as the following proposition claims.

Proposition 1. A dissociated separately exchangeable array satisfies Assumption 1.

One formal generalization of separate exchangeability is relative exchangeability in Crane and

Towsner (2018), where exchangeability need not hold for the full sample, but only within each

stratum (i.e., relative to some structure), such as within cohorts of students. However, such a

generalization is insufficient in finite-population settings with two-way clustered sampling. Suppose

there is a finite superpopulation of outcomes {Yi}ni=1 that is nonstochastic, and two-way clustered

sampling by ethnic groups and district (e.g., Nunn and Wantchekon (2011)): a subset of districts are

independently sampled, a subset of ethnic groups are independently sampled, and units are sampled

from the intersections of districts and ethnic groups that are both sampled. We are interested in

the mean of Y in the finite superpopulation. With Ri denoting the indicator for whether individual

i is sampled and hence observed, the observed random variable is Wi = RiYi. Even though Ri is

separately exchangeable, RiYi is neither separately exchangeable nor relatively exchangeable due

to conditioning on {Yi}ni=1, but Assumption 1 is still satisfied.

2.4 Proof Sketch

The proof of Theorem 1 proceeds by first proving a CLT for a scalar random variable, then applying

the Cramer-Wold device to obtain the multivariate CLT. The scalar CLT is proven using Stein’s

method. I adapt the proof strategy from Ross (2011) Theorem 3.6 to obtain an upper bound on

10Due to Kallenberg (2005), {Ygh}g≥1,h≥1 is separately exchangeable if and only if there exists a representation Ygh =

f(αg, γh, εgh), where (αg, γh, εgh)
iid∼ U [0, 1]. The setup in this paper does not require (αg, γh, εgh)

iid∼ U [0, 1], which
allows some data generating processes ruled out by separate exchangeability. For example, suppose there is some
Ygh = −Ygh′ . These random variables are allowed to be perfectly correlated under Assumption 1 since they share a
cluster. However, the representation f(.) implies E[Ygh|αg]⊥⊥ E[Ygh′ |αg], so no such representation exists.
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the Wasserstein distance between a pivotal statistic and the standard normal random variable.

By exploiting the two-way clustering structure, the upper bound on the distance can be shown to

converge to zero. All details are in Appendix A.

For ease of exposition, consider a simpler environment where K = 1, and E[Wi] = 0. Let σ2
n := Qn,

R =
∑

iWi/σn, and Z ∼ N(0, 1). Lemma 4 in Appendix A provides an explicit bound on the

Wasserstein distance between R and Z. With dW (.) denoting the Wasserstein distance, and dK(.)

denoting the Kolmogorov distance, Proposition 1.2 from Ross (2011) implies that dK(R,Z) ≤

(2/π)1/4
√
dW (R,Z).11 The Kolmogorov distance is the maximal distance between two CDF’s, so

it is informative of the maximum distance between the distribution of the pivotal statistic and the

standard normal. If dW (R,Z) → 0, then dK(R,Z) → 0, so the statistic R is asymptotically normal.

By using Assumption 1 to adapt the proof of Theorem 3.6 in Ross (2011),

dW (R,Z) ≤ 1

σ3
n

∑
i

∑
j,k∈Ni

E[|Wi|WjWk] +

√
2√

πσ2
n

√√√√√V ar

∑
i

∑
j∈Ni

WiWj

. (1)

This inequality is informative of the quality of the normal approximation. This bound on the

Wasserstein distance (and hence the Kolmogorov distance) is non-asymptotic, and of the Berry-

Esseen type, thereby giving a worst-case bound on the distance between the pivotal statistic and the

standard normal. Ross (2011) Theorem 3.6 is a corollary of (1): the term with the third moment

is immediate, while the term with the fourth moment results from the last line of their proof.

At this point, my proof departs from the proofs in the existing statistical literature that em-

ploy Stein’s method (e.g., Chen and Shao (2004); Janisch and Lehéricy (2024)). Let Ni :=

|Ni|. Hölder’s inequality is employed on objects such as
∑

i

∑
j,k∈Ni

E[|Wi|WjWk]. The ex-

isting literature uses the L1 norm of moments E[|Wi|3] and the L∞ norm of Ni, resulting in

(maxmNm)2
∑

iE[|Wi|3]. In contrast, my proof uses the L∞ norm of E[|Wi|3] and the L1 norm of

11For completeness, I define both distance metrics using the notation in Ross (2011). For two probability measures µ
and ν, and family of test functions H, distances are defined as:

dH(µ, ν) = sup
h∈H

∣∣∣∣ ∫ h(x)dµ(x)−
∫

h(x)dν(x)

∣∣∣∣.
As special cases, the Kolmogorov distance uses H = {1[· ≤ x] : x ∈ R} and the Wasserstein distance uses H = {h :
R → R : |h(x)− h(y)| ≤ |x− y|}.
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Ni, resulting in maxmE[|Wm|3]
∑

iN
2
i . Hence,

1

σ3
n

∑
i

∑
j,k∈Ni

E[|Wi|WjWk] ≤
1

σ3
n

max
m

E[|Wm|3]
∑
i

N2
i .

Since maxmE[|Wm|3] is bounded by Assumption 2(a), it suffices to show that
∑

iN
2
i /σ

3
n → 0. Due

to Assumption 1(a), Ni ≤ NG
g(i) +NH

h(i), so

1

σ3
n

∑
i

N2
i ≤ 1

σ3
n

∑
i

(NG
g(i) +NH

h(i))
2 ≤ 1

σ3
n

max
g,h

(NG
g +NH

h )
∑
i

(Ng(i) +Nh(i))

≤
[
1

σn
max
g,h

(NG
g +NH

h )

]
1

σ2
n

(∑
g

(NG
g )2 +

∑
h

(NH
h )2

)
.

Since λn = σ2
n when K = 1, maxg,h(N

G
g + NH

h )/σn → 0 by Assumption 2(b) and the final term(∑
g(N

G
g )2 +

∑
h(N

H
h )2

)
/σ2

n is bounded by Assumption 2(c). Hence, the term is o(1).

A similar argument is made for the fourth moment that features in V ar
(∑

i

∑
j∈Ni

WiWj

)
. To

complete the proof for variance estimation, observe that since the fourth moments exist, the con-

sistency of the plug-in variance estimator can be proven by using Chebyshev’s inequality and the

existing intermediate results.

Remark 5. By modifying the proof of Theorem 3.6 in Ross (2011), the conditions in this pa-

per permit some forms of heterogeneity in cluster sizes that Theorem 3.6 of Ross (2011) does

not. The following is one such example. All observations are the only observation in their H

cluster, i.e., h(i) = i. On the G dimension, the first cluster has size NG
1 = n1/4, while all

other clusters have size 1. Then, with positive correlation for units within each cluster such that

λn ≍
∑

c(N
C
c )2, we have λn ≍ n1/2 + (n − n1/4) ≍ n and (NG

1 )2/λn ≍ n1/2/n = o(1), so the

conditions of Theorem 1 are satisfied. However, Theorem 3.6 of Ross (2011) bounds the Wasser-

stein distance by
(
N2

1 /λ
3/2
n

)∑
iE|Wi|3 and a term that involves the fourth moment. We have

N2
1 /λ

3/2
n
∑

iE|Wi|3 ≍ n−1
∑

iE|Wi|3 ̸= o(1), so we may not obtain convergence. This example

similarly rules out using results from Janisch and Lehéricy (2024) directly.

Remark 6. There are several early papers in probability theory that deliver similar results, but

are insufficient for Theorem 1. For instance, Theorem 2 of Janson (1988) is a central limit theorem
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that uses the condition (with m = 3):

(
n

maxiNi

)1/3 (maxiNi)maxi |Wi|
σn

=

(
n

σ3
n

(
max

i
Ni

)2
)1/3

max
i

|Wi| → 0.

In this proof sketch, I have shown that
∑

iN
2
i /σ

3
n → 0, but n(maxiNi)

2/σ3
n ≥

∑
iN

2
i /σ

3
n, so the

Janson (1988) condition need not hold in this environment.

3 Theory for Least Squares Regression

This section applies Theorem 1 to linear regressions, showing that using the normal approximation

with the CGM variance estimator is valid. Consider a linear model where the scalar outcome Yi is

generated by:

Yi = X ′
iβ + ui.

with Xi ∈ RK . We are interested in estimating β. Suppose E[Xiui] = 0 for all i, and (X ′
i, ui) is

allowed to be two-way clustered. The standard OLS estimator is:

β̂ =

(∑
i

XiX
′
i

)−1(∑
i

XiYi

)
= β +

(∑
i

XiX
′
i

)−1(∑
i

Xiui

)
.

This object is assumed to be well-defined in that
∑

iXiX
′
i is invertible. Define Sn :=

∑
iE[XiX

′
i]

andQn := V ar (
∑

iXiui), and denote their sample analogs as Ŝn =
∑

iXiX
′
i and Q̂n :=

∑
i

∑
j∈Ni

ûiûjXiX
′
j .

Let the smallest eigenvalue of Qn be λn := λmin(Qn). The asymptotic variance of β̂ and its sample

analog are V (β̂) := S−1
n QnS

−1
n and V̂ (β̂) := Ŝ−1

n Q̂nŜ
−1
n respectively.

Assumption 3 provides sufficient conditions for the estimator β̂ to be asymptotically normal and for

the CGM variance estimator to be consistent. The conditions mimic Assumption 2 so that Theorem

1 is applicable to the random vector Xiui. The new condition is a weak regularity condition that

λmin (Sn/n) ≥ K1 > 0, mimicking the rank condition in OLS.

Assumption 3. For C ∈ {G,H}, and k ∈ {1, 2, · · · ,K}, there exists K0 < ∞ and K1 > 0 such

that:

13



(a) E[u4i |Xi] ≤ K0, E[X4
ik] ≤ K0, E[Xiui] = 0 for all i.

(b) 1
λn

maxc(N
C
c )2 → 0.

(c) 1
λn

∑
c(N

C
c )2 ≤ K0.

(d) (X ′
i, ui)

′ ⊥⊥ {(X ′
j , uj)

′}j /∈Ni
. For observations i, j and k ∈ Ni, l ∈ Nj and all nonstochastic

µ ∈ RK , if j, l /∈ (Ni ∪Nk), then (X ′
i, ui, X

′
k, uk)

′⊥⊥ (X ′
j , uj , X

′
l , ul)

′.

(e) λmin

(
1
nSn

)
≥ K1.

Proposition 2. Under Assumption 3, Q
−1/2
n Sn(β̂−β)

d−→ N(0, IK), and [S−1
n QnS

−1
n ]−1[Ŝ−1

n Q̂nŜ
−1
n ]

p−→

IK .

Proposition 2 is useful for performing F tests on a subvector of β. The proof of Proposition 2

proceeds by applying Theorem 1 to
∑

iXiui, then showing that S−1
n Ŝn

p−→ IK , which uses the rank

condition of Assumption 3(e). It then remains to show that the remainder terms are asymptotically

negligible.

The practitioner’s takeaway from Proposition 2 is that the existing CGM variance estimator can

be used for valid inference with two-way clustering. The result provides the formal theoretical

guarantee for using the estimator, under conditions that permit heterogeneity across clusters.

Besides the application mentioned, Theorem 1 also has implications on the conditions required

for valid inference when the random variable is two-way clustered in many other econometric

models, including design-based settings and instrumental variables models. This theory is especially

relevant for design-based settings where the researcher conditions on potential outcomes, so the

random variable cannot be separately exchangeable by construction — see Xu and Yap (2024),

for instance. Inference for estimators based on moment conditions can be done by straightforward

application of Theorem 1 as in linear regression. Practically, this paper has shown that the popular

CGM estimator is robust in an environment without separate exchangeability, but practitioners

should exercise caution when applying bootstrap methods to environments that are not separately

exchangeable. While the results are presented for two-way clustering, they can be easily extended

to clustering on three or more dimensions.
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A Proof of Theorem 1

The proof strategy is as follows. I first prove Lemma 1, which is a central limit theorem (CLT) for

scalars. The proof of Lemma 1 relies on Lemmas 2 to 7. Lemmas 2 to 4 derive an upper bound on

the Wasserstein distance between a pivotal statistic and standard normal Z. Lemmas 5 to 7 then

show that the derived upper bound is o(1). With Lemma 1, the multivariate CLT of Theorem 1 is

obtained by using the Cramer-Wold device. The remainder of the proof proceeds in the following

order: (i) introduce definitions and notation, (ii) state Lemma 1, (iii) state and prove Lemmas 2

to 7, (iv) prove Lemma 1, then (v) complete the proof of Theorem 1.

The following definitions and notations are used throughout the proof. Let dW (X,Y ) denote the

Wasserstein distance between random variables X and Y , so dW (X,Y ) = 0 if and only if the

distributions of X and Y are identical. The norms of functions are defined as the sup norm i.e.,

||f || = supx∈D |f(x)|. For vector a, ||a|| = (a′a)1/2 is the Euclidean norm, and for positive semi-

definite matrix A and λmax(A) denoting the largest eigenvalue, ||A|| =
√
λmax(A′A) denotes the

spectral norm, and A1/2 denotes the symmetric matrix such that A1/2A1/2 = A.
∑

i∈NG
g

∑
j∈NG

g

is abbreviated as
∑

i,j∈NG
g
. The dependency neighborhood of i, Ni ⊆ {1, · · · , n}, is defined as the

set of observations where i ∈ Ni and Xi is independent of {Xj}j ̸=Ni
, and Ni := |Ni| is the number

of observations in i’s dependency neighborhood. 1[A] is an indicator function that takes value 1

if A is true and 0 otherwise. In the rest of this proof, Xi denotes a scalar random variable while

Wi ∈ RK as stated in the main text is a random vector. Denote the variance of the sum of the

scalar random variable Xi as σ
2
n := V ar (

∑
iXi). We are interested in the asymptotic distribution

of (1/σn)
∑

iXi.

Assumption 4. For C ∈ {G,H}, there exists K0 < ∞ such that:

(a) E[Xi] = 0 and E[X4
i ] ≤ K0 < ∞ for all i;

(b) 1
σ2
n
maxc

(
NC

c

)2 → 0;

(c) 1
σ2
n

∑
c

(
NC

c

)2 ≤ K0 < ∞;

(d) Xi⊥⊥ {Xj}j /∈Ni
; and

(e) for observations i, j, k ∈ Ni, l ∈ Nj, if (Ni∪Nk)∩ (Nj ∪Nl) = ∅, then Cov(XiXk, XjXl) = 0.
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Lemma 1. Under Assumption 4, (1/σn)
∑

iXi
d−→ N(0, 1), where σ2

n := V ar (
∑

iXi). Further,

using feasible estimator σ̂2
n :=

∑
i

∑
j∈Ni

XiXj, σ̂
2
n/σ

2
n

p−→ 1.

Lemma 2. (Theorem 3.1 of Ross (2011)) If R is a random variable, Z has a standard normal

distribution, and we define the family of functions F = {f : ||f ||, ||f ′′|| ≤ 2, ||f ′|| ≤
√
2π}, then

dW (R,Z) ≤ supf∈F |E[f ′(R)−Rf(R)]|.

The proofs of Lemmas 3 and 4 follow Ross (2011) Theorem 3.6 up to Equations (3.11) and (3.12).

Lemma 3. Let X1, · · · , Xn be random variables such that E[Xi] = 0, σ2
n = V ar(

∑
iXi), and define

R =
∑

iXi/σn. If Ri :=
∑

j /∈Ni
Xj/σn, then, for all f ∈ F ,

E[Rf(R)] = E

[
1

σn

∑
i

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]
+ E

[
1

σn

∑
i

Xi(R−Ri)f
′(R)

]
.

Proof. Start from right-hand side:

E

[
1

σn

∑
i

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]
+ E

[
1

σn

∑
i

Xi(R−Ri)f
′(R)

]

= E

[
1

σn

∑
i

Xi(f(R)− f(Ri))

]
= E

[
1

σn

∑
i

Xif(R)

]
− E

[
1

σn

∑
i

Xif(Ri)

]

= E

[
1

σn

∑
i

Xif(R)

]
= E[Rf(R)].

The first equality in the final line comes from the fact that Ri is independent of Xi based on how

dependency neighborhoods are defined. Hence, E[Xif(Ri)] = 0.

Lemma 4. Let X1, · · · , Xn be random variables such that, E[Xi] = 0, σ2
n = V ar(

∑
iXi), and define

R =
∑

iXi/σn. Let the collection (X1, · · · , Xn) have dependency neighborhoods Ni, i = 1, · · · , n.

Then for Z a standard normal random variable,

dW (R,Z) ≤ 1

σ3
n

∑
i

∑
j,k∈Ni

E [|Xi|XjXk] +

√
2√

πσ2
n

√√√√√V ar

∑
i

∑
j∈Ni

XiXj

. (2)

Proof. Due to Lemma 2, to bound dW (R,Z) from above, it is sufficient to bound |E[f ′(R)−Rf(R)]|,
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where ||f ||, ||f ′′|| ≤ 2, ||f ′|| ≤
√

2/π. Define Ri :=
∑

j /∈Ni
Xj/σn, so Xi is independent of Ri. Then,

|E[f ′(R)−Rf(R)]| = |E[f ′(R)]− E[Rf(R)]|

≤

∣∣∣∣∣E[f ′(R)]− E

[
1

σn

∑
i

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]
− E

[
1

σn

∑
i

Xi(R−Ri)f
′(R)

]∣∣∣∣∣
≤

∣∣∣∣∣E
[
1

σn

∑
i

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]∣∣∣∣∣+
∣∣∣∣∣E
[
f ′(R)

(
1− 1

σn

∑
i

Xi(R−Ri)

)]∣∣∣∣∣ .
The first inequality applies Lemma 3, and the second inequality applies the triangle inequality.

Consequently, it is sufficient to show that the first term is bounded by the corresponding first term

of Equation (2), and the second term is bounded by the corresponding second term.

Consider the first term. By Taylor expansion of f(Ri) around f(R), and the triangle inequality,

the term that generates the third moment is:∣∣∣∣∣E
[
1

σn

∑
i

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

] ∣∣∣∣∣ ≤ ||f ′′||
2σn

∣∣∣∣∣∑
i

E[|Xi|(R−Ri)
2]

∣∣∣∣∣
≤ 1

σ3
n

∑
i

E

|Xi|

∑
j∈Ni

Xj

2 =
1

σ3
n

∑
i

∑
j,k∈Ni

E[|Xi|XjXk].

Turning now to the second term,∣∣∣∣∣E
[
f ′(R)

(
1− 1

σn

∑
i

Xi(R−Ri)

)]∣∣∣∣∣
≤ ||f ′||

σ2
n

E

∣∣∣∣∣∣σ2
n −

∑
i

Xi

∑
j∈Ni

Xj

∣∣∣∣∣∣ ≤ ||f ′||
σ2
n

E

σ2
n −

∑
i

Xi

∑
j∈Ni

Xj

21/2

11/2

≤
√
2√

πσ2
n

√√√√√V ar

∑
i

∑
j∈Ni

XiXj

.

Lemma 5. E[|XiXjXk|] ≤ maxmE[|Xm|3], E[|XiXjXkXl|] ≤ maxmE[|Xm|4], and |E[XiXk]E[XjXl]| ≤

maxmE[|Xm|4].
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Proof. By the arithmetic mean — geometric mean (AM-GM) inequality,

E|XiXjXk| ≤
1

3

(
E|Xi|3 + E|Xj |3 + E|Xk|3

)
≤ max

m
E[|Xm|3].

A similar argument yields E[|XiXjXkXl|] ≤ maxmE[|Xm|4]. For the final result, first observe that

E[XiXk]
2 ± 2E[XiXk]E[XjXl] + E[XjXl]

2 = (E[XiXk]± E[XjXl])
2 ≥ 0. Hence,

|E[XiXk]E[XjXl]| ≤
1

2
(E[XiXk]

2 + E[XjXl]
2) ≤ 1

2
(E[X2

i X
2
k ] + E[X2

jX
2
l ])

≤ 1

4
(E[X4

i ] + E[X4
j ] + E[X4

k ] + E[X4
l ]) ≤ max

m
E[X4

m].

Lemma 6. Under Assumption 4, 1
σ3
n

∑
i

∑
j,k∈Ni

E [|Xi|XjXk] = o(1).

Proof. Using Lemma 5,

1

σ3
n

∑
i

∑
j,k∈Ni

E [|Xi|XjXk] ≤
1

σ3
n

∑
i

∑
j,k∈Ni

E [||Xi|XjXk|]

≤ maxmE[|Xm|3]
σ3
n

∑
i

∑
j,k∈Ni

1 =
maxmE[|Xm|3]

σ3
n

∑
i

N2
i .

Observe maxmE[|Xm|3] ≤ K0 since the 4th moment exists, so it remains to show that the remaining

terms are o(1). Due to Assumption 1, Ni ≤ NG
g(i) +NH

h(i), so

1

σ3
n

∑
i

N2
i ≤ 1

σ3
n

∑
i

(NG
g(i) +NH

h(i))
2 ≤ 1

σ3
n

max
g,h

(NG
g +NH

h )
∑
i

(Ng(i) +Nh(i))

≤
[
1

σn
max
g,h

(NG
g +NH

h )

]
1

σ2
n

(∑
g

(NG
g )2 +

∑
h

(NH
h )2

)
.

maxg,h(N
G
g + NH

h )/σn → 0 by Assumption 2(b) and the final term
(∑

g(N
G
g )2 +

∑
h(N

H
h )2

)
/σ2

n

is bounded by Assumption 2(c). Hence, the term is o(1).

Lemma 7. Under Assumption 4, 1
σ4
n
V ar

(∑
i

∑
j∈Ni

XiXj

)
= o(1).
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Proof. Observe that:

1

σ4
n

V ar

∑
i

∑
j∈Ni

XiXj

 =
1

σ4
n

E

∑
i

∑
j∈Ni

XiXj

2− 1

σ4
n

∑
i

∑
j∈Ni

E[XiXj ]

2

=
1

σ4
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

(E[XiXjXkXl]− E[XiXk]E[XjXl]).

Due to Assumption 1(b), when j, l do not share any cluster with i, k, E[XiXjXkXl] = E[XiXk]E[XjXl].

Hence, we only have to consider terms where there is at least one pair that shares a cluster. Let

Aij := 1[j ∈ Ni]. With finite 4th moment and Lemma 5, using the same argument as the proof of

Lemma 6, it is sufficient to show

1

σ4
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

(Aij +Ail +Akj +Akl) = o(1).

It is sufficient to consider the Aij term because the other terms are symmetric. In particular,

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Ail =
∑
i

∑
k∈Ni

∑
l

∑
j∈Nl

Ail =
∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij ,

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Akj =
∑
k

∑
i∈Nk

∑
j

∑
l∈Nj

Akj =
∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij , and

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Akl =
∑
k

∑
l

∑
i∈Nk

∑
j∈Nl

Akl =
∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij .

Considering the Aij term,

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

Aij ≤
∑
i

 ∑
j∈NG

g(i)

+
∑

j∈NH
h(i)


 ∑

k∈NG
g(i)

+
∑

k∈NH
h(i)


 ∑

l∈NG
g(j)

+
∑

l∈NH
h(j)

Aij .

The first and last terms of the summation take the form:

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NG

g(j)

Aij =
∑
g

∑
i,j,k,l∈NG

g

Aij =
∑
g

(NG
g )4.

The first equality in the equation above follows from how
∑

i =
∑

g

∑
i∈NG

g
and that if j ∈ NG

g(i),
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then i and j share the same g and hence
∑

l∈NG
g(j)

=
∑

l∈NG
g(i)

. The second equality occurs as

Aij = 1 when i and j share the same g cluster. With this equality, observe that
∑

g(N
G
g )4 =(

maxg(N
G
g )2

)∑
g(N

G
g )2. Since 1

σ2
n
maxg

(
NG

g

)2
= o(1) and 1

σ2
n

∑
g

∑
i,j∈NG

g
Aij ≤ 1

σ2
n

∑
g(N

G
g )2 <

∞ by Assumption 4, these terms are o(1) when divided by σ4
n.

An upper bound can similarly be derived for the interactive terms. To explain the steps carefully,

I label the equalities and inequalities (i) to (iv):

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NH

h(j)

Aij

(i)
=
∑
i,j,k

∑
g

1[i ∈ NG
g ]1[j ∈ NG

g ]1[k ∈ NG
g ]
∑
l

∑
h

1[j ∈ NH
h ]1[l ∈ NH

h ]Aij

(ii)
=
∑
g

∑
i,j,k

1[i ∈ NG
g ]1[j ∈ NG

g ]1[k ∈ NG
g ]Aij

∑
h

∑
l

1[j ∈ NH
h ]1[l ∈ NH

h ]

(iii)

≤

(
max

j

∑
h

∑
l

1[j ∈ NH
h ]1[l ∈ NH

h ]

)∑
g

∑
i,j,k∈NG

g

Aij


(iv)

≤

max
h

∑
l∈NH

h

1

max
g

∑
k∈NG

g

1

∑
g

∑
i,j∈NG

g

Aij

 =

(
max
h

NH
h

)(
max

g
NG

g

)(∑
g

(NG
g )2

)
.

The equality in (i) is obtained by transforming the conditional sums into sums over products

of indicators. The equality in (ii) is obtained from commutative and associative properties of

additional and multiplication. In step (iii), the inequality is obtained by using the upper bound

on the innermost sum over h and l. In step (iv), to see how maxj
∑

h

∑
l 1[j ∈ NH

h ]1[l ∈ NH
h ] =

maxh
∑

l∈NH
h
1, observe that once we choose the index j, the indicator 1[j ∈ NH

h ] can only take

value 1 for one particular h, so the maximum occurs when we choose a corresponding h that

results in the largest
∑

l∈NH
h
1. The inequality in (iv) is due to extracting

(
maxg

∑
k∈NG

g
1
)
from(∑

g

∑
i,j,k∈NG

g
Aij

)
. Since

∑
g(N

G
g )2/σ2

n ≤ K0 and maxg N
G
g /σn = o(1),

1

σ4
n

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NH

h(j)

Aij ≤
(

1

σn
max
h

NH
h

)(
1

σn
max

g
NG

g

)(
1

σ2
n

∑
g

(NG
g )2

)
= o(1).
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Proof of Lemma 1. Apply Lemma 4 to obtain:

dW (R,Z) ≤ 1

σ3
n

∑
i

∑
j,k∈Ni

E[|Xi|XjXk] +

√
2√

πσ2
n

√√√√√V ar

∑
i

∑
j∈Ni

XiXj

.

Applying Lemma 6 and 7 on each of the two terms, dW (R,Z) = o(1). Proof for consistency of the

variance estimator is equivalent to proving that (σ̂2
n − σ2

n)/σ
2
n = oP (1). By Chebyshev’s inequality,

P

(
σ̂2
n − σ2

n

σ2
n

> ϵ

)
≤ 1

ϵ2
1

σ4
n

E[(σ̂2
n − σ2

n)
2] =

V ar
(∑

i

∑
j∈Ni

XiXj

)
ϵ2σ4

n

= oP (1).

The convergence in the last step occurs by Lemma 7.

Proof of Theorem 1. To show that Q
−1/2
n

∑
i(Wi − E[Wi])

d−→ N(0, IK), due to the Cramer-Wold

device, it suffices to show that ∀µ ∈ RK , µ′Q
−1/2
n

∑
i(Wi−E[Wi])

d−→ µ′N(0, IK). If µ is a vector of

zeroes, then µ′Q
−1/2
n

∑
i(Wi −E[Wi])

d−→ µ′N(0, IK) is immediate. For ||µ|| > 0, it suffices to show

(1/||µ||)µ′Q
−1/2
n

∑
i(Wi − E[Wi])

d−→ (1/||µ||)µ′N(0, IK) = N(0, 1). Without loss of generality, we

can set ||µ|| = 1. For all nonstochastic µ ∈ RK\{0}, let σ2
n(µ) := V ar

(∑
i µ

′ (Qn/λn)
−1/2 (Wi − E[Wi])

)
,

so the following hold:

1. E

[(
µ′
(

1
λn

Qn

)−1/2
(Wi − E[Wi])

)]
= 0 and E

[(
µ′
(

1
λn

Qn

)−1/2
(Wi − E[Wi])

)4
]

≤ K0

for all i.

2. 1
σ2
n(µ)

maxc
(
NC

c

)2 → 0.

3. 1
σ2
n(µ)

∑
c(N

C
c )2 ≤ K0.

4.

(
µ′
(

1
λn

Qn

)−1/2
(Wi − E[Wi])

)
⊥⊥
{(

µ′
(

1
λn

Qn

)−1/2
Wj

)}
j /∈Ni

.

5. For observations i, j, k ∈ Ni, l ∈ Nj , if (Ni ∪Nk) ∩ (Nj ∪Nl) = ∅, then

Cov

(
µ′
(

1

λn
Qn

)−1/2

Wiµ
′
(

1

λn
Qn

)−1/2

Wk, µ
′
(

1

λn
Qn

)−1/2

Wjµ
′
(

1

λn
Qn

)−1/2

Wl

)
= 0.

For item 1, since λn := λmin(Qn), all eigenvalues of Qn/λn must be at least 1. Hence, all

eigenvalues of (Qn/λn)
−1/2 are bounded above by 1, which implies |µ′(Qn/λn)

−1/2| ≤ K1 for
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some arbitrary constant K1 < ∞. Item 1 then follows from Assumption 2(a). Observe that

σ2
n(µ) = µ′(Qn/λn)

−1/2Qn(Qn/λn)
−1/2µ = λn. Then, Assumption 2(b) yields item 2, and Assump-

tion 2(c) yields item 3. Item 4 is immediate from Assumption 1(a), and item 5 from Assump-

tion 1(b). By applying Lemma 1, (1/σn(µ))µ
′(Qn/λn)

−1/2
∑

i(Wi − E[Wi])
d−→ N(0, 1). By using

σ2
n(µ) = λn, this result is equivalent to µ′Q

−1/2
n

∑
i(Wi − E[Wi])

d−→ N(0, 1) as required.

Turning to consistent variance estimation, I first show that (1/λn)(Q̂n−Qn)
p−→ 0K×K , where 0K×K

is a K × K matrix of zeroes. Since Q̂n − Qn =
∑

i

∑
j∈Ni

WiW
′
j − E[WiW

′
j ], it suffices to show

convergence elementwise. Let Xi and Yi denote scalar components of Wi, i.e., Xi = Wim, Yi = Wip,

where m, p ∈ {1, 2, · · · ,K}. Then,

P

 1

λn

∑
i

∑
j∈Ni

(XiYj − E[XiYj ]) > ϵ

 ≤ 1

ϵ2
1

λ2
n

V ar

∑
i

∑
j∈Ni

XiYj


≤ 1

ϵ2λ2
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

|E[XiXjYkYl]− E[XiYk]E[XjYl]|

≤ K0

λ2
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

(Aij +Ail +Akj +Akl) = o(1).

The inequality in the last line is obtained due to Hölder’s inequality and finite moments. An

argument similar to that of Lemma 7 yields the o(1) equality. Then,

µ′(Q−1/2
n (Q̂n −Qn)Q

−1/2
n )µ = µ′

0

1

λn
(Q̂n −Qn)µ0

p−→ 0.

where µ0 is a vector whose entries are all bounded above by some arbitrary constant K1 < ∞ by

a similar argument as before. Convergence occurs because (1/λn)(Q̂n −Qn)
p−→ 0K×K .

B Proof of Propositions

Proof of Proposition 1. For (a), take any observation i and its associated clusters g(i), h(i). Use

the permutation function π1(g(i)) = 1 and π2(h(i)) = 1 so the array has the same distribution as

before due to separate exchangeability. Since the array is dissociated, by setting G0 = H0 = 1, Wi
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is independent of all observations that are not in g(i) or h(i), verifying (a).

For (b), take any i and k ∈ Ni. Without loss of generality, suppose that g(i) = g(k). Consider the

case where h(i) ̸= h(k). Use the permutation function π1(g(i)) = 1 and π2(h(i)) = 1, π2(h(k)) = 2

to get another array that has the same distribution. Since the array is dissociated, by setting

G0 = 1, H0 = 2, (Wi,Wk) is independent of all observations that are not in (Ni ∪ Nk). Since

j, l /∈ (Ni ∪ Nk), (Wi,Wk) ⊥⊥ (Wj ,Wl), which yields (b). If h(k) = h(i), set π2(h(k)) = 1 and

G0 = 1, H0 = 1. The same argument applies.

For Proposition 2, I first prove a consistency result.

Lemma 8. Under Assumptions 1, 2(a) and 2(b), and E[Wi] = 0 ∀i, ||(1/n
∑

i(WiW
′
i−E[WiW

′
i ])||

p−→

0.

Proof. It suffices to show convergence elementwise. Let Xi and Yi denote scalar components of Wi,

i.e., Xi = Wim, Yi = Wip, where m, p ∈ {1, 2, · · · ,K}. By Chebyshev’s inequality, and Assumption

2(a) that maxm,k E[W 4
mk] < K0,

P

(
1

n

∑
i

(XiYi − E[XiYi]) > ϵ

)

≤ 1

ϵ2
1

n2
E

∑
i

∑
j∈Ni

(XiYi − E[XiYi])(XjYj − E[XjYj ])

 ≤ K0

ϵ2n2

∑
i

∑
j∈Ni

1.

Hence, it suffices to show (
∑

i

∑
j∈Ni

1)/n2 = o(1). Observe

∑
i

∑
j∈Ni

1

n2
≤ maxiNi

n

(
∑

i 1)

n
,

so it suffices to show maxiNi/n = o(1). Since

λn ≤
∑
i

∑
j∈Ni

max
m

E[W 2
mk] ≤ n2max

m
E[W 2

mk],

we have:

(maxiNi)
2

n2
=

(maxiNi)
2maxmE[W 2

mk]

n2maxmE[W 2
mk]

≤ max
m

E[W 2
mk]

(maxiNi)
2

λn
= o(1).
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Convergence occurs due to Assumption 2(b) and maxmE[W 2
mk] < K0.

Proof of Proposition 2. Since E[u4i |Xi] ≤ K0, E[u4iX
4
ik] = E[E[u4i |Xi]X

4
ik] ≤ K0E[X4

ik] ≤ K2
0 is

bounded. By Theorem 1, Q
−1/2
n

∑
iXiui

d−→ N(0, IK).

To complete the normality result, I show that S−1
n Ŝn

p−→ IK , which is the same as showing that

||S−1
n (Ŝn−Sn)||

p−→ 0. By applying Lemma 8, (1/n)(Ŝn−Sn) = (1/n)
∑

i(XiX
′
i−E[XiX

′
i]) = oP (1).

Hence, it suffices that (Sn/n)
−1 has bounded eigenvalues, i.e., λmin(Sn/n) ≥ K1 > 0, which is true

by Assumption 3(e). Since β̂−β = Ŝ−1
n

∑
iXiui, by Slutsky’s lemma, Q

−1/2
n Sn(β̂−β)

d−→ N(0, IK).

Next, proceed to consistent variance estimation. Showing that ||Q−1
n Q̂n−IK || = oP (1) is equivalent

to showing that, ∀µ ∈ RK , µ′
(
Q

−1/2
n (Q̂n −Qn)Q

−1/2
n

)
µ = oP (1). Expanding Q̂n,

Q̂n :=
∑
i

∑
j∈Ni

ûiûjXiX
′
j =

∑
i

∑
j∈Ni

(ui −X ′
i(β̂ − β))(uj −X ′

j(β̂ − β))XiX
′
j

=
∑
i

∑
j∈Ni

uiujXiX
′
j − 2

∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
j

+

∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

 .

By Theorem 1, µ′Q
−1/2
n (

∑
i

∑
j∈Ni

uiujXiX
′
j −Qn)Q

−1/2
n µ = oP (1). Hence, it remains to show:

∣∣∣∣∣∣
∣∣∣∣∣∣Q−1/2

n

−2

∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
j

+

∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

Q−1/2
n

∣∣∣∣∣∣
∣∣∣∣∣∣ = oP (1).

Observe thatX ′
i(β̂−β) =

(
X ′

iS
−1
n Q

1/2
n

)(
Q

−1/2
n Sn(β̂ − β)

)
=
(
X ′

iS
−1
n Q

1/2
n

)
(ZK+1KoP (1)), where

1K is a K-vector of ones and ZK ∼ N(0, IK). Hence, addressing the second term,

X ′
i(β̂ − β)X ′

j(β̂ − β) =
(
X ′

iS
−1
n Q1/2

n

)
(ZK + 1KoP (1))(ZK + 1KoP (1))

′
(
X ′

jS
−1
n Q1/2

n

)′
=
(
X ′

iS
−1
n Q1/2

n

)
(IKOP (1) + oP (1))

(
X ′

jS
−1
n Q1/2

n

)′
= X ′

iS
−1
n QnS

−1
n XjOP (1).
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This equality implies:

Q−1/2
n

∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

Q−1/2
n

= Q−1/2
n

∑
i

∑
j∈Ni

(
X ′

iS
−1
n QnS

−1
n Xj

)
XiX

′
j

Q−1/2
n OP (1)

=
1

n2

(
1

λn
Qn

)−1/2
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

( 1

λn
Qn

)−1/2

OP (1).

The eigenvalues of (Qn/λn) are bounded. To see this, it suffices to show that there exists K0 < ∞

such that λmax(Qn)/λn ≤ K0. Due to finite moments, Qn := V ar(
∑

iXi) ≤ K01K×K
∑

c(N
C
c )2.

Since (
∑

c(N
C
c )2)/λn ≤ K0 by Assumption 3, λnK0 ≥

∑
c(N

C
c )2, which implies λn ≥ (

∑
c(N

C
c )2)/K0.

Hence,

λmax(Qn)

λn
≤
∑

c(N
C
c )2K0∑

c(N
C
c )2 1

K0

= K2
0 .

Recall that (Sn/n)
−1 has bounded eigenvalues. The proof of Theorem 1 also showed that (Qn/λn)

−1

has bounded eigenvalues. By using Markov and Minkowski inequalities, and the same argument as

the proof of Theorem 1 for µ ∈ RK , ||µ|| = 1,

P

 1

n2

∣∣∣∣∣∣µ′
(

1

λn
Qn

)−1/2
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

( 1

λn
Qn

)−1/2

µ

∣∣∣∣∣∣ > ϵ


≤ 1

n2ϵ
E

∣∣∣∣∣∣µ′
(

1

λn
Qn

)−1/2
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

( 1

λn
Qn

)−1/2

µ

∣∣∣∣∣∣


≤ 1

n2ϵ

∑
i

Nimax
m,k

E[X4
mk]K0 ≤

maxiNi

n

n

n
K0 → 0,

where K0 ∈ R is an arbitrary (finite) constant. Convergence occurs due to Assumption 3(b), which

implies maxiNi/n → 0, since maxi
∑

j∈Ni
Ni/n = o(1) in the proof of Lemma 8.
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Going back to the first term,

Q−1/2
n

∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
jQ

−1/2
n = Q−1/2

n

∑
i

∑
j∈Ni

ui

(
X ′

iS
−1
n Q1/2

n

)
(ZK + 1KoP (1))XiX

′
jQ

−1/2
n

=
1

n
√
λn

(
1

λn
Qn

)−1/2∑
i

∑
j∈Ni

ui

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)1/2
)
XiX

′
j

(
1

λn
Qn

)−1/2

OP (1).

By using Markov and Minkowski inequalities,

P

 1

n
√
λn

∣∣∣∣∣∣µ′
(

1

λn
Qn

)−1/2∑
i

∑
j∈Ni

ui

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)1/2
)
XiX

′
j

(
1

λn
Qn

)−1/2

µ

∣∣∣∣∣∣ > ϵ


≤ 1

n
√
λnϵ

E

∣∣∣∣∣∣µ′
(

1

λn
Qn

)−1/2∑
i

∑
j∈Ni

ui

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)1/2
)
XiX

′
j

(
1

λn
Qn

)−1/2

µ

∣∣∣∣∣∣


≤ 1

n
√
λnϵ

∑
i

∑
j∈Ni

max
m1,m2,k

E
[∣∣Xm1kum1X

2
m2

∣∣]K0

≤ 1

n
√
λnϵ

∑
i

Ni max
m1,m2,k

E
[
|Xm1kum1 |2

]1/2
E
[
|X2

m2
|2
]1/2

K0

≤ maxiNi√
λn

1

ϵ
max

m1,m2,k
E[X2

m1ku
2
m1

]1/2E[X4
m2

]1/2K0 = o(1).

The penultimate inequality occurs due to Hölder’s inequality. Observe that maxiNi/
√
λn = o(1)

if and only if maxc(N
C
c )2/λn = o(1), which is given by Assumption 3(b). Convergence in the last

step occurs because maxiNi/
√
λn = o(1), and the moments are finite.

Hence, it has been shown that Q−1
n Q̂n

p−→ IK . Then, [S−1
n QnS

−1
n ]−1[Ŝ−1

n Q̂nŜ
−1
n ]

p−→ IK by the

continuous mapping theorem.
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