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Abstract

We propose a novel unified sensitivity analysis framework for linear estimators. Our

approach measures the degree of identification failure through the change in measure

between the observed distribution and a hypothetical target distribution that would

identify the structural parameter of interest. The target distribution is synthetic, but

formalizes the known correspondence between tools for distributionally robust opti-

mization and sensitivity analysis of structural parameters. We illustrate the framework

by generalizing existing bounds for Average Potential Outcome (APO) designs to al-

low unbounded likelihood ratios, and providing new bounds for regression discontinuity

(RD), difference in differences (DD) and instrumental variables (IV) designs. We apply

our framework to two empirical applications in RD to show how sensitivity analysis

allows us to obtain bounds that are far more informative than worst-case bounds.

1 Introduction

Many important research designs in economics employ estimators that are linear in observed

outcomes. These designs include regression discontinuity, differences in differences, and

instrumental variables. These linear estimators leverage powerful identifying restrictions to

target meaningful estimands. In observational settings, these identifying restrictions may

∗This material is based upon work supported by the National Science Foundation Graduate Research

Fellowship Program under Grant No. DGE-2039656 and by grant T32 HS026116 from the Agency for

Healthcare Research and Quality. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author and do not necessarily reflect the views of the National Science

Foundation or the Agency for Healthcare Research and Quality.

1



not be satisfied: many treatment choices can be selected on unobservables, manipulators

can strategically sort across treatment cutoffs, and instruments can directly affect outcomes.

In light of how identifying restrictions for linear estimators may not hold, there is a large

but disparate literature that places bounds on the object of interest when these restrictions

fail. Many of these proposals are specific to the design: Gerard et al. (2020) is specific

to regression discontinuity; Masten and Poirier (2018) is specific to selected treatments;

Ramsahai (2012) is specific to instrumental variables; and Rambachan and Roth (2023) is

specific to differences in differences. The core econometric problem in all of these designs

is linear in outcomes. As a result, there is an open question of whether there is a unified

framework for sensitivity analysis across these linear estimators. Having a unified framework

removes the need to develop case-specific methods, allows researchers to compare sensitivity

across different identification strategies, and allows the technology developed in one case to

be more easily transferable to other linear estimators. We provide such a unified framework.

While constructing the unified framework is the primary goal, it turns out that our

framework also solves a few more problems in the literature. First, there is a large literature

for bounding average potential outcomes (APO) when there is treatment selection under

bounds on selection in terms of odds (Tan, 2006) or propensity scores (Masten and Poirier,

2018). We provide a simple unification of these frameworks, including a characterization

that is smooth when there is a region in which the bounds barely allow a propensity of zero.

Second, in the regression discontinuity (RD) design with manipulation, there is currently no

method available to bound the average treatment effect at the cutoff. A suite of bounds for

conditional treatment effects after manipulation follow from our analysis as a corollary.

In this paper, we propose a framework for the sensitivity analysis of identification failures

for linear estimators. The framework proceeds as follows. First, we define a target distribu-

tion: a synthetic distribution over observed variables that would enable a standard estimator

to point-identify the structural estimand of interest. Second, we consider a structural model

that implies restrictions on the divergence between the target population and the popu-

lation the practitioner observes. Third, we leverage work from the literature in statistics,

economics, and distributionally robust optimization (DRO) to estimate bounds implied by

the restrictions from the second step. The framework is especially powerful when the implied

restrictions correspond to a family of restrictions on the Radon-Nikodym derivative (the gen-

eralization of likelihood ratio to allow point masses) between the observed distribution of
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observables and the distribution of observables under the target distribution.

Our proposed framework has several empirical advantages. The target distribution only

has to be defined once per application. Once the target distribution is defined, structural

restrictions on the true distribution imply bounds on the target distribution. The approach

typically yields a sensitivity analysis: under the strongest restriction, the bounds reduce to

the standard point estimate; under the weakest restriction, the bounds reduce to a Manski-

type worst-case exercise. Between the two extremes, restrictions on the structural model

often correspond to new restrictions on the target distribution that facilitate computation

based on the emerging average potential outcome literature.

Unifying the existing approaches requires a novel framework. There is a burgeoning

literature on partial identification of the APO under bounds on the strength of confounding

of treatment selection. In other settings like RD, there is no immediate correspondence from

the object of interest to propensity scores. Our proposed synthetic-population framework

defines a synthetic target population that immediately extends APO partial identification

results to accommodate sensitivity analysis in these other settings.

We illustrate the framework by generalizing existing APO results to allow propensity

score bounds that include zero. Without care, a needlessly conservative characterization

of the partially identified set may be unbounded when Manski (1990) worst-case bounds

show that the identified set is finite. We study an extension of the APO literature where

distributional restrictions correspond to limits on treatment selection through L∞ bounds

on the Radon–Nikodym derivative (Tan, 2006; Masten and Poirier, 2018; Zhao et al., 2019;

Dorn and Guo, 2023). By rewriting and extending Tan (2024a)’s bounds, we obtain an

expression that prevents incorrectly invoking infinite bounds, thereby enabling us to pro-

vide unified bounds for families of assumptions between unconfoundedness and Manski-type

bounds. The bounds depend on nuisance functions that are typically estimated in the pri-

mary analysis and a certain conditional outcome quantile function; plugging in a misspecified

quantile estimate yields bounds that are too wide rather than too narrow. As a corollary, we

obtain a simple characterization of bounds under Masten and Poirier (2018)’s conditional

c-dependence model that bypasses the previous need to integrate the conditional quantile

function with respect to the quantile index (Masten et al., 2024).

We apply our framework to yield novel results for three more applications. In our first

application, we study bounds on causal effects from sharp RD with one-sided manipulation.
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McCrary (2008) proposes a test for the RD assumption of no manipulation. When McCrary’s

test fails, Gerard et al. (2020) propose a worst-case bound on the conditional average treat-

ment effect for non-manipulators: a Conditional Local Average Treatment Effect (CLATE).

We show that a stronger restriction on manipulation choice allows us to obtain meaningful

bounds on the more standard conditional average treatment effect (CATE), which to the

best of our knowledge has been an open issue in the literature. Our framework provides a

sensitivity analysis by nesting an unconfoundedness-type assumption and the Gerard et al.

(2020) assumption as extreme cases.

In our second application, we study the method of differences in differences, which iden-

tifies the average treatment effect on the treated either through randomization (Athey and

Imbens, 2022) or parallel trends (Callaway and Sant’Anna, 2021). Our framework allows us

to bound the structural estimand with limited violations of randomization or parallel trends.

In contrast to existing sensitivity analyses in DD designs (e.g., Rambachan and Roth (2023)),

our sensitivity parameters are invariant to the functional form.

In our third application, we study treatment effects with an instrument that fails the

exclusion or exogeneity restriction. When the instrument is allowed to affect the outcome

directly, we consider estimation of a generic weighted average of local average treatment

effects (LATEs) across instrument values. In the continuous outcome case, we contribute

a sensitivity analysis for a measure of exclusion failure that is unit-free, and separates the

potential outcomes for always-takers, never-takers, and compliers, which is more transparent

than the convolution used in Ramsahai (2012). To our knowledge, our proposed sensitivity

analysis includes the first unit-free measure of exclusion failure with continuous outcomes.

The proposed bounds are simple and tractable. An important caveat is that the implied

LATE bounds can be conservative because of the generality of our framework.

Our empirical applications quantify the value of our procedure for RD with manipulation.

We first apply our procedure to study the incumbency advantage, in which previous work

has evaluated the contribution of incumbent victory to the incumbent party winning in

the following election. While the CATE and CLATE point estimates are identical, we find

that the CLATE estimate is more robust to a given level of unobserved confounding. In

our second application, we study the effects of council size on expenditure. The worst-case

bounds are highly uninformative in this context, while our sensitivity analysis allows us to

obtain meaningfully tighter bounds.
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1.1 Related Work

Our framework unifies ideas from the operations research and economics literature. Two

closely related frameworks are Bertsimas et al. (2022) and Christensen and Connault (2023),

both of which are limited to discrete covariates. In the discrete covariate case, relative

to Bertsimas et al., we propose justifying distributional distances in terms of underlying

structural models of economic failure and propose constructing target distributions that

apply in settings beyond average treatment effects, and offer a specific analysis of L∞ bounds

rather than other distributional distances; and relative to Christensen and Connault, we

analyze a nominally different class of identification failures and provide closed-form bounds

for specifically linear estimators.

Our work is related to the recent literature on sensitivity analysis for IPW estimators,

which relates to our first application. A sensitivity analysis is an approach to partial identi-

fication that begins from assumptions that point-identify the structural estimand of interest

and then considers increasing relaxations of those assumptions (Molinari, 2020). Our anal-

ysis extends Dorn and Guo (2023)’s sharp characterization of bounds beyond Tan (2006)’s

marginal sensitivity model. Tan (2024a) and Frauen et al. (2023) previously extended this

characterization to families that bound the Radon-Nikodym derivative of interest. We gen-

eralize these results to also include unbounded Radon-Nikodym derivative, so that we can

include a compact characterization of bounds under Masten and Poirier (2018)’s conditional

c-dependence model as a special case. Our paper uses the same DRO ideas as Dorn et al.

(2024) and Tan (2024a), but we generalize the class of assumptions that can be considered

in the unconfoundedness case and show how to use these ideas in settings besides uncon-

foundedness. There is rich work in this literature under other sensitivity assumptions like

f -divergences and Total Variation distance (e.g. Huang and Pimentel, 2024; Freidling and

Zhao, 2022; Chernozhukov et al., 2022; Christensen and Connault, 2023; Ishikawa et al.,

2023)). These other assumptions also fit within our framework, because our target distribu-

tion constructions are independent of the L∞ sensitivity assumptions that we analyze.

Our framework relates to existing work on sensitivity analysis for other applications. Our

proposed sensitivity analysis for sharp RD applies when data on the running variable fails

tests for manipulation (McCrary, 2008; Otsu et al., 2013; Bugni and Canay, 2021). Our

proposal nests both an exogeneity-type assumption and Gerard et al. (2020)’s bounds as

special cases. There is other work in the RD context on partial identification bounds under
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manipulation (Rosenman et al., 2019; Ishihara and Sawada, 2020) but to our knowledge,

our proposal is the first sensitivity analysis for manipulation. There are sensitivity analy-

sis for exclusion failure with instrumental variables (Ramsahai, 2012; Van Kippersluis and

Rietveld, 2018; Masten and Poirier, 2021; Freidling and Zhao, 2022), but to our knowledge

our proposal is the first sensitivity analysis whose underlying assumptions are invariant to

invertible transformations of variables.

Notation. We use R̄ to refer to the extended real number line R ∪ {−∞,∞}. For a

real-valued random variable Z and a distribution Q, we use the notation EQ[Z] =
∫
zdQ(z)

and we write that the expected value of Z exists under Q if EQ[|Z|] is finite or EQ[Z]

is well-defined as exactly one of positive or negative infinity. We write that the expected

value of Z exists (without specifying the distribution) if the expected value exists under the

observed distribution PObs, where PObs is defined below. Similarly, we sometimes suppress the

dependence of expectations when referring to the expectation under the observed distribution

PObs. We write {a, b}+ = max{a, b} and {a, b}− = min{a, b}, and abuse notation by writing

{a}+ = max{a, 0}. For random variables Y ∈ R1 and R ∈ Rd and a function t : Rd → [0, 1],

we refer to “the” conditional quantile function Qt(R)(Y | R), which is any minimizer of

EPObs [t(R){Y −Q(R), 0}+ − (1− t(R)){Y −Q(R), 0}− | R] in functions Q from the domain

of R to the extended real line R ∪ {−∞,∞}; when t(R) ∈ {0, 1}, we take the infimum

and supremum of the distribution’s support respectively. To consolidate notation, when b

is infinite, we evaluate the interval [a, b] as [a,∞). If our estimation procedure calls for an

estimate of a nuisance function f that depends on another nuisance function g, we use the

notation f̂ to denote the full estimated nuisance function, which may include a composition

of nuisance estimates. We use 1{.} to refer to the indicator function that takes value 1 if

true and 0 otherwise. We use P to denote both the probability mass function for a discrete

variable and the cumulative distribution function for a continuous (or mixed) variable, and

use dP to denote the probability density of the a continuous (or mixed) variable.

2 Framework for Sensitivity Analysis

In the following section, we illustrate our generic framework for sensitivity analysis: we pro-

pose linking a structural model of identification failures to an implied statistical distribution

bound and then conduct partial identification under the distributional bound. We character-
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ize the identified set under a family of L∞ distributional distances that is especially tractable

for estimation. We leave specific structural models to Section 3.

2.1 General Setting

We begin with our general partial identification setting. We use the APO application as a

running example.

Let Y ∈ R1 denote the outcome of interest, R ∈ R denote observable quantities that

do not include Y , and Y (r) denote potential outcomes. We call R the regressors, and the

observed outcome is Y = Y (R).

We consider three different but related probability measures. There is a true distribution

PTrue over ({Y (r)}r∈R, R, ξ), where ξ are unobserved variables that do not include potential

outcomes. This ξ will not feature in our running APO example, but it will become relevant

in other applications in Section 3. While ξ itself is unobserved, some features of ξ may be

point- or partially-identified. For instance, in the instrumental variables framework with

potential treatments T (z) where z is the instrument, ξ could include T (z), which is itself

unobserved, but the proportion of compliers, Pr(T (1) = 1, T (0) = 0), is identified in the

population under monotonicity.

The object of interest is a linear reweighting over potential outcomes with treatment

status r, EPTrue

[
λ(R)

∫
r
Y (r)dG(r | R)

]
, where λ is a real-valued function and G is some

known distribution weighting over values of r. We observe data (Y,R) from the observable

distribution PObs, which is a coarsening of PTrue. We face the fundamental problem of casual

inference and do not observe Y (r).

In our applications, for every distribution PTrue, there exists a target distribution PTarget

that point identifies the structural estimand through the moment

EPTarget [λ(R)Y ] = EPTrue

[
λ(R)

∫
r

Y (r)dG(r | R)
]
.

PTarget is not necessarily unique, and it measures the same space (i.e., of (R, Y )) as PObs.

The observed distribution PObs may not be able to point-identify the structural estimand

under the researcher’s preferred estimator, for example if R is a selected treatment or if R

includes an instrument that fails the exclusion restriction.
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Assumption Support. The marginal distribution of R is the same under PTarget and PObs.

The distribution PTarget is absolutely continuous with respect to PObs.

Assumption Support has two components. The first component is that PObs identifies

the target distribution of regressors R, but may have a different conditional distribution of

outcomes Y . The second component is an absolute continuity assumption that ensures the

existence of a Radon-Nikodym derivative dPTarget

dPObs . The assumption accommodates unbounded

Radon-Nikodym derivatives, for example Y | R ∼ Unif(0, 1) under PObs and fY (y | R) =
1{y ∈ (0, 1]}y−1/2/2 under PTarget. The absolute continuity assumption is stronger than

necessary for our results, and could be reduced to assuming that the support of (Y,R) under

PTarget is a subset of the support under PObs. Absolute continuity rules out PTarget possessing

mass points where PObs lacks mass points, except where such distributions can be achieved

as limits of distributions within Assumption Support.

Our framework is inspired by the literature on sensitivity analysis for the APO EPTrue [EPTrue [Y (1) |
R]]. In this case, there is a distribution PTrue over (X,T, Y (1), Y (0)), but we only observe

the distribution PObs over (X,T, Y = Y (T )), so that R = (X,T ). The researcher can accu-

rately estimate PTrue(T | X), but cannot observe PTrue(Y (1) | X,T = 0). We propose the

target distribution PTarget that first samples (X,T ) ∼ PTrue and then samples Y | X,T from

the distribution of Y (T ) | X under PTrue. To be precise, the target distribution PTarget is

defined as PTarget(X,T, Y ) = PObs(X,T )dPTrue(Y (T ) | X,T ). The target distribution PTarget

does not correspond to PTrue, but if a causal estimator like an inverse propensity weighted

(IPW) estimator were applied to PTarget instead of PObs, the researcher would identify the

APO under PTrue. Our later examples illustrate the applicability of this framework for other

structural estimands.

We refer to our target as the structural estimand, and the target value of the primary

observational analysis as the primary estimand. We restrict ourselves to estimands that

correspond to linear estimators.

Definition 1. The structural estimand is ψ0 = EPTarget [λ(R)Y ] for some real-valued function

λ. The primary estimand is EPObs [λ(R)Y ].

We generally assume that λ is identified and the researcher has conducted a primary

analysis that consistently estimates λ. For example, in the APO case, the λ function is

the inverse propensity T
PObs(T=1|X)

. When the researcher is able to make strong enough
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assumptions that PTarget is equivalent to PObs, then the primary estimand will be equal to

the structural estimand. When the researcher is only able to bound the difference between

PTarget and PObs, then the researcher can partially identify the structural estimand through

a restriction on the Radon-Nikodym derivative between the two distributions.

Lemma 1. Suppose Assumption Support holds and λ(R)Y is integrable under PTarget. Then

ψ0 = EPObs

[
λ(R)Y

dPTarget(Y | R)
dPObs(Y | R)

]
.

Proof. Lemma 1 is a standard result for Importance Sampling and an immediate property

of the Radon-Nikodym derivative.

This reweighing characterization is useful for partial identification because any non-

negative putative outcome reweighing W̄ = λ(R)dP
Target(Y |R)
dPObs(Y |R)

that satisfies E[W̄ | R] = 1

almost surely will correspond to a well-defined distribution Q over (R, Y ).

The Radon-Nikodym derivative characterization in Lemma 1 often maps to interpretable

quantities. For example, in the APO case, the Radon-Nikodym derivative maps to odds

ratios as follows1:

λ(R)
dPTarget(Y | R)
dPObs(Y | R)

= λ(R)PObs(T = 1 | X) (1)

+ λ(R)PObs(T = 0 | X)
PTrue(T = 0 | X, Y (1))

PTrue(T = 1 | X, Y (1))

PObs(T = 1 | X)

PObs(T = 0 | X)
.

As a result, there is a bijection between structural models of treatment selection and

causal models of treatment effects. More generally, principled restrictions on an underlying

treatment selection model may imply, or be equivalent to, restrictions on the Radon-Nikodym

derivative. The mapping from some structural model on objects such as PTarget(T=0|X,Y (1))
PTarget(T=1|X,Y (1))

to

the Radon-Nikodym derivative as in Equation (1) is application-dependent, but holds across

sensitivity models.

Our general framework defines PTarget in this way and derives a correspondence between

1To see why the above result is true, observe that, by applying Bayes’ Rule and dropping conditioning

on X, dPObs(Y | T = 1) = dPTrue(Y (1) | T = 1) = PTrue(T=1|Y (1))dPTrue(Y (1))
PObs(T=1)

and dPTarget(Y | T = 1) =

PTarget(T=1|Y (1))dPTrue(Y (1))
PObs(T=1)

= dPTrue(Y (1)) as PTarget(T = 1 | Y (1)) = PObs(T = 1). Hence,dP
Target(Y |R)

dPObs(Y |R)
=

PObs(T=1)
PTrue(T=1|Y (1)) , which is easily verified to be the same as the RHS by factoring out PObs(T = 1), then

observing that PTrue(T = 0 | X,Y (1)) + PTrue(T = 1 | X,Y (1)) = 1.

9



bounds on PTrue and bounds on the divergence between PTarget and PObs. We provide formal

results for this approach applied to a class of L∞ sensitivity models.

2.2 Partial Identification Assumption and Result

In the this subsection, we characterize the sharp bounds on the identified set under an L∞

restriction on the largest and smallest Radon-Nikodym derivative.

Definition 2 (Sensitivity assumption). For any pair of functions w, w̄ : Rd → R̄ satisfying

0 ≤ w(R) ≤ 1 ≤ w̄(R) almost surely, we define M(w, w̄) as the set of distributions Q

over ({Y (r)}r∈R, R, Y = Y (R), ξ) satisfying λ(R) dQ(R,Y )
dPObs(R,Y )

∈ [λ(R)w(R), λ(R)w̄(R)] almost

surely.

The space that the distribution Q measures is the union of the space measured by PTrue

and PObs. This family has several advantages. The restrictions on dQ
dPObs decouple across values

of R, enabling tractable characterizations of the identified set. The family nests extreme

assumptions as special cases: point identification corresponds to the case w(R) = w̄(R) = 1

almost surely, while Manski-type bounds that only restrict the support of Y correspond to

w̄(R) = ∞ with domain-appropriate w(R). In between, the structural estimand is only

partially identified. When the outcome Y is binary, the restriction can equivalently be

viewed as a restriction on the conditional mean of Y | R. We show below that, as in the Tan

(2006) model that inspired this generalization, the resulting bounds are highly tractable for

estimating sharp and valid bounds.

We adapt standard notation from Ho and Rosen (2017).

Definition 3. The identified set is I(w, w̄) = {EQ[λ(R)Y ] | Q ∈ M(w, w̄)}. The sharp

bounds on the identified set are ψ−(w, w̄) = infψ∈I(w,w̄) ψ and ψ+(w, w̄) = supψ∈I(w,w̄) ψ. A

valid identified set is a superset of I(w, w̄), and valid bounds is an interval that contains

[ψ−(w, w̄), ψ+(w, w̄)]. We call bounds conservative if they are valid but not sharp.

We abuse notation and simply write I, ψ−, and ψ+ as shorthand for the identified set and

bounds under a generic model family. We work under convex restrictions for which, as we

verify, the distinction between bounds and the identified set largely collapses. Definition 3

corresponds to the statistical partial identification bounds implied by an underlying struc-

tural model. As we illustrate in our applications, a structural model underlying Definition 2

can sometimes, but not always, imply a narrower bound.
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We will require some nuisance functions to characterize the identified set under the family

of L∞ restrictions we allow. In particular:

Definition 4. The threshold probability is τ(R) ≡ w̄(R)−1
w̄(R)−w(R)

. The threshold quantiles are

Q+(R) ≡ Qτ(R)(λ(R)Y | R) and Q−(R) ≡ Q1−τ(R)(λ(R)Y | R). The likelihood shifting term

is

a(w̄, w, s) = (w̄ − w)1{s > 0} − (1− w).

For a function Q̄ : Rd → R̄, define the pseudo-outcome

ϕ+(w, w̄, r, y | Q̄) ≡ λ(r)y + (λ(r)y − Q̄(r))a(w̄(r), w(r), λ(r)y − Q̄(r)),

and define ϕ−(w, w̄, r, y | Q̄) analogously:

ϕ−(w, w̄, r, y | Q̄) ≡ λ(r)y + (λ(r)y − Q̄(r))a(w̄(r), w(r), Q̄(r)− λ(r)y).

Define the indicator variables F ≡ 1{w̄(R) finite}, G+ ≡ 1{λ(R)Y − Q+(R) > 0}, G− ≡
1{λ(R)Y −Q−(R) < 0}, and H ≡ 1{τ(R) < 1}.

When w̄(R) is finite, the formula for τ(R) can be found in Tan (2024a) and Frauen et al.

(2023).

We will make additional regularity assumptions.

Assumption Moments. The expected values of F |Q+(R)|, F |Q−(R)|, |ϕ+(w, w̄, R, Y |
Q+)| and |ϕ−(w, w̄, R, Y | Q−)| are well-defined.

We allow infinite EPObs [Q+(R)] for completeness with unbounded outcomes. While w̄ can

be infinite, we rule out heavy tails that would yield infinite EPObs [1{w̄(R) finite}Q+(R)].

Our work focuses on the upper bound of the identified set.

Theorem 1. Suppose Assumptions Support and Moments hold. Then the sharp upper bound

on the identified set is:

ψ+(w, w̄) = EPObs

[
λ(R)Y + (λ(R)Y −Q+(R))a(w̄(R), w(R), λ(R)Y −Q+(R))

]
. (2)

The sharp lower bound ψ−(w, w̄) follows symmetrically, i.e.,

ψ−(w, w̄) = EPObs

[
λ(R)Y + (λ(R)Y −Q−(R))a(w̄(R), w(R), Q−(R)− λ(R)Y )

]
. (3)
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Further, the identified set is convex.

The theorem states that the sharp upper bound can be written as a closed-form moment:

after the constituent components such as λ(.), Q+(.), and a(.) have been estimated, no further

optimization problem needs to be solved. Proofs are in the appendix.

A proof sketch is in order. We abuse notation to write ψ+ = EPObs [ψ+(R)], where ψ+(r)

is a pointwise upper bound function satisfying:

ψ+(R) = sup
W

EPObs [Wλ(R)Y | R] s.t. W ∈ [w(R), w̄(R)] & EPObs [W | R] = 1,

and ϕ+(R) ≡ EPObs [ϕ+(w, w̄, R, Y | Q+) | R]. The claim is EPObs [ψ+(R)] = EPObs [ϕ+(R)].

We prove the stronger claim that ψ+(R) = ϕ+(R) almost surely. For simplicity, this sketch

will ignore the possibility that λ(R)Y = Q+(R) with positive probability and drop “almost

sure” caveats. As Dorn et al. (2024) note, ψ+(R) can be mapped to a simple DRO problem

over (W − w(R))/(1 − w(R)) ∈ [0, (w̄(R) − w(R))/(1 − w(R))]. The solution is ψ+(R) =

EPObs [w(R)λ(R)Y +(1−w(R))CV aR+
τ(R)(R) | R], where CV aR

+
τ(R) = E

[
Q+ + {Y−Q+}+

1−τ(R)
| R
]

is the level-τ(R) conditional value at risk of λ(R)Y .

We split on the event τ(R) < 1: by previous work (Tan, 2024a; Frauen et al., 2023),

τ(R) < 1 implies ψ+(R) = ϕ+(R). Theorem 1 is novel for the case τ(R) = 1, which

corresponds to either
¯
w(R) = 1 or w̄(R) = ∞ (e(X) ̸∈ (c, 1 − c) in the case of conditional

c-dependence). On that event, ϕ+(R) evaluates to E[w(R)λ(R)Y + (1 − w(R))Q+(R) | R]
and Q+(R) = CV aR+

1 (R). As a result, ψ+(R) = ϕ+(R) even if w̄(R) is infinite with positive

probability. Intuitively, at extreme probabilities, the conditional value at risk and quantile

either converge (with bounded outcomes) or tend to the same infinite limit (with unbounded

outcomes). In either case, replacing the conditional value at risk with the quantile has no

effect. In the other extreme case when w(R) = w̄(R) = 1, we have a(w̄, w, s) = 0 so we have

point identification regardless of the assignment of τ(R) ∈ (0, 1); in our implementation, we

take τ(R) = 0.5.

One could characterize the partial identification bounds using the conditional value at

risk directly (Dorn et al., 2024), but the reweighing characterization Equation (2) is valu-

able for sensitivity analysis. We present the worst-case Radon-Nikodym derivative here for

convenience.

Lemma 2. Suppose w̄(R) is bounded. Then one can construct a distribution Q+ ∈ M(w, w̄)
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and a random variable satisfying γ(R) ∈ [w(R), w̄(R)] almost surely such that ψ+ = EQ+ [λ(R)Y ]

and:

dQ+(R, Y )

dPObs(R, Y )
= W ∗

sup =


w̄(R) if λ(R)Y > Q+(R)

w(R) if λ(R)Y < Q+(R)

γ(R) if λ(R)Y = Q+(R).

(4)

The construction in Equation (2) sidesteps the need to specify γ(R).

A researcher with a primary estimate of λ(R) and who is capable of quantile regression

can easily construct a plug-in estimate of ψ+. Even if the researcher fails to consistently

estimate the additional nuisance parameter Q+, they can still easily estimate valid bounds:

Lemma 3. Suppose Assumptions Support and Moments hold and there is a putative quantile

function Q̄ such that the expectation of |ϕ+(w, w̄, r, y | Q̄)| exists. Then replacing Q+ with

the potentially incorrect quantile function Q̄ yields valid bounds:

ψ+(w, w̄) ≤ EPObs

[
λ(R)Y + (λ(R)Y − Q̄(R))a(w̄(R), w(R), λ(R)Y − Q̄(R))

]
.

An analogous result holds for the lower bound ψ−.

The argument generally follows by Tan (2024a)’s decomposition of (λ(R)Y −Q̄(R))a(. . .)
in terms of the Quantile Regression check function, although some care is needed to handle

the case τ(R) = 1. Q+(R) is the minimizer of the associated check function by classic

arguments.

Note that a similar recipe as in this section extends to other sensitivity assumptions.

With other restrictions on Q, the model family in Definition 2 would change, the sharp

upper bound in Theorem 1 would change and may lack a closed form, and the validity result

Lemma 3 may or may not hold, but the fundamental logic would carry through.

2.3 Illustration with Average Potential Outcomes

To complete the exposition of our procedure, we show how the framework applies to our

APO running example. Many of our results are restatements of recent work; the extension

of partial identification bounds to unbounded Radon-Nikodym derivatives is new.

We assume there is a distribution PTrue over (X,T, {Y (t)}t∈{0,1}, U), whereX are controls,

T is a discrete treatment, Y (t) is the potential outcome corresponding to treatment level t,
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and U are potential unobserved confounders. We only observe the coarsened distribution

PObs over (X,T, Y = Y (T )), where Y is the observed outcome. We write It = 1{T = t}.
We tailor our application to IPW estimation of the APO, and consider average treatment

effects at the end of the section. We write the observable propensity e(X) = PObs(T = 1 | X),

where we assume e(X) ∈ (0, 1) almost surely. The primary estimate is the IPW estimator

that first estimates e(X) and then estimates the APO as EPObs [λ(R)Y ], where λ(R) =

I1/e(X). When unconfoundedness holds given the observed covariates so that It |= Y (t) | X,

the IPW strategy consistently estimates the structural estimand EPTrue [Y (1)]. However, we

will only assume unconfoundedness holds if the researcher had access to both the observed

and unobserved covariates: It |= Y (t) | X,U .2 We write e(X,U) := PTrue(T = 1 | X,U) for
the (partially identified) propensity score that conditions on U .

Recall the definition of PTarget for the APO: draw R from the same distribution as PObs,

and draw Y | R from PObs(Y | R) with probability P (T | X) and from a certain reweighted

distribution (Equation 1) with probability 1− P (T | X). The distribution of R is the same

under PTarget and PObs and the distribution PTarget satisfies EPTrue [Y (1)] = EPTarget [λ(R)Y ],

so that the structural estimand is EPTarget [λ(R)Y ]. Notice that PTarget and PObs may have

different distributions of Y | X: PObs(X,T, Y ) = PObs(X,T )dPObs(Y | X,T ) which differs

from PTarget(X,T, Y ) under unobserved confounding.

Many researchers study models that imply there are functions ℓ(X), u(X) such that

ℓ(X) ≤ e(X,U)/(1− e(X,U))

e(X)/(1− e(X))
≤ u(X)

almost surely (Manski, 1990; Tan, 2006; Aronow and Lee, 2013; Masten and Poirier, 2018;

Zhao et al., 2019; Dorn et al., 2024; Tan, 2024b; Frauen et al., 2023). These models im-

ply pointwise restrictions on PTrue(T = 1 | X, Y (1)) and the Radon-Nikodym derivative
dPTarget(Y |X,T=1)
dPObs(Y |X,T=1)

. In particular, the selection assumption would imply the following almost

sure bound:

λ(R)
dPTarget(Y | R)
dPObs(Y | R)

∈
[
λ(R)(e(X) + (1− e(X))u(X)−1), λ(R)(e(X) + (1− e(X))ℓ(X)−1)

]
.

Unconfoundedness corresponds to the special case ℓ(X) = u(X) = 1. Manski bounds cor-

respond to the special case ℓ(X) = 0, u(X) = ∞. Tan (2006)’s Marginal Sensitivity Model

2This is without loss of generality by setting U = {Y (t)}.
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(called such for e(X) implicitly marginalizing over U) corresponds to w(X, t) = PObs(T =

t | X) + PObs(T ̸= t | X)Λ−1 and w̄(X, t) = PObs(T = t | X) + PObs(T ̸= t | X)Λ with

their sensitivity parameter Λ. Basit et al. (2023)’s risk ratio marginal sensitivity model,

that restricts e(X,U) ∈
[
Γ−1
0 e(X),Γ−1

1 e(X)
]
, corresponds to w(R) = Γ1 and w̄(R) = Γ0

when e(X) ≤ Γ1, where Γ1 and Γ0 are their sensitivity parameters. Masten and Poirier’s

conditional c-dependence model, that restricts e(X,U) ∈ [e(X)− c, e(X) + c] ∩ [0, 1], cor-

responds to w(X, t) = PObs(T = t | X) + PObs(T ̸= t | X)max{0,1−(e(X)+c)}/min{1,e(X)+c}
(1−e(X))/e(X)

and

w̄(X, t) = PObs(T = t | X) + PObs(T ̸= t | X)min{1,1−(e(X)−c)}/max{0,e(X)−c}
(1−e(X))/e(X)

, where c is their

sensitivity parameter.

Theorem 1 yields valid bounds on the identified set with the following quantities:

Proposition 1. In the APO case, our method can be implemented on EPTrue [Y (1)] with:

λ(R) =
I1

e(X)
, w(R) = e(X) + (1− e(X))u(X)−1, and w̄(R) = e(X) + (1− e(X))ℓ(X)−1.

The result is intuitive. The w bounds would be 1 under the unconfoundedness assumption

ℓ(X) = u(X) = 1. As e(X) gets closer to one, we see a greater share of the treated potential

outcomes and the w bounds grow closer to one. An analogous approach can be used to

bound E[Y (0)] = E[Y (1− Z)/(1− e(X, Y (0)))].

The result in Proposition 1 extends the analysis of Tan (2024a); Frauen et al. (2023)

to allow ℓ(X) to be arbitrarily small or equal to zero and u(X) to be equal to one. As a

result, it includes Masten and Poirier (2018)’s conditional c-dependence assumption so long

as λ(R)Y is integrable under the target distribution. This characterization of bounds under

conditional c-dependence is also simpler than Masten and Poirier (2018)’s characterization,

which involves an integral over a transformation of the full quantile regression function, and

by Lemma 3, our characterization enables estimation of valid bounds under appropriate

regularity conditions and consistency of the propensity score alone. An interesting question

for future work is whether Masten et al. (2024)’s proposed estimator for conditional c-

dependence possesses similar validity guarantees.

The resulting bounds are also sharp for the average treatment effect (ATE). It is not

difficult to verify that the bounds are sharp for each APO separately, because the bounds

¯
w and w̄ correspond to propensity scores between 0 and 1. One may also ask whether the

separate APO bounds can be achieved by the same unobserved confounder, for example the
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potential outcomes. An extension of Dorn and Guo (2023)’s sharpness argument shows that

in fact the separate bounds can be achieved at the same time, so that these bounds also

yield sharp bounds for the ATE.

3 Novel Applications of Framework

In this section, we illustrate the wide applicability of our framework by applying it to several

potential failures of identifying assumptions: RD with manipulation, DD without random-

ization or parallel trends, and IV without exogeneity or exclusion. We show that the sharp

statistical bounds under our approach contain all restrictions implied by the underlying

structural model for APO selection and RD manipulation, but not IV exclusion failure.

3.1 Regression Discontinuity

In this section, we introduce a novel sensitivity analysis for sharp RD designs. We explain

this design in more detail: we bound standard structural estimands that previous work

could not meaningfully quantify, and the extension to other linear estimators is relatively

straightforward. We explain the setup, describe the estimands, then propose our sensitivity

assumption and show how our framework applies. Finally, we show that our bounds are

sharp for our structural model.

We work under a slight modification of Gerard et al. (2020)’s model. There is a full

distribution PTrue over (M,X(1), X(0), X, Y (1), Y (0), T, T (0)), where M is a variable cor-

responding to manipulation status, X(m) is a potential running variable corresponding to

manipulation status M = m, Y (t) is a potential outcome corresponding to treatment status

T = t, T ∈ {0, 1} is the treatment status, and T (0) is the potential treatment status for

M = 0. We face the fundamental problem of causal inference and only observe the coarsen-

ing PObs over (X = X(M), Y = Y (T ), T ), so R = (X,T ) and ξ = (M,X(1), X(0), T (0)) in

this context.

We study sharp RD designs. We assume there is a cutoff c such that PTrue(T = 1 | X >

c) = 1, PTrue(T = 1 | X < c) = 0, which mimics assumption (RD) of Hahn et al. (2001).3 It

is observationally testable and often obvious in applications: if X is the net reported vote

share of an election candidate, then the candidate wins if and only if X > 0. We use the

3Gerard et al. (2020) extend their approach to fuzzy RD, where there are complex shape restrictions.
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notation “X = c” to mean that we take the limit as ε→ 0 of X ∈ [c−ε, c+ε] for bandwidth
ε. Similarly, we let X = c+ denote the limit corresponding to X ∈ (c, c+ ε] and let X = c−

correspond to X ∈ [c − ε, c). We use this notation to mimic the notation in Gerard et al.

(2020) so that the results are immediately comparable. We operate in the bandwidth near

the threshold, so indicators such as 1{T = 0} implicitly takes value zero for observations

outside of the bandwidth.

We assume that observations can be partitioned into manipulators and non-manipulators.

We assume manipulation is one-sided, and without loss of generality assume manipulators

choose treatment (FX|M=1(c) = 0). As in Gerard et al., the probability of treated observa-

tions being manipulated,

η = PTrue(M = 1 | X = c+),

is identified.4 We assume appropriate continuity of potential outcomes and running variables

given the manipulation status, and discuss other regularity conditions in Assumption RD.

The assumptions imply that non-manipulator average treatment effects would be identified

by the change in non-manipulator outcomes across the cutoff c. However, when η > 0 so

that there is manipulation, the distribution of Y | X = c+ includes manipulators’ treated

potential outcomes, so that standard treatment effects are not point-identified.

We may be interested in the conditional average treatment effect (CATE), the conditional

local average treatment effect (CLATE), and the conditional average treatment effect on the

treated (CATT):

ψCATE ≡ E [Y (1)− Y (0) | X = c]

ψCLATE ≡ E [Y (1)− Y (0) | X = c,M = 0]

ψCATT ≡ E
[
Y (1)− Y (0) | X = c+

]
.

(5)

E [Y (1)− Y (0) | X = c,M = 0] is called the CLATE because it is an average treatment

effect for the subgroup of potentially-assigned “compliers” who receive treatment if and only

if their Xi is above the cutoff (Gerard et al., 2020).

We write the structural estimands of interest in terms of conditional expectations of

observed variables and potential outcomes as follows:

4Gerard et al. call this quantity τ . Without manipulation, the density of X should be smooth at the
cutoff, so this object is identified from the jump in the density of X at the cutoff.
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Lemma 4. Our main estimands of interest have the following expressions:

ψCATE =
1

2− η
E
[
Y | X = c+

]
+

1− η

2− η
EPTrue [Y (1) | X = c,M = 0]

− η

2− η
EPTrue [Y (0) | X = c,M = 1]−

(
1− η

2− η

)
E
[
Y | X = c−

]
ψCLATE = EPTrue [Y (1) | X = c,M = 0]− E[Y | X = c−]

ψCATT =
E [(2T − 1)Y | X = c]− η

2−ηEPTrue [Y (0) | X = c,M = 1]

PObs(X = c+ | X = c)
.

Most quantities in the expressions above are point-identified. The only unidentified ob-

jects are the conditional expectations EPTrue [Y (1) | X = c,M = 0] and EPTrue [Y (0) | X = c,M = 1].

The specific target distribution PTarget will depend on the estimand of interest as follows:5

dPTarget
CATE(Y | X = c, T = t) = dPTrue(Y (t) | X = c)

dPTarget
CLATE(Y | X = c, T = t) = tdPTrue(Y (1) | X = c,M = 0) + (1− t)dPObs(Y | X = c−)

dPTarget
CATT (Y | X = c, T = t) = tdPObs(Y | X = c+) + (1− t)dPTrue(Y (0) | X = c−).

Then the target distribution for estimated E ∈ {CATE,CLATE,CATT} is defined as

dPTarget(X,T, Y ) ≡ PObs(X,T )dPTarget
E (Y | X,T ). The distribution of R is the same under

PTarget and PObs and EPTarget [λ(R)Y ] is equal to the target estimand for λ(R) we define below.

We work under a relatively simple restriction on manipulation. Suppose we have a

structural model that implies there are values Λ0,Λ1 ≥ 1 such that for t = 1, 0:

PTrue(M = 1 | Y (t), X = c)

PTrue(M = 0 | Y (t), X = c)

/
PTrue(M = 1 | X = c)

PTrue(M = 0 | X = c)
∈ [Λ−1

t ,Λt]. (6)

Define M(Λ0,Λ1) as the set of distributions Q over (M,X(1), X(0), Y (1), Y (0), T ) that

marginalize to the distribution of (X(M), Y (T ), T = 1{X(M) > c}) under PTrue, satisfy

the restrictions of this section, and satisfy Q(M=1|Y (t),X=c)
Q(M=0|Y (t),X=c)

/PTrue(M=1|X=c)
PTrue(M=0|X=c)

∈ [Λ−1
t ,Λt] almost

surely.6

This functional form (and hence its interpretation) is inspired by Tan (2006)’s Marginal

5A formal construction would define the appropriate distributions at X = x based on the distribution
conditional on |x − c| and then take the limit as x → c from either side, which would yield well-defined
distributions by the maintained continuity assumptions.

6To be precise, PTrue(M = 1 | X = c) = PTrue(M = 1 | X = c+)PObs(X = c+ | X = c) = PTrue(M = 1 |
X = c+) limε→0+ PObs(T = 1 | |X − c| ≤ ε), which is well-defined by Assumption RD.
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Sensitivity Model, so the sensitivity parameter can be interpreted as the largest variation

in the odds ratio of manipulation given any potential outcome compared to the average.

Λt = 1 corresponds to an unconfounded case in which the difference in regression values

yields the CATE. Λt = ∞ corresponds to Gerard et al. (2020)’s assumption, in which the

distribution of Y (0) | M = 1, X = c is only constrained by the support of the potential

outcome. In between, larger values of Λ accommodate larger degrees of manipulation on

potential outcomes.

Proposition 2. In the RD case, our method can be implemented for the CATE EPTrue [Y (1)−
Y (0) | X = c] with:

λ(R) =
1{T = 1}

PObs(X = c+ | X = c)
− 1{T = 0}

PObs(X = c− | X = c)

w(R) = 1{T = 1}
[

1

2− η
+

1− η

2− η

1

1− η + ηΛ1

]
+ 1{T = 0}

[(
1− η

2− η

)
+

η

2− η
Λ−1

0

]
w̄(R) = 1{T = 1}

[
1

2− η
+

1− η

2− η

1

1− η + ηΛ−1
1

]
+ 1{T = 0}

[(
1− η

2− η

)
+

η

2− η
Λ0

]
;

our method can be implemented for the CLATE EPTrue [Y (1) | X = c,M = 0] − EPObs [Y |
X = c−] with the same λ(R) and:

w(R) =
1{T = 1}

1− η + ηΛ1

+ 1{T = 0}, w̄(R) =
1{T = 1}

1− η + ηΛ−1
1

+ 1{T = 0};

our method can be implemented for the CATT EPTrue [Y (1) − Y (0) | X = c+] with the same

λ(R) and:

w(R) = 1{T = 1}+ 1{T = 0}
(
(1− η) + ηΛ−1

0

)
,

w̄(R) = 1{T = 1}+ 1{T = 0} ((1− η) + ηΛ0) .

The connection between Proposition 2 and the characterization from Lemma 4 comes

from correspondences that we derive in Appendix Lemma 8. Our CLATE bounds for Λ1 = ∞
are finite and identical to the bounds in Gerard et al. (2020) for sharp RD.

When Λ1 is finite, we are also able to obtain meaningful CATE bounds.

Remark 1. CATE bounds require some restriction on the untreated potential outcomes
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among the always-treated (M = 1) population. As a result, we need some assumption

to narrow these bounds beyond range restrictions. Equation (6) narrows these bounds by

bounding the probability of manipulation conditional on potential outcomes, allowing us to

learn about the potential outcomes of the M = 1 observations from the untreated potential

outcomes of the M = 0 observations.

Our analysis so far bounds manipulation on each potential outcome separately. There

turns out to be no additional information available from a structural model that bounds

manipulation on both potential outcomes simultaneously.

Proposition 3. Suppose there is a finite Λ ≥ 1 such that Λ1 = Λ0 = Λ. Let M′(Λ) be the

set of distributions Q ∈ M(∞,∞) satisfying:

Q(M = 1 | Y (1), Y (0), X = c)

Q(M = 0 | Y (1), Y (0), X = c)

/
PTrue(M = 1 | X = c)

PTrue(M = 0 | X = c)
∈ [Λ−1,Λ]. (7)

Then M′(Λ) ⊆ M(Λ,Λ). Further, take any distributions Q1,Q0 ∈ M(Λ,Λ) and write

ψt = EQt [Y (t) | X = c,M = 1 − t]. Then there is a distribution Q′ ∈ M′(Λ) satisfying

EQ′ [Y (t) | X = c,M = 1− t] = ψt for t = 1, 0.

Proposition 3 shows that the bounds are sharp, i.e., separate bounds on both potential

outcomes suffice to bound our structural estimands of interest. The proposition states that

a distribution that satisfies the conditions of the model can be constructed to achieve the

bounds. The quantities EPTrue [Y (t) | X = c,M = 1−t] still identify our structural estimands

of interest.

The high-level logic of Proposition 3 is fundamentally similar to Section 2.3. Any given

pair of Radon-Nikodym derivatives may not be simultaneously achievable for both potential

outcomes. However, the pair corresponding to the worst-case bounds are simultaneously

achievable. As a result, the identified set is the same whether we bound manipulation on

one potential outcome or both potential outcomes simultaneously.

3.2 Differences in Differences

We explain how our framework applies to difference in differences (DD) designs with se-

lected treatments, focusing on a 2-group-2-period structure for simplicity. In this con-

text, the estimand is the average treatment effect on the treated (ATT). With Yt(d) de-
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noting the potential outcome at time t = 0, 1 with treatment status d = 0, 1, D the

treatment status, T the time period, and X covariates, there is a full distribution PTrue

over (D,T, Y0(0), Y0(1), Y1(0), Y1(1), X), but we only observe the coarsening PObs over R =

(D,T, Y0, Y1, X), and ξ is empty.

The object of interest is EPTrue [Y1(1)− Y1(0) | D = 1], and the primary estimand is

EPObs [Y1 − Y0 | D = 1]−EPObs [Y1 − Y0 | D = 0]. Two prominent identification assumptions

have been used in the literature: randomization and parallel trends. Our approach is more

directly applicable to sensitivity analysis to violations of randomization. We discuss our

method’s application to parallel trends later.

When randomization (Athey and Imbens, 2022) holds, both the structural estimand and

the primary estimand are also the ATE. Randomization is the assumption that D |= Yt(d) |
X,T . This problem is analogous to the IPW environment. If randomization holds,

EPTrue [Y1(1)− Y1(0) | D = 1] = EPTrue [Y1(1)− Y1(0)], so our structural estimand is the ATE

in the post period:

ATE = EPTrue [Y1(1)− Y1(0)] .

We let Y = Y1 − Y0 denote the difference in observed outcomes in the two periods. The

DD estimand is EPObs [λ(R)Y ], for λ(R) = D
PObs(D=1|X)

− 1−D
PObs(D=0|X)

. If randomization holds,

then EPObs [Y1(0)− Y0(0) | D = 0] = EPObs [Y1(0)− Y0(0) | D = 1], which can be interpreted

as parallel trends. We allow for violations of randomization in the form of:

ℓd(X) ≤ e(X,U)/(1− e(X,U))

e(X)/(1− e(X))
≤ ud(X)

where e(X) = PObs(D = 1 | X) and e(X,U) = PTrue(D = 1 | X,U), where U = (Y1(1) −
Y0(0), Y1(0)− Y0(0)). Then, our method can be implemented with:

λ(R) =
D

e(X)
− 1−D

1− e(X)
,

w(R) = D

(
e(X) +

1− e(X)

u1(X)

)
+ (1−D) (1− e(X) + e(X)l0(X))

w̄(R) = D

(
e(X) +

1− e(X)

l1(X)

)
+ (1−D) (1− e(X) + e(X)u0(X))

dPTarget(Y | R)
dPObs(Y | R)

=
De(X)

e(X,U)
+

(1−D)(1− e(X))

1− e(X,U)
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With this reweighting, the DD estimand recoversEPTrue [Y1(1)− Y0(0)]−EPTrue [Y1(0)− Y0(0)] =

EPTrue [Y1(1)− Y1(0)]. Due to their analogy to IPW, these bounds are sharp due to the ar-

gument in Dorn and Guo (2023).

Remark 2. The analysis here is applicable to selection on parallel trends. The typical paral-

lel trends assumption is some statement like, EPObs [Y1(0)− Y0(0) | D = 1] = EPObs [Y1(0)− Y0(0) | D = 0],

i.e., the difference in the untreated potential outcome is the same for both treated and un-

treated groups (e.g., Callaway and Sant’Anna (2021) Assumption 4). Roth and Sant’Anna

(2023) show that this statement is functional form-independent only under strong randomization-

type assumption. Our approach can therefore be interpreted as a sensitivity analysis when

parallel trends is interpreted as a functional form-independent restriction. Alternatively,

when the representation of the outcome variable is important to identification, our analysis

also carries through for the ATT under a bound on the degree of selection on the trends

Y1(0) − Y0(0). Other approaches to sensitivity analysis for difference-in-difference designs

include bounding the difference in trends (Rambachan and Roth, 2023) or distributional

distances (Bertsimas et al., 2022) that can be interpreted as f -divergence restriction on se-

lection in our framework (Jin et al., 2022). Parallel trends can also be microfounded (Marx

et al., 2024) and the bias of the DD estimand can also be characterized when parallel trends

fails (Ghanem et al., 2022). These constructions can inform the sensitivity parameter used,

but the exact mapping is beyond the scope of this paper.

3.3 Instrumental Variables

In this subsection, we consider the canonical context of instrumental variables to qualify

the advantages and limitations of our framework. When considering sensitivity analysis to

failure of exogeneity, our framework can be applied in a straightforward manner. However,

there are also some limitations of our framework when considering other IV assumptions:

our framework can be applied to sensitivity analysis to exclusion failure, but our bounds are

not sharp; and our framework is not applicable to monotonicity failure.

We assume there is a distribution PTrue over
(
Z, {T (z)}z∈{0,1}, T, {Y (t, z)}t,z∈{0,1} , X

)
,

where Z is a binary instrument, Y (t, z) is the potential outcome with binary treatment

status t and instrument status z, and T (z) is the potential treatment given the instrument z

is T (z). However, we only observe the coarsening PObs over (Z, T = T (z) , Y = Y (T, Z) , X).
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We will maintain that monotonicity holds (T (1) ≥ T (0)). Under monotonicity, there are

three treatment response groups: always-takers (At, T (1) = T (0) = 1), never-takers (Nt,

T (1) = T (0) = 0), and compliers (Co, 1 = T (1) > T (0) = 0). The regressors are R =

(T, Z,X) and ξ =
(
{T (z)}z∈{0,1}

)
.

We first consider sensitivity analysis to failure of exogeneity. Suppose exclusion holds,

so Y (T, z) = Y (T ) for all z, and we target the treatment effect on compliers. Then,

ψ = EPTrue

[
1{Co}

PObs(Co)
(Y (1)− Y (0))

]
. With slight abuse of notation, we let e(X) = PObs(Z =

1 | X), e(X,U) = PTrue(Z = 1 | X,U), where U = (Y (0), Y (1), T (0), T (1)) denotes

the individual unobservable as before. Suppose we allow exogeneity to fail for compli-

ers, but require exogeneity to nonetheless hold for always takers and never takers, i.e.,

(Y (1), Y (0)) |= Z | X,T (1), T (0) = T (1).7 Then, it can be shown that:8

ψ = EPTrue

[
Z1{Co}Y
e(X,U)

− (1− Z)1{Co}Y
1− e(X,U)

]
= EPTrue

[
ZY

e(X,U)
− (1− Z)Y

1− e(X,U)

]
= EPTarget [λ(R)Y ]

for λ(R) = Z−PObs(Z=1|X)
PObs(Z=1|X)PObs(Z=0|X)

. Then, the problem becomes entirely analogous to IPW, so

the form of w, w̄ is identical, and we have sharp bounds.

Turning to sensitivity analysis to failure of exclusion, now suppose that the instrument

is randomly assigned (Y (t, z) |= Z | X). The exclusion restriction isY (t, 1) = Y (t, 0). If

exclusion fails, then the standard conditional IV estimand, (E[Y | Z = 1, X] − E[Y | Z =

0, X])/(E[T | Z = 1, X] − E[T | Z = 0, X]), will incorrectly assign any direct effect of the

instrument on outcomes to treatment effects. We target an instrument-weighted average

7This assumption is reasonable in most empirical settings. Suppose we are interested in the impact of
participation in 401(k) tax-deferred savings plans (T) on additional savings (Y), and we instrument for T
with eligibility for 401(k) (Z) based on employment. Never-takers have no incentive to manipulate their
eligibility because they would not take the plan up even if they were offered. However, compliers who really
want the plan may manipulate their eligibility by choosing an occupation appropriately.

8We use the results that:

EPTrue

[
ZY

e(X,U)

]
= EPTrue

[
Z1{Co}Y
e(X,U)

]
+ EPTrue

[
(1− Z)TY

e(X)

]
+ EPTrue

[
Z(1− T )Y

e(X)

]
EPTrue

[
(1− Z)Y

1− e(X,U)

]
= EPTrue

[
(1− Z)1{Co}Y
1− e(X,U)

]
+ EPTrue

[
(1− Z)TY

e(X)

]
+ EPTrue

[
Z(1− T )Y

e(X)

]
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LATE given by:

ψ := EPTrue

[
η(X)1{Co}

∑
z

ω(z | X) (Y (1, z)− Y (0, z))

]

where η(X) reflects covariate weighting and ω(1 | X) = 1−ω(0 | X) is a researcher-estimated

instrument weighting function in [0, 1]. When exclusion holds, this class includes the average

complier treatment effect for η(X) = 1/PTrue(Co). When exclusion fails, this specification

also allows the researcher to target a particular weighted average of treatment effects across

instrument statuses. For example, ω(Z | X) = 1 targets the treatment effect at Z = 1 and

ω(Z | X) = E[Z | X] targets the treatment effect at the average observed instrument status.

We rewrite the structural estimand ψ in terms of conditional expected outcomes as fol-

lows:

ψ = EPTrue

[
λ(R)EPTrue

[∑
z

ω(z | X)Y (T, z) | X,T (1), T (0)

]]
,

where λ(Z,X, T ) = η(X)
(

Z−PObs(Z=1|X)
PObs(Z=1|X)PObs(Z=0|X)

)
. Always-takers and never-takers are in-

cluded in this statement of ψ for convenience, but their potential outcomes cancel out for

λ(R) because EPTrue [λ(R) | T (1), T (0), X] = 0.

The target distribution PTarget is constructed as a marginal distribution. For v ∈ {0, 1},
define the distribution PTarget, which re-draws a value v from a Bernoulli(ω(1 | X)) distribu-

tion in order to achieve appropriate outcome weighting, as follows:

PTarget(X,T, Z, Y ) ≡
∑

v,t1,t0∈{0,1}

PTrue(X, t, Z, T (1) = t1, T (0) = t0)ω(v | X)PTrue(Y (T, v) | X,T (1), T (0)).

The distribution of R is the same under PTarget and PObs. Further, by Abadie (2003)’s

argument, the distribution satisfies EPTarget [λ(R)Y ] = EPTrue [λ(R)EPTrue [Y (T, Z) | X,Co]] =
ψ, so that EPTarget [λ(R)Y ] is the structural estimand.

Suppose we have a structural model, where, for z ∈ {0, 1},

ℓ(X) ≤ dPTrue(Y (T (z), 1− z) | {T (z)}, X)

dPTrue(Y (T (z), z) | {T (z)}, X)
≤ u(X), (8)

and suppose further that all associated Radon-Nikodym derivatives are finite and strictly
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positive. The exclusion restriction Y (t, 1) = Y (t, 0) implies ℓ(x) = u(x) = 1. Worst-case

bounds that only restrict the support of the potential outcomes correspond to ℓ(x) = 0,

u(x) = ∞. When Y is binary, Ramsahai (2012) proposes a sensitivity analysis that places a

bound on PTrue(Y = 1 | X,T, Z = 1, U)−PTrue(Y = 1 | X,T, Z = 0, U) for some unobserved

U , which immediately translates to bounds on always- and never-taker likelihood ratios by

taking U = {T (1), T (0)} and implies bounds on complier likelihood ratios. This object can be

decomposed as a convolution of several of the probability objects above, so its interpretation

is less transparent in a causal framework with potential treatments. Alternatively, Λ bounds

on the effect of Z on the odds of a binary potential outcome givenX and potential treatments

imply Λ bounds on the odds ratios here, though narrower partially identified regions could

be obtained by leveraging estimated regression functions.

As we show in Appendix Lemma 5, these objects further imply bounds on dPTarget(Y |X,T=t,Z=z)
dPObs(Y |X,T=t,Z=z)

for each value of T and Z.

Proposition 4. Suppose we write the implied bounds from the worst-case ℓ and u applied

to the formulas from Appendix Lemma 5 as

w(t, z|X) ≤ dPTarget(Y | X,T = t, Z = z)

dPObs(Y | X,T = t, Z = z)
≤ w̄(t, z|X),

where we write w(t, z|X) = w̄(t, z|X) = 1 for values such that PObs(T = t, Z = z | X) = 0.

Then our method can be implemented on EPTrue [η(X)1{Co}
∑

z ω(z | X)(Y (1, z)− Y (0, z))]

with the following values:

λ(R) = η(X)
Z − PObs(Z = 1 | X)

PObs(Z = 1 | X)PObs(Z = 0 | X)
, w(R) = w(T, Z | X), w̄(R) = w̄(T, Z | X).

Unlike the previous examples, the characterization in Proposition 4 is conservative.

Proposition 5. Suppose the observed distribution follows X = 1; Z | X ∼ Bern(0.5);

T | Z,X ∼ Bern(Z/2); and Y | X,Z, T ∼ Unif(−1, 1). Suppose we are interested in the

average complier treatment effect at z = 1, i.e. η(x) = 2 and ω(z | x) = z. Suppose a

structural model implies lower bounds of ℓ(x) = 1 and u(x) = ∞. Then the structural model

implies the sharp bounds are the singleton {0}, but the bounds from Proposition 4 are [−1, 1].

Intuitively, the structural model implicitly includes cross-restrictions between the Co, At,

and Nt Radon-Nikodym derivatives. In this case, the dPTarget(Y |T=0,Z=0)
dPObs(Y |T=0,Z=0)

includes a product
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of Radon-Nikodym derivatives for compliers and never-takers, which must satisfy further

constraints that our approach omits for the purpose of ease of use.9

Remark 3. Our procedure can be applied somewhat trivially to linear projections using

Ordinary Least Squares (OLS). Consider a hypothetical linear model Y = Xβ+ u. Suppose

we are interested in a linear combination of coefficients δ′β, where X includes an intercept

but δ puts no weight on the intercept term, so that without loss of generality we can assume

EPTrue [u] = 0. However, suppose there may be endogeneity in the sense that E[Xu] ̸= 0. Such

problems are considered in Cinelli and Hazlett (2020). If we targeted a distribution PTarget

that first sampled X ∼ PObs, then drew u | X from the distribution of u under PTrue, and

then returned Y = Xβ+u, then the target distribution would obtain the correct coefficients.

The sensitivity assumption is then on dPTarget

dPObs . For instance, we may have w ≤ dPTarget

dPObs ≤ w̄.

Using the notation of our general framework, λ(R) = δ′E[X ′X]−1X. An open question is

whether there is a microfounded interpretation of such an assumption.

Remark 4. Due to our interpretation of the sensitivity parameter as the Radon-Nikodym

derivative of the conditional distribution of Y , one case that is not easily covered by our

framework is when the sensitivity assumption does not concern Y directly. In the context of

instrumental variables, some sensitivity analysis to violations of the monotonicity assumption

that T (1) ≥ T (0) makes assumptions on the mass of defiers with T (1) < T (0) that do not

condition on potential outcomes (e.g., Noack (2021); Yap (2025)), which do not map to Y

directly.

4 Empirical Applications

We apply plug-in estimates of the partially identified bounds in two empirical settings that

use sharp regression discontinuity designs. Since the focus of this paper is on identification,

we relegate our estimation and inference strategy to Appendix B; the approach is largely

similar to that of Gerard et al. (2020). In the first application on incumbency advantage,

our exercise shows how CLATE and CATE can deliver different bounds once we allow for

9Non-sharpness is attributed to how the sensitivity parameter maps to dPTarget(Y |X,T,Z)
dPObs(Y |X,T,Z)

. If we use

dPTarget(Y |X,T,Z)
dPObs(Y |X,T,Z)

as the sensitivity parameter, for instance, we will automatically get sharp bounds, though

dPTarget(Y |X,T,Z)
dPObs(Y |X,T,Z)

is not interpretable.
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manipulators. In the second application on the effects of council size, we show how, even

if we target the CLATE, sensitivity analysis allows us to obtain bounds that are far more

informative than worst-case bounds.

4.1 Incumbency Advantage

We illustrate our procedure using the dataset from Caughey and Sekhon (2011). We study

incumbency advantage in Congressional elections by using an RD design to estimate the

impact of the Democratic party winning in the current period (T) on the probability of

the the democratic party winning in the following election (Y). The running variable is the

marginal share of votes in the current period (X), normalized such that crossing zero results

in a win.

In this dataset, a Democratic win in marginal elections (defined as within a margin of 5

percentage points, which is the smallest window reported in Lee (2008)) is associated with

a 48 percentage point increase in the probability of a democratic win in the next election.

This estimate is somewhat larger than the 35 percentage point estimate in Lee (2008) that

uses a different dataset and a larger bandwidth, but in line with his 45 percentage point

estimate for the same candidate winning in the next election.10

In this sharp RD design, manipulation occurs only in one direction as candidates aim to

be elected. As documented by Caughey and Sekhon (2011), there is a discontinuity in the

density of the running variable at the cutoff (see their Figure 1). We estimate the density

on either side of the cutoff to obtain η̂ = 0.11 in our specification of interest. This sorting is

attributed to activities before election day rather than post election, as Caughey and Sekhon

(2011) document that incumbents raise more funds for their campaigns, which is positively

correlated with election outcomes. Caughey and Sekhon (2011) estimate Rosenbaum bounds

in terms of treatment probabilities that fail to exploit the nature of identification failing via

manipulation. In light of manipulation, we implement our procedure to calculate bounds on

the CATE, CLATE, and CATT, which are reported in Figure 1. In contrast, the bounds

of Gerard et al. (2020) do not characterize the CATE. We use Λ = Λ1 = Λ0, and a linear

quantile regression to obtain the quantiles.

While the results are largely similar across the three estimands, it is notable that the

estimated bounds for CLATE is higher than that of CATE and CATT. This observation

10See Section 3.4 in Lee (2008).
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Figure 1: Bounds on CATE, CLATE, and CATT all exclude zero (solid line). The upper
and lower bounds of the shaded region above and below the CATE estimate indicates the
bounds of the estimated 95% confidence set. The horizontal red lines denote the worst-case
GRR bounds for CLATE. n = 856.

suggests that non-manipulators are more likely to win in the next election than manipulators,

which would go against the intuition that manipulators in the current election are also able

to manipulate in the following election. Accounting for the difference in the treatment

effects of various subgroups is beyond the scope of this paper, but this result shows that

distinguishing CLATE from CATE sheds light on heterogeneity in treatment effects across

different subgroups of the population.

We find that the incumbency advantage is not very sensitive to Λ. Our estimated con-

fidence sets easily exclude treatment effects of zero for even large Λ. Our results that the

conclusion is robust are simple to implement and align with the setting: our limiting bound

estimates when Λ → ∞ are just slightly wider than the worst-case Manski bounds.11

11Using a back-of-the-envelope calculation, exploiting the fact that η = 0.11, the proportion of manip-
ulators is about 0.06. Further, E[Y | X = c−] = E[Y | M = 0, X = c−] = 1/4 and E[Y | X = c+] =
P (M = 0 | X = c+)E[Y | M = 0, X = c+] + P (M = 1 | X = c+)E[Y | M = 1, X = c+] = .73 so that

E[Y |M = 0, X = c+] = E[Y |X=c+]−P (M=1|X=c+)E[Y |M=1,X=c+]
P (M=0|X=c+) ≥ .73−0.11

0.89 . Using the expression for CATE

and the worst-case bounds with E[Y |M = 1, X = c−] = E[Y |M = 1, X = c+] = 1,

CATE = P (M = 0)
(
E[Y |M = 0, X = c+]− E[Y |M = 0, X = c−]

)
+ P (M = 1)(E[Y |M = 1, X = c+]− E[Y |M = 1, X = c−]) ≥ 0.42.

As we take Λ large, our estimated lower bound converges to 0.42, even though we do not explicitly im-
pose bounded outcomes. This finding suggests that even without exploiting all available information, our
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Figure 2: The upper and lower bounds of the shaded region above and below the CATE
estimate indicates the bounds of the estimated 95% confidence set. The horizontal red lines
denote the worst-case GRR bounds for CLATE. n = 44, 276.

4.2 Effects of Council Size

Egger and Koethenbuerger (2010) were interested in the effect of council size on total ex-

penditure in Bavaria. They apply a sharp RD design as the council size is a deterministic

(step-wise) function of the population size of the municipality (see their Table 1). In their

main specification (their Table 3), they studied the effect of crossing the population threshold

(T) on the log of total expenditure (Y), using the log population (X) as the running variable.

Using their replication data, we estimate that crossing the threshold increases expenditure

increases by 8% for the 30% window, which is smaller than the authors’ estimates as we do

not rely on a polynomial approximation.12

Manipulation has been documented in this context by Eggers et al. (2018), and it can

occur for several reasons in this context, including selective precision (e.g., ordering extra

checks to ensure new arrivals are properly processed), and strategic recruitment (e.g., en-

couraging friends to change their address to the municipality). The manipulation also occurs

in one direction, as mayors have little incentive to have smaller council sizes. With our given

bandwidth, we estimate η̂ = 0.15.

procedure yields reasonably tight bounds.
12Our method compares the difference in means above and below the threshold so that it is immediately

comparable to our benchmark in Gerard et al. (2020).
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In this application, the bounds of the three estimands are fairly similar. If we were to

use the GRR bounds for the CLATE by default, then we would automatically overturn the

results of the study as the bounds are extremely uninformative. However, our sensitivity

analysis provides a more nuanced perspective on the significance of the effects: at small

Λ values, the effect on total expenditure remains significant and positive. In this context,

small Λ values may be defensible if the higher expenditures (Y) do not translate directly to,

say, the mayors’ salaries which would incentivize the manipulation: if we believe that the

odds ratio of manipulation for any given expenditure after crossing the threshold is not more

than 2, then the estimated lower bounds for CLATE is still above 0. Alternatively, for the

estimated CLATE bound to be lower than 0, we would need manipulation odds ratio of at

least 2, which may be perceived as rather extreme. Our confidence intervals are also shorter

there than in the previous application as we have many more observations.

5 Conclusion

This paper proposes a novel sensitivity analysis framework for identification failures for linear

estimators. By placing bounds on the distributional distance between the observed distribu-

tion and a target distribution that identifies the structural parameter of interest, we obtain

sharp and tractable analytic bounds. This framework generalizes existing sensitivity models

in RD and IPW and motivates a new sensitivity model for IV exclusion failures. We provide

new results on sharp and valid sensitivity analysis that allow even unbounded likelihood

ratios. We illustrate how our framework and partial identification results contribute to three

important applications, including new procedures for sensitivity analysis for the CATE under

RD with manipulation and for instrumental variables with exclusion.

A Additional Assumptions and Results

Assumption RD. We extend Gerard et al.’s continuity condition and assume that there

is a well-defined conditional distribution function PTrue(Y (1), Y (0) | X,M) such that for

each y1, y0, PTrue(Y (1) ≤ y1, Y (0) ≤ y0 | X = x,M = 0) can be defined as continuous in

x and that the derivative of PTrue(X ≤ x | M = 0) is continuous at x = c. We further

assume that PTrue(Y (1) ≤ y1, Y (0) ≤ y0 | X = x,M = 1) is right-continuous x, assume that
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PTrue(M = 1 | X = x) is right-continuous at x = c, assume that marginals PTrue(Y (t) ≤ yt |
X = x,M = m) are right-continuous for m = 1 (continuous for m = 0) at X = c and define

conditional distributions at X = c, X = c+, and X = c− using the appropriate limits, such

as PObs(X = c+ | X = c) = limε→0+ PObs(T = 1 | |X − c| ≤ ε).

The following claim shows that the conditional c-dependence identified set in our imple-

mentation example is finite and bounded for all c ≤ 0.1 but is infinite for all c > 0.1.

Proposition 6. Suppose Y | X,Z ∼ N (µ(X,Z), σ(X,Z)2), the support of the observed

propensity function e(X) is the closed interval [η1, 1 − η2] ⊂ (0, 1), and the conditional

outcome variance σ(X,Z) is positive and bounded. Then there is a finite B > 0 such that

the ATE identified set is a subset of [E[µ(X, 1)−µ(X, 0)]−B,E[µ(X, 1)−µ(X, 0)]+B] for

all c < min{η1, η2} but is (−∞,∞) for all c > min{η1, η2}.

For exclusion failure, we consider a more general model than the one stated in the main

text. Suppose we have a structural model that implies there are functions ℓNt(X), uNt(X),

ℓAt(X), uAt(X), ℓ1Co(X), u1Co(X), ℓ0Co(X), u0Co(X) such that:

ℓNt(X) ≤ dPTrue(Y (0, 0) | Nt,X)

dPTrue(Y (0, 1) | Nt,X)
≤ uNt(X), ℓAt(X) ≤ dPTrue(Y (1, 1) | At,X)

dPTrue(Y (1, 0) | At,X)
≤ uAt(X),

ℓ1Co(X) ≤ dPTrue(Y (1, 0) | Co,X)

dPTrue(Y (1, 1) | Co,X)
≤ u1Co(X), ℓ0Co(X) ≤ dPTrue(Y (0, 1) | Co,X)

dPTrue(Y (0, 0) | Co,X)
≤ u0Co(X).

The assumption stated in the main text is a special case of this setting where ℓNt(X) =

ℓAt(X) = ℓ1Co(X) = ℓ0Co(X) = ℓ(X) and uNt(X) = uAt(X) = u1Co(X) = u0Co(X) = e(X).

The following lemma shows how dPTarget(Y |X,T=t,Z=z)
dPObs(Y |X,T=t,Z=z) can be written as objects that we bound

above.

Lemma 5. In the Instrumental Variables application in Section 3.3, the following decompo-

sitions hold:

dPTarget(Y |X,T = 0, Z = 0)

dPObs(Y |X,T = 0, Z = 0)
= ω(0 | X) + ω(1 | X)

PObs(Nt | X)

PObs(Co | X) + PObs(Nt | X)

dPObs(Y | X,T = 0, Z = 1)

dPObs(Y | X,T = 0, Z = 0)

+

{
ω(1 | X)

dPTrue(Y (0, 1)|X,Co)
dPTrue(Y (0, 0)|X,Co)

×
(
1− PObs(Nt | X)

PObs(Co | X) + PObs(Nt | X)

dPTrue(Y (0, 0)|X,Nt)
dPTrue(Y (0, 1)|X,Nt)

dPObs(Y | X,T = 0, Z = 1)

dPObs(Y | X,T = 0, Z = 0)

)}
dPTarget(Y |X,T = 1, Z = 1)

dPObs(Y |X,T = 1, Z = 1)
= ω(1 | X) + ω(0 | X)

PObs(At | X)

PObs(Co | X) + PObs(At | X)

dPObs(Y | X,T = 1, Z = 0)

dPObs(Y | X,T = 1, Z = 1)
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+

{
ω(0 | X)

dPTrue(Y (1, 0)|X,Co)
dPTrue(Y (1, 1)|X,Co)

×
(
1− PObs(At | X)

PObs(Co | X) + PObs(At | X)

dPTrue(Y (1, 1) | X,At)
dPTrue(Y (1, 0) | X,At)

dPObs(Y | X,T = 1, Z = 0)

dPObs(Y | X,T = 1, Z = 1)

)}
dPTarget(Y | X,T = 0, Z = 1)

dPObs(Y | X,T = 0, Z = 1)
= ω(1 | X) + ω(0 | X)

dPTrue(Y (0, 0) | X,Nt)
dPTrue(Y (0, 1) | X,Nt)

dPTarget(Y | X,T = 1, Z = 0)

dPObs(Y | X,T = 1, Z = 0)
= ω(0 | X) + ω(1 | X)

dPTrue(Y (1, 1) | X,At)
dPTrue(Y (1, 0) | X,At)

,

where for values of X with PObs(T, Z | X) = 0, we write dPTarget(Y |X,T,Z)
dPObs(Y |X,T,Z) = 1.

B Estimation, Robustness, and Inference

This subsection shows that natural plug-in estimators are robust under reasonable conditions.

We focus on the upper bound for exposition. The target object is:

T ≡ EPObs

[
λ(R)Y +

(
λ(R)Y −Qτ(R) (λ(R)Y |R)

)
a(w(R), w̄(R), λ(R)Y,Qτ(R)(λ(R)Y | R))

]
,

where

a(w, w̄, λy, q) ≡ (w̄ − w) 1 {λy > q} − (1− w).

This is a statistical quantity that depends on the observed distribution PObs alone, so we

now suppress the dependence on PObs for concision.

We use hatted objects to denote the estimated objects and Ê to denote the sample mean.

T̂ ≡ Ê
[
λ̂(R)Y +

(
λ̂(R)Y − Q̂τ̂(R)

(
λ̂(R)Y |R

))
a(ŵ(R), ˆ̄w(R), λ̂(R)Y, Q̂τ̂(R)(λ̂(R)Y | R))

]
Consistency follows under natural conditions. Further, we have a form of one-sided

robustness.

Proposition 7. If we have iid sampling, finite second moments, and λ̂
p−→ λ, Q̂

p−→ Q, ˆ̄w
p−→

w̄, ŵ
p−→ w uniformly, then T̂

p−→ T . Further, even if Q̂
p−→ Q̄ ̸= Q, there exists some T̂ ∗ such

that T̂ ≥ T̂ ∗ and T̂ ∗ p−→ T .

The first part of the proposition is immediate by applying the continuous mapping theo-

rem and the law of large numbers for iid observations. The a(·) dependence on an indicator

function only introduces a kink point rather than a discontinuity, so the function is still
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continuous. The assumptions of the proposition are made at a high level, so that we can ac-

commodate various forms of consistent estimators for functions such as ˆ̄w. In particular, we

can accommodate machine learning nuisance estimators, as we do in our simulation. Note

that our consistency assumption may not be achievable when the quantiles are finite but

unbounded, as at one point in our simulation.

The second part of the proposition states a useful robustness guarantee. Even if the

quantile is not estimated correctly, the resulting estimated bounds will be valid: too wide for

the estimated sensitivity model rather than too narrow. This validity property corresponds

to Lemma 3’s one-sided validity guarantee.

For inference in the general model, we use a standard percentile bootstrap. Namely,

1. For every b = 1, · · · , B,

(a) Sample n observations from the data iid with replacement to get the bootstrap

data.

(b) Calculate t(b) ≡
√
n(T̂ (b) − T̂ ), where T̂ (b) is the estimator that uses the boot-

strapped data.

2. Let GN denote the CDF of t(b) and qα denote that α quantile of GN . For a size 1− α

confidence interval, use [T̂ − 1√
n
q1−α/2, T̂ − 1√

n
qα/2] = CI(α)

The bootstrap will have coverage at least as large as nominal under standard conditions,

like smoothness of the ŵ estimates, even if the quantile estimator tends to an inconsistent

limit. The core argument is that an infeasible bootstrap estimator that replaces the estimated

1{λ̂(b)Y > Q̂+} with the true 1{λY > Q+} in the construction of a would be valid and have

weakly more aggressive confidence intervals. As a result, the quantiles do not even need to

be reestimated in the bootstraps (Dorn and Guo, 2023). Further, estimation error in the

quantiles exhibit a second-order influence on the estimated bounds, so that the confidence

intervals can asymptotically achieve the nominal rate under moderate conditions (Dorn et al.,

2024). A generic proof of bootstrap consistency is outside the scope of this paper. The

presence of extreme quantiles or kink points, as in Masten and Poirier (2018)’s conditional

c-dependence model, may call for more exotic bootstraps and a subtle proof of bootstrap

validity.

In our empirical applications to regression discontinuity, we mimic the inference procedure

from Gerard et al. (2020) that “tilts” the confidence set. The main complication is that
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η̂ is an estimated object, and there is potential non-normality when the true η is close

to zero. Due to the potential for case-by-case nonnormality that would call for a more

sophisticated bootstrap (Fang and Santos, 2019), we do not pursue showing validity of any

general bootstrap procedure.

For κn = log(n)1/2, η̃ = 1 − f̂−/f̂+, and η̂ = max{η̃, 0}, where f̂− and f̂+ are the

estimated densities of the running variable just below and above the threshold (which can

be calculated using standard nonparametric methods),

1. Generate bootstrap samples {Yi,b, Ti,b, Xi,b}ni=1, b = 1, · · · , B by sampling with replace-

ment from the original data {Yi, Ti, Xi}ni=1, for some large integer B.

2. Calculate η̃∗b = 1− f̂−
b /f̂

+
b , and put σ̂η̃ as the sample standard deviation of {η̃∗b}Bb=1.

3. Calculate η̃b = η̃∗b − η̃ +max{η̂, κnσ̂η̃} and η̂b = max{η̃b, 0}.

4. For j ∈ {+,−}, calculate ψ̂j(η̂b) using the redefined estimate η̂b from the previous step,

and put σ̂j as the sample standard deviation of {ψ̂j(η̂b)}Bb=1.

We now define ψ̂−∗ and ψ̂+∗ in the same way as ψ̂− and ψ̂+, except that we use η̂∗ =

max{η̃, κnσ̂η̃} instead of η̂. The confidence set is

CSRD1−α =
[
Γ̂L∗ − rα · σ̂L, Γ̂L∗ + rα · σ̂U

]
where rα is the value that solves the equation:

Φ

(
rα +

Γ̂U∗ − Γ̂L∗

max{σ̂L, σ̂U}

)
− Φ (−rα) = 1− α.

C Main Proofs

C.1 Proofs for Section 2

The following lemma is used in the proof of Theorem 1 and results from simple algebra.

Lemma 6. Recall the definitions τ(R) = w̄(R)−1
w̄(R)−w(R)

and a(w, w̄, s) = (w̄−w)1{s > 0}− (1−
w). We may instead write:

a(w, w̄, s) = (1− w)

(
1{s > 0}
1− τ

− 1

)
.
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Proof of Theorem 1. Formally define ψ+(R) as a random variable satisfying:

ψ+(R) = sup
W

EPObs [w(R)λ(R)Y + (1− w(R))Wλ(R)Y | R]

s.t. W ∈ [0, 1− τ(R)] and EPObs [W | R] = 1 a.s.

for the given R. By the argument in the proof sketch, we can write the upper bound as:

ψ+ = sup
W

EPObs [Wλ(R)Y ] s.t. W ∈ [w(R), w̄(R)] and EPObs[W | R] = 1 a.s.

ψ+ = sup
W

EPObs [w(R)λ(R)Y +Wλ(R)Y ] s.t. W ∈ [0, w̄(R)− w(R)] and EPObs[W | R] = 1− w(R) a.s.

ψ+ = sup
W

EPObs [w(R)λ(R)Y + (1− w(R))Wλ(R)Y ] s.t. W ∈
[
0,
w̄(R)− w(R)

1− w(R)︸ ︷︷ ︸
1−τ(R)

]
and EPObs[W | R] = 1 a.s.

= EPObs [ψ+(R)].

As in the proof sketch, we claim that ψ+(R) = ϕ+(R) almost surely. By arguments

from the DRO literature, e.g. Dorn et al. (2024), ψ+(R) = w(R)E[λ(R)Y | R] + (1 −
w(R))CV aR+

τ(R) almost surely. (In the case that τ(R) = 1, supW EPObs [Wλ(R)Y ] s.t. EPObs [W |
R] = 1 simply reduces to setting λ(R)Y to the supremum of the support of λ(R)Y , i.e. the

level-1 CVaR.)

Note that the level-τ(R) CVaR of λ(R)Y | R can be defined as E
[
Q+ + {Y−Q+}+

1−τ(R)
| R
]
.

(In the case τ(R) = 1, we evaluate this term as Q+ = F1(λ(R)Y | R).)
By Lemma 6, we may write:

ϕ+(R) = λ(R)Y + (1− w(R))(λ(R)Y −Q+(R))

(
1{λ(R)Y > Q+(R)}

1− τ(R)
− 1

)
= w(R)λ(R)Y + (1− w(R))

(
Q+(R) +

{λ(R)Y −Q+(R)}+
1− τ(R)

)
= w(R)λ(R)Y + (1− w(R))CV aR+

τ(R) a.s.

Completing the proof. The derivation for ϕ− is analogous.

Proof of Lemma 1. This is a standard result for importance sampling.

Proof of Lemma 2. Let τ(R) and τ̄(R) be random variables satisfying τ(R) = PObs(λ(R)Y <

Q+(R) | R) and τ̄(R) = PObs(λ(R)Y ≤ Q+(R) | R) almost surely. Note that PObs(λ(R)Y =
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Q+(R) | R) = τ̄(R)− τ(R) almost surely.

Define the function γ : Rd → R1 as follows:

γ(r) ≡


1−τ(r)w(r)−(1−τ̄(r))w̄(r)

τ̄(r)−τ(r) if τ̄(r) > τ(r)

w(r) else.

It is clear that γ(r) is well-defined. The result that γ(R) ∈ [w(R), w̄(R)] almost surely

and that the resulting W ∗
sup solves the upper bound optimization problem follows by an

adapted version of Dorn and Guo (2023)’s Proposition 2 argument and the observation that

E[W ∗
sup | R] = 1 almost surely.

Proof of Lemma 3. Recall from the proof of Theorem 1 that we may write:

ψ+ = w(R)λ(R)Y + (1− w(R))

(
Q+(R) +

{λ(R)Y −Q+(R)}+
1− τ(R)

)
,

where {x}+ = max{x, 0} and where Q+ is the quantile regression function.

We make the stronger claim that:

Q+(R) ∈ argmin
Q̄

E

[
w(R)λ(R)Y + (1− w(R))

(
Q̄(R) +

{λ(R)Y − Q̄(R)}+
1− τ(R)

)
| R
]

a.s.

If H ≡ 1{τ(R) < 1} = 0 and hence τ(R) = 1, then the right hand side should be

understood to be infinite if λ(R)Y > Q+(R). Therefore Q+(R) = F1(λ(R)Y | R) is the

right-hand side minimizer on the event H = 0. Therefore:

Q+(R) ∈ argmin
Q̄

(1−H)E

[
w(R)λ(R)Y + (1− w(R))

(
Q̄(R) +

{λ(R)Y − Q̄(R)}+
1− τ(R)

)
| R
]

a.s.

On the event H = 1, we can write the quantile regression function Q+ as some function

satisfying the weighted quantile regression definition:

Q+(R) ∈ argmin
Q̄

EPObs

[
(1− τ(R))−1

(
τ(R){λ(R)Y − Q̄(R)}+ + (1− τ(R)){Q̄(R)− λ(R)Y }+

)]
⇔ ∈ argmin

Q̄

EPObs

[
(1− τ(R))−1

(
{λ(R)Y − Q̄(R)}+ + (1− τ(R))(Q̄(R)− λ(R)Y )

)]
= EPObs

[
Q̄(R)− λ(R)Y +

λ(R)Y − Q̄(R)}+
1− τ(R)

]
.
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The λ(R)Y term does not affect the minimizer, so that:

Q+(R) ∈ argmin
Q̄

HE

[
w(R)λ(R)Y + (1− w(R))

(
Q̄(R) +

{λ(R)Y − Q̄(R)}+
1− τ(R)

)
| R
]

a.s.

Combining terms, we obtain:

Q+(R) ∈ argmin
Q̄

E

[
w(R)λ(R)Y + (1− w(R))

(
Q̄(R) +

{λ(R)Y − Q̄(R)}+
1− τ(R)

)
| R
]

a.s.

Completing the proof.

Proof of Proposition 1. This is immediate by the discussion in Section 2.3.

C.2 Proofs for Section 3

The following lemmas are used for the proofs of Lemma 4 and Proposition 2 in Section 3.

Lemma 7. Consider the Regression Discontinuity application in Section 3.1. Suppose

FX|M=0(x) is differentiable in x at c with a positive derivative. Then PTrue(X = c+ | X =

c,M = 0) = 1/2.

Lemma 8. Consider the Regression Discontinuity application in Section 3.1. Suppose Q ∈
M(∞,∞). Further suppose that the distribution of (Y (1), Y (0), T (0),M) | X = c under Q

has associated manipulation selection functions q1(y1) ≡ Q(M = 1|Y (1) = y1, X = c) and

q0(y0) ≡ Q(M = 1|Y (0) = y0, X = c). Then the Radon-Nikodym derivatives are as follows:

dQ(Y (1) | X = c,M = 0)

dPObs(Y | X = c+)
=

1

1− η

1− q1(Y (1))

1 + q1(Y (1))

dQ(Y (0) | X = c,M = 1)

dPObs(Y | X = c−)
=

2(1− η)

η

q0(Y (0))

1− q0(Y (0))
.

As a result:

EPTrue [Y (1) | X = c,M = 0] =
1

1− η
EPObs

[
Y
1− q1(Y )

1 + q1(Y )

1 {X = c+}
PObs (X = c+)

]
(9)

EPTrue [Y (0)|X = c,M = 1] =
2 (1− η)

η
EPObs

[
Y

q0(Y )

1− q0(Y )

1 {X = c−}
PObs (X = c−)

]
. (10)

Proof of Lemma 4. For our proofs for the Regression Discontinuity application of Section 3.1,

it is useful to use η0 ≡ PTrue(M = 1 | X = c).
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For the CATE, first observe that PTrue(X = c− | X = c) = PObs(X = c− | X = c) = (1−
η0)/2. To see this, PTrue(X = c−|X = c) = PTrue(X = c−|M = 0, X = c)PTrue(M = 0|X =

c) = PTrue(X = c−|M = 0, X = c)(1 − η0) = (1 − η0)/2, due to Lemma 7. Consequently,

PTrue(X = c+|X = c) = (1 + η0)/2, so

ψCATE ≡ E[Y (1)− Y (0)|X = c]

= E[Y (1)|X = c+, X = c]P (X = c+|X = c) + E[Y (1)|X = c−, X = c]P (X = c−|X = c)

− E[Y (0)|X = c,M = 1]P (M = 1|X = c)− P (M = 0|X = c)E[Y (0)|X = c,M = 0]

= E[Y (1)|X = c+, X = c]
1 + η0

2
+ E[Y (1)|X = c−, X = c]

1− η0
2

− E[Y (0)|X = c,M = 1]η0 − (1− η0)E[Y (0)|X = c,M = 0].

The final equality uses the definition that η0 = PTrue(M = 1|X = c) and the result that

PTrue(X = c−|X = c) = (1− η0)/2. Further, E[Y |X = c+] = E[Y (1)|X = c+] and E[Y |X =

c−] = E[Y (0)|X = c−] due to the sharp RD design of Assumption 1. To obtain the expression

in the lemma, observe that η0 = PTrue(M = 1 | X = c+)PTrue(X = c+ | X = c) = η(1+η0)/2

as PTrue(M = 1 | X = c−) = 0. Then, we can substitute η0 = η/(2− η).

For the CATT, observe:

ψCATT =
E[TY | X = c]− E[TY (0) | X = c]

E[T | X = c]

=
E[TY | X = c]

E[T | X = c]
− PTrue[T = 1,M = 0 | X = c]E[Y | X = c−]

E[T | X = c]

− PTrue[T = 1,M = 1 | X = c]E[Y | X = c,M = 1]

E[T | X = c]

=
E[TY | X = c]

E[T | X = c]
− PTrue[T = 0,M = 0 | X = c]E[Y | X = c−]

E[T | X = c]

− η0E[Y | X = c,M = 1]

E[D | X = c]

=
E[TY | X = c]− E[(1− T )Y | X = c]− η0E[Y | X = c,M = 1]

E[T | X = c]

=
E[(2T − 1)Y | X = c]− η0E[Y | X = c,M = 1]

η0 + (1− η0)/2
.

The CLATE is immediate.

Proof of Proposition 2. Recall by Lemma 8 that selection bounds on qt(Y (t)) = Q(M = 1 |
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X = c, Y (t)) from Equation (6) correspond to likelihood ratios for Q ∈ M(w, w̄) as:

dQ(Y (1) | X = c,M = 0)

dPObs(Y | X = c+)
=

1

1− η

(
1 + 2

q1(Y (1))

1− q1(Y (1))

)−1

∈

[
1

1− η

(
1 + 2

η

2(1− η)
Λ1

)−1

,
1

1− η

(
1 + 2

η

2(1− η)
Λ−1

1

)−1
]

dQ(Y (0) | X = c,M = 1)

dPObs(Y | X = c−)
=

2(1− η)

η

q0(Y (0))

1− q0(Y (0))

As a result, due to Equation (11),

dQ(Y (1) | X = c,M = 0)

dPObs(Y | X = c+)
∈
[

1

1− η + ηΛ1

,
1

1− η + ηΛ−1
1

]
dQ(Y (0) | X = c,M = 1)

dPObs(Y | X = c−)
∈
[
Λ−1

0 ,Λ0

]
.

Next, we verify that the target distribution’s estimand EPTarget [λ(R)Y ] achieves the rele-

vant structural estimands. Suppose we call the target estimator ψ̄. We proceed as follows:

ψ̄CLATE = EPTarget [λ(R)Y | X = c]

= PObs(X = c+ | X = c)EPTarget

[
λ(R)Y | X = c+

]
− PObs(X = c− | X = c)EPTarget

[
λ(R)Y | X = c−

]
= EPTarget

[
Y | X = c+

]
− EPTarget

[
Y | X = c−

]
= EPTrue [Y (1) | X = c,M = 0]− EPObs [Y (0) | X = c,M = 0] = ψCLATE

ψ̄CATT = EPObs [Y | X = c+]− EPTrue [Y (0) | X = c+] = ψCATT

ψ̄CATE = EPTrue [Y (1) | X = c]− EPTrue [Y (0) | X = c] = ψCATE.

Finally, we verify that the Radon–Nikodym bounds have the appropriate forms by using

Equation (5). The formula for the CLATE is immediate. The formula for the CATT follows

by observing that:

dPTrue(Y (0) | X = c+)

dPObs(Y | X = c−)
= PObs(M = 0 | X = c+) ∗ dP

True(Y (0) |M = 0, X = c+)

dPObs(Y | X = c−)

+ PObs(M = 1 | X = c+) ∗ dP
True(Y (0) |M = 1, X = c+)

dPObs(Y | X = c−)
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= PObs(M = 0 | X = c+) ∗ 1 + PObs(M = 1 | X = c+) ∗ dP
True(Y (0) | X = c,M = 1)

dPObs(Y | X = c−)

= (1− η) + η
dPTrue(Y (0) | X = c,M = 1)

dPObs(Y | X = c−)

∈
[
(1− η) + ηΛ−1

0 , (1− η) + ηΛ0

]
,

verifying the form.

The formula for the CATE similarly follows by the argument from Lemma 4. In partic-

ular:

dPTrue(Y (1) | X = c)

dPObs(Y | X = c+)
= PObs(X = c+ | X = c) ∗ dP

True(Y (1) | X = c+)

dPObs(Y | X = c+)

+ PObs(X = c− | X = c) ∗ dP
True(Y (1) | X = c−)

dPObs(Y | X = c+)

= PObs(X = c+ | X = c) ∗ 1 + PObs(X = c− | X = c) ∗ dP
True(Y (1) | X = c,M = 0)

dPObs(Y | X = c+)
.

Similarly:

dPTrue(Y (0) | X = c)

dPObs(Y | X = c−)
= PObs(X = c+ | X = c) ∗ dP

True(Y (0) | X = c+)

dPObs(Y | X = c−)
+ PObs(X = c− | X = c) ∗ 1

= ηPObs(X = c+ | X = c)
dPTrue(Y (0) | X = c,M = 1)

dPObs(Y | X = c−)
+ (1− ηPObs(X = c+ | X = c)).

Recall from the proof of Lemma 8 that PObs(X = c+ | X = c) = 1/(2− η). Therefore:

1{T = 1}w(R) = 1{T = 1}
(

1

2− η
+

1− η

1− 2η
(1− η + ηΛ1)

−1

)
1{T = 1}w̄(R) = 1{T = 1}

(
1

2− η
+

1− η

1− 2η

(
1− η + ηΛ−1

1

)−1
)

1{T = 0}w(R) = 1{T = 0}
(
2− 2η

2− η
+

η

2− η
Λ−1

0

)
1{T = 0}w̄(R) = 1{T = 0}

(
2− 2η

2− η
+

η

2− η
Λ0

)
,

completing the final proof.

Proofs for Proposition 3, Proposition 4, and Proposition 5 are in the online appendix.
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D Online Appendix

D.1 Proof of Proposition 3

Proof of Proposition 3. This proof is extensive, so we split up the argument into separate

subsubsections. To prove that the bounds are sharp, we adopt the following strategy. First,

we show that our bounds are feasible, by showing that the likelihood constraint implies

the allowable distribution and that any ψ1, ψ0 that solves our problem are jointly feasible.

Second and more extensively, we explicitly describe a worst-case distribution, then show that

it is in the model family and achieves the extremal estimands, and then show that a convex

combination of distributions enables achieving any pair of interior estimands as well.

D.1.1 Likelihood Constraint Implies Allowable Distribution

First, we show that if Q ∈ M′(Λ), then Q ∈ M(Λ,Λ). It is clear that it only remains to show

that for t = 1, 0, we have Q(M=1|Y (t),X=c)
Q(M=0|Y (t),X=c)

/PTrue(M=1|X=c)
PTrue(M=0|X=c)

∈ [Λ−1,Λ] almost surely. This holds

by iterated expectations over
∫
Q(M = 1 | Y (1), Y (0), X = c)dQ(Y (1− t) | X = c, Y (1− t))

and the restriction on the domain of Q(M = 1 | Y (1), Y (0), X = c) under Equation (7).

Therefore Q ∈ M(Λ,Λ). This completes the first direction of the proof.

D.1.2 Any Two Feasible Potential Outcomes are Jointly Feasible

We now proceed to construct a Q′ corresponding to ψ1 and ψ0.

For simplicity, we proceed assuming that Y is continuously distributed. (If the conditional

distribution of Y contains mass points at the referenced quantiles, add a uniform random

variable to provide a strict ordering on observations of Y | X and then apply the construction

below to the quantiles of the tie-broken Y .)

Recall that all of our structural estimands of interest can be written as observable linear

transformations of the partially identified average potential outcomes E[Y (t) | X = c,M =

1− t] for t = 1, 0.

We define a distribution Q+,+ which we show is in the model family M′(Λ) ⊂ M(Λ,Λ) ⊂
M′(∞) and achieves the upper bounds on both average potential outcomes within M(Λ,Λ).

We then argue that any Q±,± combination of upper and lower bounds is feasible. Finally,

we argue by mixture that any pair of structural estimands of interest between the two lower
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and upper bounds under M(Λ,Λ) are feasible for some distribution Q ∈ M′(Λ).

D.1.3 Construction of Worst-Case Distribution

We will define a distributionQ+,+ with an unobserved confounder “V .” V = 1 will correspond

to a high manipulation probability, small treated potential outcomes (to maximize E[Y (1) |
X = c+,M = 0]), and large untreated outcomes (to maximize E[Y (0) | X = c+,M = 1]). At

the threshold, a fraction τ1 of treated and 1− τ0 of untreated observations will have V = 1,

where:

τ1 =
1 + η(Λ− 1)

Λ + 1

τ0 =
Λ

Λ + 1
.

In order to facilitate this drawing, we define the observable V function:

V (x, t, y) =

 1{y ≤ Qτ1(Y | X = c+)} if t = 1

1{y > Qτ0(Y | X = c−)} if t = 0.

Finally, in order to match worst-case selection probabilities, M | X = c, V = v will be drawn

iid from a Bern(Tq++(v)) distribution, where q++(v) is defined as:

q++(v) =

 η
(Λ+1)(1−τ1) if v = 0

ηΛ
(Λ+1)τ1

if v = 1.

Finally, we will draw unobserved potential outcomes from the distribution with the same

value of M and V .

Formally, the distribution Q+,+ over (M,X(1), X(0), Y (1), Y (0), T, T (0)) is defined as

follows:

1. Draw (X,T, Y ) ∼ PObs

2. Define the random variable V = V (X,T, Y )

3. Draw M ∼ Bern(Tq++(V ))
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4. Set the lower-case variable realizations for later use x = X, and y = Y , t = T , v = V ,

and m =M

5. Set X(M) = X and Y (t) = y

6. Draw X(1−M) from the distribution of X |M = 1−m under Q+,+ defined so far

7. If m = 0, draw Y (1− t) from the distribution of Y | X = 2c− x,M = 0, V = v under

the construction of Q+,+ so far

8. If m = 1, draw Y (0) from the distribution of Y | X = 2c − x, V = V (t, y) under the

construction of Q+,+ so far

9. Set T (0) = 1{X(0) > c}

10. Return data (M,X(1), X(0), Y (1), Y (0), T, T (0))

D.1.4 Showing Constructed Distribution is in Model Family

We wish to show that Q+,+ ∈ M′(Λ), i.e.:

(a) The distribution of (X = X(M), Y = Y (T ), T ) under Q+,+ marginalizes to the distri-

bution of (X,T, Y ) under PObs

(b) Q+,+(T = 0,M = 1) = 0

(c) Q+,+(M = 1 | X = c+) = η

(d) Q+,+(Y (t) ≤ y | X = x,M = 0) is continuous at c and Q+,+(Y (1) ≤ y | x = c,M = 1)

is right-continuous at x = c.

(e) Q+,+(Y (1), Y (0), T (0),M | X = c) is a conditional distribution that is well-defined as

the appropriate continuous limit.

(f) Q+,+ satisfies Equation (7):

Q+,+(M = 1 | Y (1), Y (0), X = c)

Q+,+(M = 0 | Y (1), Y (0), X = c)

/
PTrue(M = 1 | X = c)

PTrue(M = 0 | X = c)
∈ [Λ−1,Λ].
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Requirements (a) and (b) are immediate.

Requirement (c) follows by inspection:

Q+,+(M = 1 | X = c+) = EPObs [q++(V ) | X = c+]

=
∑
v

PObs(V = v | X = c+)q++(v)

=
η

Λ + 1
+

ηΛ

Λ + 1
= η = PTrue(M = 1 | X = c+).

The requirement (d) holds as follows. PTrue(Y ≤ y | X = x) is left- and right-continuous

at x = c as follows. For left-continuity, for x < c, PTrue(Y ≤ y | X = x) = PTrue(Y ≤ y |
M = 0, X = x) is left-continuous at x = c by assumption. For right-continuity, for x > c,

PTrue(Y ≤ y | X = x) = PTrue(M = 1 | X = x)PTrue(Y ≤ y |M = 1, X = x)

+ PTrue(M = 0 | X = x)PTrue(Y ≤ y |M = 0, X = x),

which by assumption is right-continuous at x = c. As a result, Q+,+(Y (t) ≤ y | X = x,M =

0) is continuous in x at x = c. Note also that for X > c and y ≤ Qτ1(Y | X = c+), we have:

Q+,+(Y (t) ≤ y | X,M = 1)

=
PObs(Y (t) ≤ y | X)q++(0)

PObs(Y (t) ≤ Qτ1(Y | X = c+) | X)q++(0) + PObs(Y (t) > Qτ1(Y | X = c+) | X)
,

and similarly, for Y > Qτ1(Y | X = c+):

Q+,+(Y (t) ≤ y | X,M = 1)

=
PObs(Y (t) ≤ Qτ1(Y | X = c+) | X)q++(0) + PObs(Y (t) ∈ [Qτ1(Y | X = c+), y] | X)q++(0)

PObs(Y (t) ≤ Qτ1(Y | X = c+) | X)q++(0) + PObs(Y (t) > Qτ1(Y | X = c+) | X)
,

both of which are continuous in X.

(e) holds as follows, where we write T (x) = 1{x > c}. For m = 1 and some A ⊆ R2:

lim
ε→0+

Q+,+((Y (1), Y (0)) ∈ A, T (0) = t,M = 1, V = v | |X − ε| ≤ c)

=

∫
1{X > c, (Y (1), Y (0)) ∈ A}q++(v)

1

2
dQ+,+(V, Y (0) | X,Y,M = 1)dPObs(Y,X | |X − c| ≤ ε)

=

∫
q++(v)

1{X > c, (Y (1), Y (0)) ∈ A, V (X, 1, Y ) = v}
2

dQ+,+(Y | |X − c| ≤ c, T = 0, V = v)dPObs(Y,X | |X − c| ≤ ε),

which has a well-defined limit by one-sided continuity of the CDF of Y | X under our
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assumptions. The remaining claim holds by taking the sum over v. Similarly, for m = 0:

lim
ε→0+

Q+,+((Y (1), Y (0)) ∈ A, T (0) = t,M = 1, V = v | |X − ε| ≤ c)

=1{X ≤ c}Q+,+((Y (1), Y (0)) ∈ A, T (0) = t,M = 0, V = v | |X − ε| ≤ c)

+1{X > c}Q+,+((Y (1), Y (0)) ∈ A, T (0) = t,M = 0, V = v | |X − ε| ≤ c),

which is continuous by analogous arguments.

Requirement (f) involves a longer argument, so we show it in a separate section.

D.1.5 Q+,+ Satisfies the Odds Ratio Bound

We wish to show:

Q+,+(M = 1 | Y (1), Y (0), X = c)

Q+,+(M = 0 | Y (1), Y (0), X = c)

/
PTrue(M = 1 | X = c)

PTrue(M = 0 | X = c)
∈ [Λ−1,Λ].

Recall that PTrue(M=1|X=c)
PTrue(M=0|X=c)

= η
2(1−η) .

Notice that Y (1), Y (0) are iid givenM,X, V under Q+,+. As a result, we can equivalently

show that for v = 0, 1:

Q+,+(M = 1 | V = v,X = c)

Q+,+(M = 0 | V = v,X = c)
=

∑
tQ+,+(T = t, V = v,M = 1 | X = c)∑
tQ+,+(T = t, V = v,M = 0 | X = c)

∈
[
Λ−12(1− η)

η
,Λ

2(1− η)

η

]
.

We do so case-by-case for values of v. In the v = 0 case:

∑
t

Q+,+(T = t, V = 0,M = 1 | X = c) =
1

2− η
(1− τ1)q++(0) =

η

(Λ + 1)(2− η)∑
t

Q+,+(T = t, V = 0,M = 0 | X = c) =
1

2− η
(1− τ1)(1− q++(0)) +

1− η

2− η
τ0

=
1

2− η

(
1− τ1 −

η

Λ + 1

)
+

Λ(1− η)

(2− η)(Λ + 1)

=
1

(2− η)(Λ + 1)
(Λ(1− η)) +

Λ(1− η)

(2− η)(Λ + 1)

=
2Λ(1− η)

(Λ + 1)(2− η)
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Q+,+(M = 1 | V = 0, X = c)

Q+,+(M = 0 | V = 0, X = c)
= Λ−1 η

2(1− η)
.

Similarly, in the v = 1 case:

∑
t

Q+,+(T = t, V = 1,M = 1 | X = c) =
1

2− η
τ1q++(1) =

Λη

(Λ + 1)(2− η)∑
t

Q+,+(T = t, V = 1,M = 0 | X = c) =
1

2− η
τ1(1− q++(1)) +

1− η

2− η
(1− τ0)

=
1

(Λ + 1)(2− η)
(1− η) +

1− η

(Λ + 1)(2− η)

Q+,+(M = 1 | V = 1, X = c)

Q+,+(M = 0 | V = 1, X = c)
= Λ

η

2(1− η)
.

Therefore, Q+,+ ∈ M′(Λ).

D.1.6 Showing Constructed Distribution is Worst-Case for Both Estimands

We wish to show that EQ+,+ [Y (1) | X = c,M = 0] and EQ+,+ [Y (0) | X = c,M = 1] are max-

imal within M(Λ,Λ). By the proof of Proposition 2, the maximal conditional expectations

are achieved if:

dQ+,+(Y (1) | X = c,M = 0)

dPObs(Y (1) | X = c+)
=

 Λ
Λ+η(1−Λ)

if Y (1) > Qτ1(Y | X = c+)

1
1+η(Λ−1)

if Y (1) ≤ Qτ1(Y | X = c+)

dQ+,+(Y (0) | X = c,M = 1)

dPObs(Y (0) | X = c−)
=

 Λ if Y (0) > Qτ0(Y | X = c+)

Λ−1 if Y (0) ≤ Qτ0(Y | X = c+).

We begin with the Y (1) distribution:

dQ+,+(Y (1) | X = c,M = 0)

dPObs(Y (1) | X = c+)
=
dQ+,+(Y (1) | X = c+,M = 0)

dPObs(Y (1) | X = c+)

=
dQ+,+(Y (1),M = 0 | X = c+)

(1− η)dPObs(Y (1) | X = c+)

=
Q+,+(M = 0 | X = c+, Y (1))

1− η

=
1−Q+,+(M = 1 | X = c+, Y (1))

1− η

=
1− q++(V (X, 1, Y (1))

1− η
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=


1− η

Λ+η(1−Λ)

1−η if Y (1) < Qτ1(Y | X = c+)
1− ηΛ

1+η(Λ−1)

1−η if Y (1) ≤ Qτ1(Y | X = c+)

=

 Λ
Λ+η(1−Λ)

if Y (1) < Qτ1(Y | X = c+)

1
1+η(Λ−1)

if Y (1) ≤ Qτ1(Y | X = c+)
,

which are the desired likelihood ratios.

We continue with the Y (0) distribution:

dQ+,+(Y (0) | X = c,M = 1)

dPObs(Y (0) | X = c−)
=
dQ+,+(Y (0) | X = c+,M = 1)

dPObs(Y (0) | X = c−)

=
Q+,+(V = V (X, 0, Y (0)) | X = c+,M = 1)

dPObs(V = V (X, 0, Y (0)) | X = c−)

=
Q+,+(V = V (X, 0, Y (0)),M = 1 | X = c+)

ηdPObs(V = V (X, 0, Y (0)) | X = c−)
.

By inspection of the two cases, this is ΛV (X, 0, Y (0)) + Λ−1(1 − V (X, 0, Y (0))), i.e. the

desired likelihood ratio.

D.1.7 Construction of All Mixtures of Estimands

By symmetric arguments, we can find a Q+,− that achieves the maximal value of EQ[Y (1) |
X = c,M = 0] and minimal value of EQ[Y (0) | X = c,M = 1] over Q ∈ M(Λ,Λ), as well as

analogous Q−,+ and Q−,− for all of the other extreme combinations.

Now suppose we are achieving some (ψ1, ψ0) within both pointwise bounds, i.e. there are

some α1, α0 ∈ [0, 1] such that:

α1

(
EQ+,+ [Y (1) | X = c,M = 0]− EQ−,− [Y (1) | X = c,M = 0]

)
= ψ1 − EQ−,− [Y (1) | X = c,M = 0]

α0

(
EQ+,+ [Y (0) | X = c,M = 1]− EQ−,− [Y (0) | X = c,M = 1]

)
= ψ0 − EQ−,− [Y (0) | X = c,M = 1].

Define Q∗ as follows:

• Draw V1 ∼ Bern(α1) and V0 ∼ Bern(α0)

• Write Sd to be + if Vt = 1 and St to be − if Vt = 0

• Draw (X,M,D, Y (1), Y (0)) ∼ QS1,S0
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By inspection, Q∗ ∈ M′(Λ). It also has:

EQ∗ [Y (t) | X = c,M = 1− t] = αtψ
+
t (Λ) + (1− αt)ψ

−
t (Λ)

=
ψ+
t (Λ)

(
ψt − ψ−

t (Λ)
)
+
(
ψ+
t (Λ)− ψt

)
ψ−
t (Λ)

ψ+
t (Λ)− ψ−

t (Λ)

= ψt

Demonstrating the claim.

D.2 Additional Proofs for Section 3

Proof of Proposition 4. With the λ(R) as stated, we have:

EPTarget [λ(R)Y | X] = η(X)PObs(Z = 1 | X)
1− PObs(Z = 1 | X)

PObs(Z = 1 | X)PObs(Z = 0 | X)
EPTarget [Y | X,Z = 1]

+ η(X)PObs(Z = 0 | X)
0− PObs(Z = 1 | X)

PObs(Z = 1 | X)PObs(Z = 0 | X)
EPTarget [Y | X,Z = 0]

= η(X) (EPTarget [Y | X,Z = 1]− EPTarget [Y | X,Z = 0])

= EPTrue

[
η(X)EPTrue

[∑
z

ω(z | X){Y (T (1), z)− Y (T (0), z)} | X,T (1), T (0)

]
| X

]

= EPTrue

[
η(X)1{Co}

∑
z

ω(z | X)(Y (1, z)− Y (0, z)) | X

]
.

By iterated expectations, EPTarget [λ(R)Y ] = ψ.

The constraints on dPTarget(Y |X,T,Z)
dPObs(Y |X,T,Z) follow by any pointwise bounds on those likelihood

ratios that are derived as implications of Lemma 5.

Proof of Proposition 5. We suppress the dependence on X because it is constant.

Notice that in this example, PObs(Co) = PObs(T = 1 | Z = 1) − PObs(T = 1 | Z = 0) =

1/2; PObs(Nt) = 1 − PObs(T = 1 | Z = 1) = 1/2; and PObs(Z = 1) = 1/2. As a result, we

can write ω(z | x) = 2z.

Because PObs(At) = 0, we directly observe PTrue(Y (1, 1) | Co) = PObs(Y | Z = 1, T = 1)

and E[Y (1, 1) | Co] = 0. The partial identification problem is to bound PTrue(Y (0, 1) | Co).
Under the structural model, we have 1 ≤ dPTrue(Y (0,0)|Nt)

dPTrue(Y (0,1)|Nt) = dPTrue(Y (0,0)|Nt)
dPObs(Y |Z=1,T=0)

< ∞, which
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implies that the distribution of Y (0, 0) | Nt is the distribution of Y | Z = 1, T = 0. To

see this, if dPTrue(Y (0,0)|Nt)
dPTrue(Y (0,1)|Nt) > 1 with positive probability, then dPTrue(Y (0,0)|Nt)

dPTrue(Y (0,1)|Nt) < 1 with some

other positive probability, which contradicts the lower bound, so dPTrue(Y (0,0)|Nt)
dPTrue(Y (0,1)|Nt) = 1 almost

everywhere. Notice analogously that under the structural model, 0 ≤ dPTrue(Y (0,1)|Co)
dPTrue(Y (0,0)|Co) ≤ 1,

which implies that the distribution of Y (0, 1) | Co is the same as the distribution of Y (0, 0) |
Co. As a result, E[Y (0, 1) | Co] is point-identified:

E[Y | Z = 0, T = 0] = PObs(Co | Z = 0, T = 0)E[Y (0, 0) | Co] + PObs(Nt)E[Y (0, 0) | Nt]

0 = 0.5E[Y (0, 1) | Co] + 0.5E[Y | Z = 1, T = 0] = 0.5E[Y (0, 1) | Co].

The sharp bounds are the singleton {0}.
Now consider the statistical bounds of Proposition 4. The likelihood ratios of interest

from Lemma 5 are:

dPTarget(Y | T = 1, Z = 1)

dPObs(Y | T = 1, Z = 1)
=

=1︷︸︸︷
ω(1)+

=0︷︸︸︷
ω(0)

∈[1,∞)︷ ︸︸ ︷
dPTrue(Y (1, 0) | Co)
dPTrue(Y (1, 1) | Co)

dPTarget(Y | T = 1, Z = 0)

dPObs(Y | T = 1, Z = 0)
= 1

dPTarget(Y | T = 0, Z = 0)

dPObs(Y | T = 0, Z = 0)
=

=0︷︸︸︷
ω(0)+

=1︷︸︸︷
ω(1)

∈[1,∞)︷ ︸︸ ︷
dPTrue(Y (0, 1) | Co)
dPTrue(Y (0, 0) | Co)

+ ω(1)︸︷︷︸
=1

PObs(Nt)

1− PObs(At)︸ ︷︷ ︸
=1/2

dPObs(Y | T = 0, Z = 1)

dPObs(Y | T = 0, Z = 0)︸ ︷︷ ︸
=1

{
1− dPTrue(Y (0, 1) | Co)

dPTrue(Y (0, 0) | Co)︸ ︷︷ ︸
∈[1,∞)

dPTrue(Y (0, 0) | Nt)
dPTrue(Y (0, 1) | Nt)︸ ︷︷ ︸

∈[1,∞)

}

dPTarget(Y | T = 0, Z = 1)

dPObs(Y | T = 0, Z = 1)
= ω(1)︸︷︷︸

=1

+ω(0)︸︷︷︸
=0

dPTrue(Y (0, 0) | Nt)
dPTrue(Y (0, 1) | Nt)︸ ︷︷ ︸

∈[1/2,∞)

.

Therefore we obtain the likelihood ratio equalities dPTarget(Y |T=1,Z=1)
dPObs(Y |T=1,Z=1)

= dPTarget(Y |T=1,Z=0)
dPObs(Y |T=1,Z=0)

=
dPTarget(Y |T=0,Z=1)
dPObs(Y |T=0,Z=1)

= 1, while under the pointwise approach, dP
Target(Y |T=0,Z=0)
dPObs(Y |T=0,Z=0)

could seemingly

be as large as ∞ and as small as 0. Therefore our approach’s partial identification bounds

on E[Y | T, Z] are equal to the the singleton {0} for (1 − T )(1 − Z) = 0 and are equal to

the domain of Y , [−1, 1], for T = 0, Z = 0.
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The pointwise bounds are

[
−2PObs(Co)PTrue(T = 0 | Z = 0), 2PObs(Co)PTrue(T = 0 | Z = 0)

]
.

Note that PObs(Co) = 1/2 and PTrue(T = 0 | Z = 0) = 1, so that the partially identified set

is [−1, 1].

D.3 Proofs for Appendix A

The following lemma is used in the proof of Proposition 6.

Lemma 9. Bounds on identified set. Consider the general identification setting and suppose

Y | R ∼ N (µ(R), σ(R)2). Then for all ϵ ∈ (0, 1) and e = e(X) denoting the propensity

score, the identified set is a subset of

[
E[λ(R)Y ]± E

[
σ(R)λ(R)(1− w(R))

(√
2 log(w̄(R)) +

√
2/π + (1− w(R))ϵ

√
1/(e ∗ ϵ)

)]]
,

where [a± b] denotes the closed interval [a− b, a+ b] and log is the natural logarithm.

Proof of Lemma 9. We show that the upper bound is at most E[λ(R)µ(R)] plus one-half the

proposed width; the lower bound follows symmetrically.

Note that as we argue in Theorem 1, the upper bound for the identified set can be written

as:

ψ+ = EPObs

[
w(R)λ(R)Y + (1− w(R))CV aR+

τ(R)(R)
]
.

In the Normal-residual case, we can write CV aR+
τ(R)(R) = λ(R)µ(R) + λ(R)σ(R)

ϕ(qτ(R))

1−τ(R)
,

where qτ is the τ th quantile of a standard normal distribution and ϕ is the standard normal

CDF. By existing arguments (e.g. Pinelis (2019)), the inverse Mills ratio ϕ(q)/(1 − Φ(q))

has the upper bound
√
2/π + q.

Therefore the APO upper bound can be further bounded as:

ψ+ = EPObs

[
λ(R)µ(R) + (1− w(R))σ(R)λ(R)

ϕ(qτ(R))

1− τ(R)

]
≤ E[λ(R)µ(R)] + E

[
(1− w(R))σ(R)λ(R)

(√
2/π + qτ(R)

)]
.
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It remains to bound qτ(R). By standard arguments, if S ∼ N(0, 1), then P (S > s) ≤
exp(−s2/2). We substitute s = qτ(R) to obtain:

1− τ(R) = P (S > qτ(R)) ≤ exp(−q2τ(R)/2)

log(1− τ(R)) ≤ −q2τ(R)/2√
log

(
1

1− τ(R))2

)
≥ qτ(R).

Therefore we have bounded the identified set as:

ψ+ ≤ E

[
λ(R)µ(R) + (1− w(R))σ(R)λ(R)

(√
2/π +

√
2(1− w(R))2 log

(
1

1− τ(R))

))]
.

Now we bound the second square root, using the identity:

1

1− τ(R)
=
w̄(R)− w(R)

1− w(R)
= 1 +

w̄(R)− 1

1− w(R)
.

Therefore:

2(1− w(R))2 log

(
1

1− τ(R))

)
= 2(1− w(R))2 log(w̄(R)− w(R))− 2(1− w(R))2−2ϵ(1− w(R))2ϵ log(1− w(R))

≤ 2(1− w(R))2 log(w̄(R)) +
(1− w(R))2−2ϵ

e ∗ ϵ
.

So that we now have the bound:

ψ+ ≤ E [λ(R)µ(R)]

+ E

[
σ(R)λ(R)

(
(1− w(R))

√
2/π +

√
2(1− w(R))2 log(w̄(R)) +

(1− w(R))2−2ϵ

e ∗ ϵ

)]
≤ E [λ(R)µ(R)]

+ E
[
σ(R)λ(R)(1− w(R))

(√
2 log(w̄(R)) +

√
2/π + (1− w(R))ϵ

√
1/(e ∗ ϵ)

)]
.

Applying the same argument to the symmetric lower bound completes the proof.

Proof of Proposition 6. We first show the identified set of E[Y (1)] is unbounded if c > η1;
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the argument is symmetric for the lower bound of E[Y (0)] if c > η2.

By the decomposition in the proof of Lemma 9, the upper bound of the identified set of

E[Y (1)] is:

ψ+ = E
[
λ(R)µ(R) + (1− w(R))CV aR+

τ(R)(R)
]
,

where λ(R) = Z/e(X), w(R) = Z e(X)
e(X)+c

, and µ(R) = E[Y | R]. We can lower bound the

upper bound as:

ψ+ ≥ E
[
λ(R)µ(R) + 1{e(X) < [η1, c]}(1− w(R))CV aR+

τ(R)(R)
]

≥ E

[
λ(R)µ(R) + 1{e(X) ∈ [η1, c]}

1

2

Z

e(X)
E[Y − µ(R) | Y,R ≥ Q1(Y | R)]

]
≥ E

[
λ(R)µ(R) + 1{e(X) ∈ [η1, c]}

1

2

η1
c
∗∞

]
,

where the infinite conditional value at risk happens for allX with σ(X, 1) > 0, which happens

almost surely by assumption. Since η1 = inf p | P (e(X) > p) > 0 by definition and η1 > 0 by

assumption, E[1{e(X) ∈ [η1, c]}1
2
η1
c
| R] > 0 so that the identified set would be unbounded.

Now suppose c < η1 and we wish to show that the identified set is uniformly bounded.

Write D as the upper bound of the support of σ(X,Z)
e(X)

+ σ(X,Z)
1−e(X)

, which by assumption is finite.

By Lemma 9, the identified set can be upper bounded as follows:

ψ+ ≤ E[λ(R)Y ] + E
[
σ(R)λ(R)(1− w(R))

(√
2 log(w̄(R)) +

√
2/π + (1− w(R))ϵ

√
1/(e ∗ ϵ)

)]
≤ E[λ(R)Y ] +DE

[
Z
√

2 log(w̄(R)) +
√
2/π + 1/e

]
,

where log is the natural logarithm. It only remains to bound
√
2E[Z log(w̄(R))], where

w̄(R) = Ze(X)/(e(X) − c) + (1 − Z)(1 − e(X))/(1 − e(X) − c). Suppose the propensity

density is fe(X)(p) and is upper bounded by f̄e(X):

E[Z log(w̄(R))] =

∫ 1−η2

η1

p log(p/(p− c))fe(X)(p)

≤ f̄e(X)

∫ 1−η2

η1

log(p/(p− η1))dp ≤ −f̄e(X)

∫ 1−η2

η1

log(p− η1)dp

≤ −f̄e(X)

∫ 1

0

log(t)dt = f̄e(X).
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Therefore an APO upper bound is:

ψ+ ≤ E[λ(R)Y ] + E
[
σ(R)λ(R)(1− w(R))

(√
2 log(w̄(R)) +

√
2/π + (1− w(R))ϵ

√
1/(e ∗ ϵ)

)]
≤ E[λ(R)Y ] +DE

[√
2f̄e(X) +

√
2/π + 1/e

]
.

Since this bound holds symmetrically for the lower bound of E[Y (0)], writing

B = 2DE
[√

2f̄e(X) +
√

2/π + 1/e
]
completes the proof.

Proof of Lemma 5. We drop conditioning on X for exposition. Observe that:

dPTarget(Y | T = 0, Z = 0)

= ω(1)
(
PObs(Nt|T = Z = 0)dPTrue(Y (0, 1)|Nt) + PObs(Co|T = Z = 0)dPTrue(Y (0, 1)|Co)

)
+ ω(0)

(
PObs(Nt|T = Z = 0)dPTrue(Y (0, 0)|Nt) + PObs(Co|T = Z = 0)dPTrue(Y (0, 0)|Co)

)
= ω(1)

(
PObs(Nt|T = Z = 0)dPObs(Y | T = 0, Z = 1) + PObs(Co|T = Z = 0)dPTrue(Y (0, 1)|Co)

)
+ ω(0)dPObs(Y | T = 0, Z = 0).

We continue to analyze the unobserved term dPTrue(Y (0, 1)|Co), which we factor as:

dPTrue(Y (0, 1)|Co)
dPObs(Y | T = 0, Z = 0)

=
dPTrue(Y (0, 1)|Co)
dPTrue(Y (0, 0) | Co)

dPTrue(Y (0, 0) | Co)
dPObs(Y | T = 0, Z = 0)

Note that:

dPTrue(Y (0, 0)|Co)
dPTrue(Y (0, 0)|Nt)

=
1

PObs (Co|Z = T = 0)

(
dPObs(Y | T = 0, Z = 0)

dPTrue(Y (0, 0)|Nt)
− PObs (Nt|Z = T = 0)

)
,

because

dPObs(Y | T = 0, Z = 0)

dPTrue(Y (0, 0)|Nt)
= PObs (Nt|Z = T = 0)+PObs (Co|Z = T = 0)

dPTrue(Y (0, 0)|Co)
dPTrue(Y (0, 0)|Nt)

.

Combining the results,

dPTarget(Y |T = 0, Z = 0)

dPObs(Y |T = 0, Z = 0)

= ω(0) + ω(1)PObs (Nt|Z = T = 0)
dPObs(Y | T = 0, Z = 1)

dPObs(Y | T = 0, Z = 0)
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+ ω(1)
dPTrue(Y (0, 1)|Co)
dPTrue(Y (0, 0)|Co)

(
1− PObs (Nt|Z = T = 0)

dPTrue(Y (0, 0)|Nt)
dPTrue(Y (0, 1)|Nt)

dPObs(Y | T = 0, Z = 1)

dPObs(Y | T = 0, Z = 0)

)
,

where

PObs (Nt|Z = T = 0) = PObs(Nt | T (0) = 0) =
PObs(Nt)

PObs(Co) + PObs(Nt)
.

Using an analogous argument,

dPTarget(Y |T = 1, Z = 1)

dPObs(Y |T = 1, Z = 1)
= ω(1) + ω(0)

PObs(At)

PObs(Co) + PObs(At)

dPObs(Y | T = 1, Z = 0)

dPObs(Y | T = 1, Z = 1)

+ ω(0)
dPTrue(Y (1, 0)|Co)
dPTrue(Y (1, 1)|Co)

(
1− PObs(At)

PObs(Co) + PObs(At)

dPTrue(Y (1, 1)|At)
dPTrue(Y (1, 0)|At)

dPObs(Y | T = 1, Z = 0)

dPObs(Y | T = 1, Z = 1)

)
.

We continue to analyze dPTarget (Y |T = 0, Z = 1).

dPTarget (Y |T = 0, Z = 1) = ω(0)dPTrue (Y (0, 0) | Nt) + ω(1)dPTrue (Y (0, 1) | Nt)

= ω(0)
dPTrue (Y (0, 0) | Nt)
dPTrue (Y (0, 1) | Nt)

dPTrue (Y (0, 1) | Nt) + ω(1)dPObs (Y | T = 0, Z = 1)

=

(
ω(0)

dPTrue (Y (0, 0) | Nt)
dPTrue (Y (0, 1) | Nt)

+ ω(1)

)
dPObs (Y | T = 0, Z = 1) .

Analogously,

dPTarget(Y | T = 1, Z = 0) = ω(1)dPTrue(Y (1, 1) | At) + ω(0)dPTrue(Y (1, 0) | At)

= ω(1)
dPTrue(Y (1, 1) | At)

dPObs(Y | T = 1, Z = 0)
dPObs(Y | T = 1, Z = 0) + ω(0)dPObs(Y | T = 1, Z = 0)

=

(
ω(1)

dPTrue(Y (1, 1) | At)
dPTrue(Y (1, 0) | At)

+ ω(0)

)
dPObs(Y | T = 1, Z = 0).

D.4 Proofs for Appendix B

We will use some notation for the estimation and inference proofs for Appendix B. It is conve-

nient to define the true and estimated residuals from the quantile S ≡ λ(R)Y −Qτ(R)(λ(R)Y |
R) and Ŝ ≡ λ̂(R)Y − Q̂τ̂(R)(λ̂(R)Y | R). The following lemma is used in the proof of Propo-

sition 7.
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Lemma 10. Define the infeasible T̂ ∗ corresponding to Proposition 7 as:

T̂ ∗ ≡ Ê
[
λ̂(R)Y + Ŝa(ŵ(R), ˆ̄w(R), S)

]
.

Then T̂ ≥ T̂ ∗ deterministically.

Proof of Lemma 10. Define the true and estimated residuals from the quantile S ≡ λ(R)Y −
Qτ(R)(λ(R)Y | R) and Ŝ ≡ λ̂(R)Y − Q̂τ̂(R)(λ̂(R)Y | R).

T̂ − T̂ ∗ = Ê
[
( ˆ̄w(R)− ŵ(R))Ŝ

(
1{Ŝ > 0} − 1{S > 0}

)]
≥ 0.

By sign-matching the cases in which 1{Ŝ > 0} ≠ 1{S > 0}, the result holds deterministically.

In particular, when Ŝ > S, the region where 1{Ŝ > 0} − 1{S > 0} = 1 is where Ŝ > 0, so

Ŝ
(
1{Ŝ > 0} − 1{S > 0}

)
≥ 0. Similarly, when Ŝ < S, the region where 1{Ŝ > 0} − 1{S >

0} = −1 is where Ŝ < 0, so Ŝ
(
1{Ŝ > 0} − 1{S > 0}

)
≥ 0.

Proof of Proposition 7. When ŵ and ˆ̄w are consistent, we get τ̂
p−→ τ . The first part of the

proposition is immediate by applying the continuous mapping theorem and the law of large

numbers for iid observations. Even though we have an indicator function, we only have a

kink point rather than a discontinuity, so the function is still continuous.

For the second part of the lemma, observe that, using T̂ ∗ in Lemma 10, T̂ ≥ T̂ ∗.

Then, using Qτ (λ(R)Y | R) to denote the τ -th quantile of Y for the given R and using

Q̂τ̂(R)(λ̂(R)Y | R) to denote the estimated conditional quantile function,

T̂ ∗ = Ê
[
λ̂(R)Y + Ŝa(ŵ(R), ˆ̄w(R), S)

]
= Ê

[
λ̂(R)Y +

(
λ̂(R)Y − Q̂τ̂(R)(λ̂(R)Y | R)

)
a(ŵ(R), ˆ̄w(R), S)

]
= Ê

[
λ̂(R)Y +

(
λ̂(R)Y − Q̂τ̂(R)(λ̂(R)Y | R)

) ((
ˆ̄w(R)− ŵ(R)

)
1 {S > 0} − (1− ŵ(R))

)]
.

By applying the continuous mapping theorem and the weak law of large numbers,

T̂ ∗ = E
[
λ(R)Y +

(
λ(R)Y −Qτ(R)(λ(R)Y | R)

)
((w̄(R)− w(R)) 1 {S > 0} − (1− w(R)))

]
(1 + oP (1)).
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Under our assumptions, the target object can be written as:

T = E [λ(R)Y + Sa(w(R), w̄(R), S)]

= E
[
λ(R)Y + (λ(R)Y −Qτ(R)(λ(R)Y | R))((w̄(R)− w(R)) 1 {S > 0} − (1− w(R)))

]
.

Note that T̂ ∗ = T (1 + oP (1)). Either T is finite, so that T̂ ∗ = T + oP (1), or T is infinite,

so that T̂ ∗ = T with probability tending to one. In either event, T̂ ∗ − T = oP (1).

D.5 Proofs for Appendix C

Proof of Lemma 7. Define fx|M=0(c) > 0 to be the derivative of FX|M=0(x) at c. Then we

have:

PTrue(X = c+ | X = c,M = 0)

= lim
ε→0+

FX|M=0(c+ ε)− FX|M=0(c)

FX|M=0(c+ ε)− FX|M=0(c− ε)

= lim
ε→0+

FX|M=0(c+ ε)− FX|M=0(c)

FX|M=0(c+ ε)− FX|M=0(c) + FX|M=0(c)− FX|M=0(c− ε)

= lim
ε→0+

FX|M=0(c+ε)−FX|M=0(c)

ε
FX|M=0(c+ε)−FX|M=0(c)

ε
+

FX|M=0(c)−FX|M=0(c−ε)
ε

=
limε→0+

FX|M=0(c+ε)−FX|M=0(c)

ε

limε→0+
FX|M=0(c+ε)−FX|M=0(c)

ε
+ limε→0−

FX|M=0(c+ε)−FX|M=0(c)

ε

=
fx|M=0(c)

2fx|M=0(c)
= 1/2

Proof of Lemma 8. For our proofs, it is useful to use η0 instead. We define:

η0 ≡ PTrue(M = 1 | X = c) = PObs(X = c+ | X = c)η.

Notice that PObs(X = c+ | X = c) = 1/(2− η), because PObs(X = c− | X = c) = PTrue(M =

0 | X = c)/2 = (1− η)PObs(X = c+ | X = c). As a result, η0 = η/(2− η), η = 2η0/(1 + η0),

and PObs(X = c+ | X = c) = (1 + η0)/2.
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Also notice that in Equation (6), the constraints on manipulation probabilities are defined

relative to:
PTrue(M = 1 | X = c)

PTrue(M = 0 | X = c)
=

η0
1− η0

=
η

2(1− η)
. (11)

We begin with Y (1). Since Q produces the observable distribution PObs(X = c+ | X =

c)dPObs(Y | X = c+) and PObs(X = c+ | X = c) = (1 + η0)/2, we have:

Q(X = c+ | X = c)dQ(Y (1) | X = c+) = dQ(Y (1) | X = c)Q(X = c+ | X = c, Y (1))

= dQ(Y (1) | X = c) (1 + q1(Y (1))) /2

dQ(Y (1) | X = c) =
2PObs(X = c+ | X = c)

1 + q1(Y (1))
dQ(Y (1) | X = c+)

We can also derive the probability of a treated observation being manipulated under Q

through Bayes’ Rule:

Q(M = 0 | Y (1), X = c+)

=
dQ(Y (1) | X = c)Q(M = 0 | X = c, Y (1))Q(X = c+ | X = c, Y (1),M = 0)

Q(X = c+ | X = c)dQ(Y (1) | X = c+)

=
dQ(Y (1) | X = c) ∗ (1− q1(Y (1)))/2

dQ(Y (1) | X = c) (1 + q1(Y (1))) /2

=
1− q1(Y (1))

1 + q1(Y (1))

As a result:

dQ(Y (1) | X = c,M = 0) = dQ(Y (1) | X = c+,M = 0)

=
dQ(Y (1) | X = c+)Q(M = 0 | X = c+, Y (1))

Q(M = 0 | X = c+)

=

1−q1(Y (1))
1+q1(Y (1))

1− η
dPTrue(Y (1) | X = c+)

This is our first equality.

We now turn our attention to Y (0). By a similar observed-untreated-outcome argument,

we have:

Q(X = c− | X = c)dQ(Y (0) | X = c−)
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=dQ(Y (0) | X = c)Q(X = c− | X = c, Y (0))

=dQ(Y (0) | X = c)Q(M = 0 | X = c, Y (0))Q(X = c− | X = c, Y (0),M = 0)

=dQ(Y (0) | X = c)(1− q0(Y (0)))/2

Since Q(X = c− | X = c) = PTarget(X = c− | X = c) = 1−η0
2

, we can then obtain:

dQ(Y (0) | X = c) =
1− η0

1− q0(Y (0))
dQ(Y (0) | X = c−)

We can also split up dQ(Y (0) | X = c) as:

dQ(Y (0) | X = c) = η0dQ(Y (0) | X = c,M = 1) + (1− η0)dQ(Y (0) | X = c,M = 0)

= η0dQ(Y (0) | X = c,M = 1) + (1− η0)dQ(Y (0) | X = c−)

So that we can combine terms to obtain:

dQ(Y (0) | X = c,M = 1) =
1− η0
η0

q0(Y (0))

1− q0(Y (0))
dQ(Y (0) | X = c−)

1− η0
η0

=
2(1− η)

η

dQ(Y (0) | X = c,M = 1) =
2(1− η)

η

q0(Y (0))

1− q0(Y (0))
dQ(Y (0) | X = c−)

Which is the final equality after substituting in dQ(Y (0) | X = c−) = dPTrue(Y (0) | X =

c−).
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