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Abstract

This paper proposes a method to bound policy relevant treatment parameters

(PRTP) when the monotonicity assumption that the instrumental variable affects in-

dividuals’ treatment response in the same direction is weakened. The bounding frame-

work uses the proportion of defiers relative to compliers as a sensitivity parameter, and

yields an identified set that is an interval. The method is illustrated in an empirical

application where the same-sex instrument was used to calculate the effect of having

a third child on labor force participation. I find that bounds are informative only for

small violations in monotonicity.
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1 Introduction

Since the seminal work of Heckman and Vytlacil (2005), there has been a large literature

that is concerned with identification and inference of policy relevant treatment parameters

(PRTP) in instrumental variable (IV) settings with heterogeneous treatment effects (TE).

PRTP is a general class of objects that includes the local average treatment effect (LATE) and

various TE in counterfactual environments. Existing methods that target the general class

of PRTP rely on the monotonicity assumption that the instrument affects all individuals’

treatment response in the same direction, which is usually imposed through an additively

separable treatment selection equation (e.g., Mogstad et al. (2018)). However, monotonicity

may not be realistic in many applications. Consider the Angrist and Evans (1998) study

that was interested in the effect of having a third child on the mother’s labor supply. They

used an indicator for whether the first two kids are of the same sex as an instrument for the

third child. Since parents have a preference for gender balance among their children, families

with two boys or two girls are more likely to have a third child. But some parents may want

two sons or two daughters, so they would violate monotonicity, which rules out families who

would have a third child if their first two children are of the same sex, and would not have a

third child if their first two children are of different sex. Further examples of monotonicity

failure are considered in De Chaisemartin (2017). This observation raises the question of

how much bounds on PRTP would change when monotonicity fails. This paper explicitly

places a bound on the extent that monotonicity fails, which nests approaches that either

impose or drop monotonicity as special cases.

The goal is to place bounds on PRTP while accommodating limited violations of mono-
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tonicity. Sensitivity restrictions characterize these violations: I use a sensitivity parameter

that places an upper bound on the proportion of defiers relative to compliers. To obtain

bounds on PRTP, I adapt the setup and linear program in Mogstad et al. (2018) to accommo-

date defiers. PRTP can be written as linear combinations of conditional means of potential

outcomes for subgroups defined by their treatment response to the instrument. Hence, with

appropriate assumptions, the linear program can be retained. The baseline specification of

the constraint set uses mean compatibility restrictions across conditional outcome distribu-

tions, but the method is amenable to additional restrictions researchers may wish to impose.

This procedure yields an identified set that is an interval, and can be modified to incorporate

covariates. Providing this tool for sensitivity analysis of PRTP is the main contribution of

the paper.

As an application of the general theoretical results, I detail a particular type of PRTP

— the treatment effect for compliers under a counterfactual policy environment, which I call

the LATE*. In the Angrist and Evans (1998) study, the estimated effect of a third child on

the mother’s employment status from the IV regression is specific to the policy environment

surrounding childcare in the dataset. Would we still have the same conclusion when the

government gives a subsidy for childcare? What would the effect of a third child be for

compliers in this counterfactual environment? These are questions answered by LATE*,

which nests LATE as a special case (i.e., when there is no extrapolation). The LATE* is one

way to think about external validity of a study’s conclusions, which researchers are often

interested in (e.g., Muralidharan et al. (2019); Ito et al. (2021)).1

1When calculating policy effects in counterfactual environments, parametric models of Brinch et al. (2017)
and Kline and Walters (2019) are often used. However, these approaches are less useful when thinking of
LATE* as a means to check external validity: since identification of heterogeneous treatment effects are
often done without a parametric model, it seems desirable to avoid parametric models when evaluating the
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In the counterfactual environment described, the treatment propensity for the entire pop-

ulation changes while the instrument values are the same. To obtain the LATE*, it suffices

to characterize the mass of various treatment response groups in the original environment

becoming compliers in the counterfactual environment. At a high level, (partial) identifi-

cation of the LATE* is possible because the data places some restrictions on the means of

potential outcomes, and objects of interest merely reweight these potential outcome means.

If we are willing to put bounds on the fraction of people who respond to the instrument in

the counterfactual environment relative to the original, meaningful bounds can be obtained.

The same logic applies to other PRTP.

The procedure is implemented in the Angrist and Evans (1998) example. An instrument

is used because it is believed that the OLS estimand is downward-biased: due to unobserved

factors, women who are less likely to work are also those who are more likely to have a third

kid. Hence, when the lower bound of the IV estimand reaches the OLS estimand, the bounds

are no longer informative. I find that the bounds are informative only for small violations of

monotonicity. Consider a counterfactual environment where a childcare subsidy is available.

When the mass of defiers is more than 20% the mass of compliers, the lower bound for the

LATE* falls from -0.103 under monotonicity to below the OLS benchmark of -0.134. Hence,

the informativeness of the counterfactual estimates depends crucially on monotonicity.

This paper relates to several strands of literature. First, it is related to a literature on the

failure of monotonicity in IV settings. Some papers that address violation of monotonicity

include reinterpreting the estimand for the LATE (De Chaisemartin, 2017), using weaker

monotonicity assumptions (Small et al., 2017; Heckman and Pinto, 2018; Kamat, 2018; Dahl

robustness of results.
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et al., 2023) or alternative assumptions (Klein, 2010), and testing if it is indeed a concern

(Kitagawa, 2015). Another common approach is the put bounds on the ATE or the LATE

either using worst-case bounds or through some form of sensitivity analysis (Manski, 1989;

Balke and Pearl, 1997; Horowitz and Manski, 2000; Noack, 2021; Kitagawa, 2021). There

is also a literature that place bounds on further populations (e.g., compliers, defiers, never

takers and always takers) (Richardson and Robins, 2010; Huber and Mellace, 2015; Huber

et al., 2017; Ding and Lu, 2017). By targeting the PRTP, this paper not only covers bounds on

these subpopulations, but also contributes bounds on extrapolated objects in counterfactual

environments without monotonicity. Nonetheless, the approach in this paper does not have

sharpness guarantees or closed-form solutions like in much of the existing literature.

Second, this paper is related to the literature on extrapolation and external validity in IV

settings. In counterfactual environments, parametric models are often used (Brinch et al.,

2017; Kline and Walters, 2019). Papers that target PRTP without a parametric model

rely on a separable selection equation (Heckman and Vytlacil, 2005; Mogstad et al., 2018).

The approach used in this paper neither uses a parametric model nor a separable selection

equation — the latter cannot hold by construction when allowing for defiers. In light of the

numerical equivalence between selection equations and the group primitives (Heckman and

Vytlacil, 2005; Kline and Walters, 2019), this paper additionally contributes an example of

how group primitives map to some nonseparable equation that permits extrapolation when

monotonicity fails.

The rest of this paper discusses the proposed method and its applications. Section 2

explains the general framework in forming bounds for PRTP; Section 3 applies the framework

to LATE*. Section 4 applies the procedure to the Angrist and Evans (1998) example. Section
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5 concludes.

2 Framework for Identification without Monotonicity

2.1 Setting

We observe random variables (T, Z, Y ), denoting treatment, instrument, and outcome re-

spectively. We are interested in the effect of the endogenous T on Y in a counterfactual en-

vironment. Outcome Y can be discrete or continuous; instrument Z ∈ Z = {0, 1, · · · , k− 1}

takes one of k < ∞ discrete values, and treatment T ∈ {0, 1} is binary. Although the

setup can be adapted to multivalued T , I focus on the binary case for simplicity. Let T (z)

denote the potential treatment when given instrument z, and let Y (t) denote the potential

outcome when given treatment t, which assumes that Y is not affected by Z directly. Let

T ∗(z∗) denote the potential treatment when given instrument z∗ ∈ Z∗ in the counterfactual

environment, where Z∗ is the set of values that the instrument can take in the counterfac-

tual environment. Without loss of generality, the instrument values are ordered such that

Pr(T (z) = 1) is increasing in z.2 Then, the observed T and Y are Y = Y (T ) and T = T (Z).

Treatment response groups g ∈ G are characterized by the vector of potential treatments,

i.e., ((T (z))z∈Z , (T
∗(z∗))z∗∈Z∗). G is the set of all possible combinations of ((T (z))z∈Z , (T

∗(z∗))z∗∈Z∗):

with a binary treatment, k instrument values, and Z∗ = Z, we have |G| = 22k. Without

extrapolation, the counterfactual environment is the original environment. Then, Z∗ = Z

2There is a bijection from any set Z ′ with k discrete values to Z such that for any z, z′ ∈ Z such that z > z′,
Pr(T (z) = 1) ≥ Pr(T (z′) = 1). Hence, beyond having k discrete values for the instrument, assumptions on
Z ⊂ N and the ordering of the values are without loss of generality.
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and T (z) = T ∗(z), ∀z ∈ Z. In general, the mass of each group in the population is

qg := Pr(g).

Let q denote a vector that stacks all qg values that are nonzero. In applications, there may

be groups with qg = 0. Hence, the dimension of q, dq, is defined as the number of groups

with nonzero mass, so dq ≤ |G|.

For example, consider an environment with binary treatment, k = 2 instrument values

and Z = Z∗. Using terminology in the literature (e.g, Angrist et al. (1996)), the 4 response

groups in the original environment are always-takers (A) with T (0) = T (1) = 1, compliers

(C) with T (0) = 0 and T (1) = 1, defiers (D) with T (0) = 1 and T (1) = 0 and never-takers

(N) with T (0) = T (1) = 0. Then, |{((T (z))z∈Z , (T ∗(z∗))z∗∈Z∗)}| = 22×2 = 16. If we are

not interested in the extrapolated environment, then T (z) = T ∗(z), so we only have dq = 4

groups.

Define the conditional mean for each group as follows:

µgt := E[Y (t)|g].

Similarly, let µ be the vector that stacks the µgt values, and let dµ := dim(µ) denote the

dimension of µ. It is implicitly assumed that these µgt objects are well-defined. When

treatment is binary, dµ = 2dq.

Following Huber et al. (2017), it suffices to have mean independence of the potential

outcomes across groups instead of full independence:
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Assumption 1. E[Y (t)|g, z] = E[Y (t)|g] and Pr(g|z) = Pr(g) for all g, z.

These groups are the primitives of the setup. Random assignment of the instrument Z

satisfies Assumption 1. In addition to Assumption 1, following Angrist and Imbens (1994),

many papers also assume monotonicity, the assumption that the instrument weakly affects

treatment in the same direction for all individuals.

Assumption 2. For all z1, z2 ∈ Z either Pr(T (z1) ≥ T (z2)) = 1 or Pr(T (z1) ≤ T (z2)) = 1.

For z∗1 , z
∗
2 ∈ Z∗, either Pr(T ∗(z∗1) ≥ T ∗(z∗2)) = 1 or Pr(T ∗(z∗1) ≤ T ∗(z∗2)) = 1.

Assumption 2 implies there are particular groups g with qg = 0, which, in the environment

without extrapolation, reduces number of treatment response types with nonzero mass from

2k to k + 1. This paper conducts sensitivity analysis for the failure of this assumption, so it

relaxes Assumption 2. Since this assumption is a statement about the potential treatment

response, sensitivity analysis involves careful consideration of the masses qg of various groups.

The object of interest is the PRTP, defined as any estimand that can be written as:

β =
∑
g,t

cgt(q)µgt = c(q)′µ. (1)

where cgt(q)’s denote the weights on each of the µgt’s, and these coefficients can depend

on q. The equality requires the object of interest to be linear in µ. c(q) is the coefficient

vector, with c : [0, 1]dq → Rdµ transforming the vector of proportions into weights on the

conditional expectations. Once q is known, c(q) is known. Objects of interest like the

LATE and the average treatment effect (ATE) can be written in this form. For example,

the ATE uses c(q) = q ⊗ (1,−1)′, the average treatment effect on the treated (ATT) uses
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c(q) = (qA,−qA, qC ,−qC , qD,−qD, 0, 0)
′/(qA+qC+qD), and the LATE* is explained in Section

3. This β can be viewed as a discretized version of the PRTP defined in Mogstad et al. (2018).

The relationship between β and the target object in Mogstad et al. (2018) warrants fur-

ther discussion. Mogstad et al. (2018) assumed monotonicity, so treatment can be written

as T = 1[ν̃(Z) ≥ u], for unobserved u ∼ U [0, 1]. The primitives of their model are marginal

treatment responses E[Y (t) | u], and their target parameter integrates a weighted average of

E[Y (t) | u] over u. In the monotonic setting, u has a natural interpretation as a treatment

propensity, where high values of u correspond to N, middle values to C, and and low values

to A for a binary instrument. However, when monotonicity fails, the treatment equation be-

comes nonseparable with T = 1[ν(Z, u) ≥ 0]. Then, the interpretation of u is unclear unless

a researcher has a particular ν(Z, u) in mind. Nonetheless, the groups remain well-defined

in general. The unobserved u is meaningful in the target object insofar as it defines the

groups that we are interested in. Hence, this paper uses the unobserved groups g to charac-

terize conditional means, and characterizes the target object in terms of E[Y (t) | g] instead

of E[Y (t) | u]. The relationship between this group characterization and a nonseparable

selection equation will be further clarified in Section 3.2 through an example.

2.2 Constraints on µ and q

The method places bounds on objects of interest by using the researcher’s input for a sen-

sitivity parameter. To explain this method, I first explain the constraints on µ implied by

Assumption 1 in Section 2.2.1, where it is assumed that the vector q is known. Then, Sec-

tion 2.2.2 shows how a single sensitivity parameter that affects q captures the extent that
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monotonicity is violated.

2.2.1 Constraint Set for µ

M(q) denotes the set of µ that satisfies defined equality and inequality constraints. These

constraints may depend on q, and may include ex ante restrictions and features of the data.

The researcher can specify what these constraints are, but I require these constraints to be

linear in µ and the set M(q) to be convex.

One example of M(q) is a set of mean compatibility constraints implied by Assumption

1. In Y |T = t, Z = z, the mean of the various structural µgt such that T (z) = t, weighted

by their proportions, is equal to the reduced-form mean E[Y |T = t, Z = z]. Hence, where

ptz := Pr(T = t|Z = z), for all z, t, these constraints take the form:

∑
g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z]. (2)

Observe that (2) is a function of the q vector, so q parameterizes the constraint set M(q).

Without ex ante restrictions, the set of µ that satisfies mean compatibility is in Equation

(3). This set is denoted Mm(q) to avoid confusion with the general constraint set M(q):

Mm(q) :=

µ ∈ Rdµ :
∑

g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z] ∀z ∈ Z, t ∈ {0, 1}

 . (3)

The constraints in set Mm(q) do not exploit all distributional information, but nonethe-

less make the problem tractable, so Mm(q) can be used as a default. With binary outcomes,

µgt ∈ [0, 1] should be used as a constraint. Without binary outcomes, we may consider
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additional constraints implied by Assumption 1, such as the trimming bounds of Lee (2009).

Additional restrictions that the researcher may impose include selection into treatment (e.g.,

Roy (1951)).

2.2.2 Sensitivity Parameter

To form a sensitivity parameter for violation of Assumption 2, I first define compliers and

defiers. For z > z′, define sets of defiers and compliers respectively as:

Sd
(z,z′) := {g : T (z) < T (z′)}, and

Sc
(z,z′) := {g : T (z) > T (z′)}.

Since Pr(T (z) = 1) is increasing in z, Pr(g ∈ Sd
(z,z′)) ≤ Pr(g ∈ Sc

(z,z′)). Assumption 2 is

equivalent to having no defiers, so the sensitivity parameter should control the proportion

of defiers, which then affects the q vector. Hence, the sensitivity parameter λ imposes the

restriction that, for all pairs (z, z′),

∑
g∈Sd

(z,z′)

qg ≤ λ
∑

g′∈Sc
(z,z′)

qg′ . (4)

I refer to the inequality restriction (4) imposed by λ as a “sensitivity restriction”.3 I

also place an analogous sensitivity restriction on the counterfactual environment with T ∗(.).

In particular, for Sd∗
(z,z′) := {g : T ∗(z) < T ∗(z′)} and Sc∗

(z,z′) := {g : T ∗(z) > T ∗(z′)}, the

sensitivity restriction is
∑

g∈Sd∗
(z,z′)

qg ≤ λ
∑

g′∈Sc∗
(z,z′)

qg′ . It is possible to have a different

3This sensitivity parameter was earlier proposed in Ding and Lu (2017) for the case with a binary instrument
and binary treatment when targeting subpopulations in the sample.
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sensitivity parameter for every pair (z, z′) in nonbinary settings — this does not change the

method, but increases the number of sensitivity parameters. To keep the exposition simple,

I work with a single sensitivity parameter λ. When λ = 0, there is no pair of instrument

values for which there are defiers.

With Q(λ) denoting the general constraint set, the proportion vector satisfies q ∈ Q(λ).

As in the treatment of M(q), the researcher can specify additional restrictions, but I propose

the minimal set of restrictions. Namely, the proportions chosen must be compatible with

the observed ptz. Assumption 1 implies ∀t, z,

∑
g:T (z)=t

qg = ptz. (5)

The set Q(λ) may be empty for some choices of λ. Due to Proposition 1 of Noack

(2021), there are bounds imposed on qD by the data, so if λ is too small, the set will be

empty. Notably, Noack (2021) assumes full independence rather than mean independence

that is assumed in this paper, so if we assume full independence, tighter bounds on qD

can be obtained from her method.4 The sensitivity restriction thus describes monotonicity

violations that are not detectable by the data. Even if qD = 0 is rejected by the data, the

existing tests can construct a confidence interval for qD that can feature as a restriction in

Q(λ), which can still be used to bound the PRTP.

4Bounds on qD are obtained from implications on the outcome distribution. With full independence, the
entire outcome distribution can be used to obtain the bounds, but with mean independence, we can only
use the conditional means of the outcome distribution.
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The minimal constraint set satisfies (4) and (5), so it takes the form Q(λ) = Qm(λ):

Qm(λ) :=

q ∈ [0, 1]dq :
∑

g∈Sd
(z′,z′′)

qg ≤ λ
∑

g′∈Sc
(z′,z′′)

qg′ ,
∑

g∈Sd∗
(z′,z′′)

qg ≤ λ
∑

g′∈Sc∗
(z′,z′′)

qg′ ,
∑

g:T (z)=t

qg = ptz,∀(z′, z′′), t, z

 .

(6)

Observe that
∑

g qg = 1 is implied by the condition that
∑

g:T (z)=t qg = ptz, ∀t, z. Follow-

ing Mogstad et al. (2018), define our identified set for PRTP:

Bλ = {b ∈ R : b = c(q)′µ for some µ ∈ M(q), q ∈ Q(λ)}. (7)

More precisely, Bλ is the set identified by constraints in M and Q.

Remark 1. Due to the generality of the framework, several extensions can be accommo-

dated. First, we can extend the analysis to multivalued treatments. With |T | treatment

values, we can analogously define G so that |G| = |T |2|Z|. The object of interest remains as

a linear combination of group-specific average potential outcomes. Second, we can extend

the analysis to multiple binary instruments. With b binary variables, |Z| = 2, and we have

|G| = 22|Z|b groups. Then, we may conduct sensitivity analysis with respect to partial mono-

tonicity (Mogstad et al., 2021) or limited monotonicity (van’t Hoff et al., 2023) by imposing

inequality (4) only with respect to their affected groups rather than all pairs.

2.3 Theoretical Properties

This subsection presents the main identification result of the paper, that the identified set

is an interval. The method for finding bounds on PRTP solves an optimization problem in

light of the constraints on µ and q from the previous subsection. Since obtaining the upper
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and lower bounds of the interval involves optimizing over µ and q, it is helpful to break

the optimization problem into an inner problem that optimizes over µ given q and an outer

problem that optimizes over q. Write the inner optimization problem as:

R(q) := min
µ∈M(q)

c(q)′µ, and R(q) := max
µ∈M(q)

c(q)′µ. (8)

These inner optimization problems are linear programs by assumption, given q. This

rewriting is convenient because linear programs are computationally cheap. The linearity

of the general program conditional on q is similar to the generic framework presented in

Mogstad et al. (2018), which did not allow for monotonicity violations. Assumption 3 below

provides sufficient conditions for the identified set to be an interval.

Assumption 3. For a given λ ∈ [0, 1), the following hold:

(a) For all g ∈ G, if qg > 0, then µgt is well-defined and finite ∀t ∈ {0, 1}.

(b) Restrictions in M(q) can be written as a system of linear inequalities in µ such that

M(q) = {µ : A(q)µ ≤ b(q)} is continuous in (A(q), b(q)), and M(q) is convex.5

Hyperparameters A(q) and b(q) of the linear program are continuous in q.

(c) c(q) is continuous in q.

(d) Q(λ) is a nonempty convex set.

Theorem 1. (Identified Set). Suppose Assumption 1 and 3 hold for some λ. Then, either

M(q) is empty for all q ∈ Q(λ) and hence Bλ is empty, or the closure of Bλ is equal to the

5The set M is continuous in (A, b) if it is lower and upper hemi-continuous in (A, b). In general, M is not
lower hemi-continuous. For a counterexample, consider t = (A, b) and K(t) = {x : Ax ≤ b, x ≥ 0}. The
sequence tν = (A = ν−1, b = ν−1) converges to t∗ = (0, 0). Observe that K(tν) = [0, 1]. The point 2 ∈ K(t∗)
cannot be reached by any sequence {xν , ν = 1, · · · } with xν ∈ [0, 1].
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interval [β
λ
, βλ], where

β
λ
= min

q∈Q(λ)
R(q), and βλ = max

q∈Q(λ)
R(q). (9)

The theorem claims that the identified set is an interval, so every point in the interval

is achievable by some µ ∈ M(q), q ∈ Q(λ). This property is not immediately obvious

when optimizing over (q, µ): when we optimize over q, the objective function is potentially

nonconvex, since c(q) is nonlinear in q. Continuity of functions and convexity of sets are

hence required for the result. Proof details are in Appendix D. Notably, even if Assumption

3 fails, (9) still yields valid bounds, albeit conservative.

Generally, when using Mm(q) and Qm(λ), the bounds are not sharp in that the (q, µ)

pair that solves the problem need not be compatible with the data. The non-sharpness

arises from two problems. The first problem is that not all q ∈ Qm(λ) is compatible: for

instance, it is known in the literature that there are tests for monotonicity (e.g., Richardson

and Robins (2010); Kitagawa (2015); Huber et al. (2017); Noack (2021)), so qD = 0 need not

be compatible with the data. The second problem occurs because we have only used infor-

mation on the means across distributions, and we have not yet exploited all distributional

information. If outcomes are discrete, sharp bounds can be obtained by parameterizing the

entire joint distribution of (Y (0), Y (1), g), which is the approach taken by Balke and Pearl

(1997). If the outcome is binary and all q ∈ Qm are compatible, then we have sharp bounds,

since Mm(q) ∪ [0, 1]dµ contains all distributional information.

The sensitivity parameter also has a nice feature stated in Theorem 2, which reduces the

number of inequality constraints.
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Theorem 2. Let z0, z, z
′ ∈ Z. If

∑
g∈Sd

(z0,z0+1)
qg ≤ λ

∑
g′∈Sc

(z0,z0+1)
qg′ for all z0 ∈ Z\{k−1},

then
∑

g∈Sd
(z,z′)

qg ≤ λ
∑

g′∈Sc
(z,z′)

qg′ for any instrument value pair (z, z′).

This theorem implies that we do not need to consider all instrument pairs — it suffices

to consider adjacent instrument pairs. For intuition, when there are no defiers at both the

(z, z + 1) and (z + 1, z + 2) margins, it must be that there are no defiers at the (z, z + 2)

margin, because the defiers at the (z, z + 2) margin must switch at either margin. In light

of this result, we only have to check k − 1 instead of
(
k
2

)
constraints.

Remark 2. The property in Theorem 2 is a feature of defining the sensitivity parameter

in this way. If we had instead defined the sensitivity parameter as an upper bound on the

proportion of defiers as done in Noack (2021), we no longer have this property. To see this,

suppose we have three discrete instrument values {0, 1, 2}. Sensitivity parameter η is such

that q(1,0,0) + q(1,0,1) ≤ η∗ and q(0,1,0) + q(1,1,0) ≤ η∗ at the (0, 1) and (1, 2) margin of the

instrument respectively. In the worst case, we will have q(1,0,0) = η∗ and q(1,1,0) = η∗. Then,

at the (0, 2) margin, q(1,0,0) + q(1,1,0) = 2η∗, which is not bounded above by η∗.

Remark 3. Constructing the sensitivity restriction as qD/qC ≤ λ makes λ interpretable

across applications. Suppose we have qD = 0.01 — if qC = 0.5, then the violation of

monotonicity is relatively small; but if qC = 0.02, the violation would be rather large. λ

reflects the difference, despite having the same qD. Nonetheless, if making an assumption on

qD directly instead of qD/qC is more interpretable in a particular application, a constraint of

the form qD ≤ λD can be used in Q without loss.
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2.4 Implementation

To implement the procedure proposed in the paper, we can simply use the sample analog.

We observe data (Yi, Ti, Zi) for i = 1, · · · , n. An implementable algorithm is:

1. Estimate probability objects ptz by p̂tz =
∑n

i=1 1[Ti=t,Zi=z]∑n
i=1 1[Zi=z]

. Use sample analog Ê[Y |T =

t, Z = z] = 1
ntz

∑
i:Ti=t,Zi=z Yi for E[Y |T = t, Z = z], ntz :=

∑n
i=1 1[Ti = t, Zi = z].

2. For given q ∈ Q(λ),

(a) Plug in Ê[Y |T = t, Z = z] and q into (2).

(b) Set up the objective function and solve the linear program in (8). Output the

value of the objective function R(q).

3. For given λ, optimize output of Step 2 over q in the outer loop as in (9) using the

sample analog.

Denote the estimators obtained from the sample (β̂
λ
, β̂λ) for the lower and upper bounds

respectively for the problem in (9). These estimators can be shown to be consistent by ap-

plying the Glivenko-Cantelli theorem to iid data, for instance, and applying the continuous

mapping theorem after proving continuity in the program. Inference can be done by the

projection method, and details are in Appendix B. In empirical applications, the instru-

ment may be valid only conditional on covariates, so Appendix C extends the procedure to

incorporate covariates.

While the above procedure suffices for the numerical results in this paper, as Section

3.1 shows how Step 3 can be reduced to a one-dimensional optimization problem, Step 3

may be unwieldy in general as the dimension of q can be large. To address this concern,
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Steps 2 and 3 can be combined into a bilinear program so we jointly optimize over (q, µ).

Most objective functions considered can be written as linear fractionals of q, i.e., c(q)′µ =

q′Aµ/d′q, for some conformable matrix A and vector d, with d′q > 0 and linear constraints

on (µ, q), say Bq ≤ b, Cµ ≤ c. Applying the Charnes-Cooper transformation by defining

t := 1/d′q, r := q/t, the program is equivalent to optimizing r′Aµ over (r, t, µ) such that

d′r = 1, Br ≤ Bt, Cµ ≤ c. Then, standard algorithms for bilinear programs (Dutz et al.,

2021; Shea, 2022) can be applied.

3 Identification of LATE*

The method in Section 2 is general, and allows partial identification of any combination

of treatment response groups. Nonetheless, researchers often care about compliers. Hence,

this section discusses and interprets LATE*, which is defined as the TE on compliers in

counterfactual policy environments.6

For ease of exposition, I consider a binary instrument using the (A,C,D,N) notation as dis-

cussed in Section 2. The response groups in the counterfactual environment {A∗, C∗, D∗, N∗}

can be defined on T ∗(z) analogously. Using G ∈ {A,C,D,N} and G∗ ∈ {A∗, C∗, D∗, N∗} =:

Gcf to denote response in the original and counterfactual environments respectively, qGG∗ =

Pr(G,G∗) denotes the proportion who were G in the original environment and G∗ in the new

environment. Conditional probabilities are denoted qG∗|G := Pr(G∗|G) = qGG∗/(
∑

H∗∈Gcf
qGH∗).

6LATE in Angrist and Imbens (1994) is defined under monotonicity as the TE for the subpopulation who
respond (i.e., change their treatment status) to the instrument, which is equivalent to the TE on compliers
(TEC). In the presence of defiers, the TE on the marginal population (TEM) and TEC are no longer
equivalent. Since LATE was defined on a subpopulation with a particular treatment response status, it is
sensible to define it as the TEC when there are defiers present. Hence, I define LATE* in the rest of this
paper as the TEC in the counterfactual environment. We could also instead calculate TEM*, but I focus on
LATE* to be concrete.
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Using the definition that the LATE* is the TE for the counterfactual compliers, and µGG∗t :=

E[Y (t) | G,G∗],

LATE∗ =

∑
G qGC∗ (µGC∗1 − µGC∗0)∑

G qGC∗
.

The LATE* is useful for several reasons. First, the counterfactual environment could

differ in place or time. Since the Angrist and Evans (1998) used US data, if we believe that

the Canadian population is similar to the US, and its only difference is that it has better

childcare, then the LATE* is what the LATE in Canada would be. For extrapolation over

time, the study used 1990 data, but the current policy environment has changed since then,

so the LATE* tells us what the LATE is now. Second, the LATE* is as useful to the policy

maker as the LATE. If LATE features in the policy function, then so must the LATE* once

the policy is implemented because the environment would have changed. For example, if

the policy maker wishes to give a $2000 subsidy in two tranches, once the first $1000 has

been rolled out, the “LATE” would have changed, and we cannot expect the second $1000

to yield the same effect. This occurs because people no longer stick to their original groups.

Such a setting is relevant when policy makers only have old studies or surveys available to

inform current policy implementation. Third, the LATE* is useful in calibration. Parameter

values in a model may be calibrated by using estimates from other studies. Then, the

approach in this paper gives an explicit way of thinking about how the study at hand differs

from the original study that the parameter value was calibrated from, and consequently the

appropriate bounds on these values. Fourth, even though the LATE* is not point-identified,

it is useful in policy choice when the social planner has a min/max objective function. The
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policy-maker can then choose policy rules by using the worst-case bounds obtained. Finally,

since LATE* identifies the TE for a subpopulation, it is useful for assessing the robustness

of conclusions on TE.

Since the object of interest is the LATE*, when considering policy changes that do not

change the potential outcomes and unobservables, it suffices to characterize the proportions

of original groups becoming C∗ in the counterfactual environment. Hence, the counterfactual

policy environment is characterized by the four extrapolation parameters qC∗|G, denoting the

proportion of the original groups switching into our group C∗ of interest. Using this setup,

LATE and ATE are special cases of the LATE*: LATE is the LATE* without extrapo-

lation, and ATE is the LATE* when everyone switches into C∗.7 Nonetheless, in many

counterfactual policies of interest, such as increasing the instrument strength or increasing

treatment propensity, only qC∗|N and qC∗|C matter, as these counterfactual environments

imply qC∗|A = 0 and qC∗|D = 0.8 I provide two examples.

Example 1. (Changing Instrument Value). In Duflo and Saez (2003), people were randomly

given a letter that gave them $20 if they attended the meeting, but they could have been

given $30 instead. This counterfactual corresponds to changing the instrument value (Z),

say from 1 to 2. Researchers were interested in the effect of the meeting (T) on taking

up a pension plan (Y). Here, T ∗(0) = T (0). The counterfactual compliers are those with

7Observe that there is no gain in using sensitivity analysis for ATE, as observed by Kitagawa (2021), because
the bounds are the widest when the proportion of defiers is the smallest.

8Recent literature that deal with counterfactual environments as in Carneiro et al. (2010), Carneiro et al.
(2011) and Mogstad et al. (2018) consider three counterfactual policies. These policy counterfactuals are in
the class considered by Heckman and Vytlacil (2005), which involves policies that do not affect the marginal
treatment response of T on Y . Their policy counterfactuals include (i) Additive α change in propensity score
with the same instrument value (ii) Proportional 1+α change in propensity score with same instrument (iii)
Additive α shift of the jth component of Z, so Z∗ = Z + αej and p∗(x, z) = p(x, z). Changing the value of
the instrument corresponds to policy type (iii) and monotonically changing the probability of being treated
corresponds to (i) and (ii), so I group the first two together.
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T ∗(2) = 1, T ∗(0) = 0. Groups with T (0) = 0 are the original compliers and never-takers, so

only C and N can become the counterfactual C∗ group.

Example 2. (Changing Treatment Propensity). A policy may subsidize childcare in the

Angrist and Evans (1998) context: regardless of a couple’s gender preference, the probability

of having a third child increases, i.e., T ∗(z) ≥ T (z). Researchers were interested in the effect

of a third child (T) on labor force participation (Y), and T is instrumented by first two kids

having the same sex (Z). The counterfactual compliers are those with T ∗(1) = 1, T ∗(0) = 0.

Since the policy weakly incentivizes treatment, individuals in C∗ must have had T (0) = 0 in

the original environment, which can only include the original C and N groups.

While we have not seen people respond to the counterfactual incentives, we have seen

people respond to other incentives. If we put bounds on the fraction of people who respond to

the counterfactual environment but not the original, we can make progress. To bound such

fractions, some economic reasoning is required for how the environment maps to the fraction:

in Duflo and Saez (2003), we require a mapping from the financial incentive to fraction of

people changing their behavior; in Angrist and Evans (1998), we require a mapping from the

subsidy amount to the fraction.

Remark 4. (Relation to extrapolation in Marginal Treatment Effects framework). Without

monotonicity, T = 1[ν(Z, u) ≥ 0] for some ν(.). The counterfactual policies map to (1)

Change the value of the instrument so T ∗ = 1[ν(Z∗, u) ≥ 0]; and (2) Change the threshold

for everyone so T ∗ = 1[ν(Z, u) ≥ −α], increasing treatment propensity. I defer details to

Section 3.2.

The objective is hence LATE∗ = E[Y (1)−Y (0)|g ∈ {CC∗, NC∗}], which can be written
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as a linear function of µGG∗ . The sensitivity restrictions may be constructed analogously,

where λ restricts the proportion in both the original and counterfactual environments. For

instance, when increasing the treatment propensity, the defier restrictions are:

qDD∗ + qDA∗ ≤ λ(qCC∗ + qCA∗), and

qDD∗ + qND∗ ≤ λ(qCC∗ + qNC∗).

(10)

This problem can then be written in the form of the linear program in Section 2, which

uses an inner linear program R(q) that is cheap, and an outer problem that optimizes over q.

The implementation for the threshold crossing counterfactual is explained in the next sub-

section; the implementation for changing the instrument value is analogous, and is explained

in Appendix A.1.

3.1 Treatment Propensity Implementation

To show how the framework of Section 2 applies, it suffices to specify the following: (i) the

objective function (ii) what the groups g are (iii) linear restrictions for µ in the inner problem

(iv) the constraint set for q in the outer optimization problem. Item (i) is LATE*, so the

rest of this subsection explains the other items.

In our policy counterfactual, A will still be A∗. C can remain C∗, or they can become

A∗ when the policy is strong enough to shift their Z = 0 treatment to T = 1. The same

argument applies to D. Finally, consider the N group. If the policy is weak, they would

remain N∗. The policy may affect the outcome for only either Z = 0 or Z = 1, which

changes their response behavior to D∗ or C∗. The policy may also be strong enough to get
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the N group to T = 1 regardless of the instrument. Then, N can change their behavior to

N∗, C∗, D∗, or A∗.

Although there are 9 response types, if the researcher does not wish to impose restrictions

on qGG∗ that affects the sensitivity inequalities, we can essentially deal with 6 response groups

(A,CA∗, CC∗, D,NC∗, NC ′∗), where NC ′∗ denotes the set of groups that switch from N to

anything but C∗ in the counterfactual policy environment, and D is the cell that collects

all types who were defiers in the original environment. To be precise, define the following

objects when there are 9 treatment response groups:

LATE∗ =
qCC∗(µCC∗1 − µCC∗0) + qNC∗(µNC∗1 − µNC∗0)

qCC∗ + qNC∗
,

q = (qA, qCA∗ , qCC∗ , qDA∗ , qDA, qNA∗ , qNC∗ , qND∗ , qNN∗)′,

R
TC

(q) := max
µ∈MTC

m (q)
LATE∗, and

MTC
m (q) :=

µ ∈ [0, 1]18 :
∑

g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z] ∀z ∈ {0, 1}, t ∈ {0, 1}

 .

When there are 6 treatment response groups,

R̃(q̃) := max
µ̃∈M̃m(q̃)

LATE∗,

q̃ := (qA, qCC∗ , qCC′∗ , qD, qNC∗ , qNC′∗)′,

µ̃ := (µA1, µA0, µCC∗1, µCC∗0, µCC′∗1, µCC′∗0, µD1, µD0, µNC∗1, µNC∗0, µNC′∗1, µNC′∗0)
′, and

M̃m(q̃) =

µ ∈ [0, 1]12 :
∑

g:T (z)=t

q̃gµgt = ptzE[Y |T = t, Z = z] ∀z ∈ {0, 1}, t ∈ {0, 1}

 .

Proposition 1. Consider q = (qA, qCA∗ , qCC∗ , qDA∗ , qDA, qNA∗ , qNC∗ , qND∗ , qNN∗)′. If qCC′∗ =
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qCA∗, qD = qDA∗ + qDA, and qNC′∗ = qNA∗ + qND∗ + qNN∗, then R
TC

(q) = R̃(q̃).

Proposition 1 tells us that the bound for our object of interest does not change when we

solve the 6 response group problem instead of the 9 response group problem, as long as we

use the minimal constraint set MTC
m (q) for µ. The proof proceeds by using the observation

that LATE∗ is a function of (qCC∗ , qNC∗ , µCC∗1, µCC∗0, µNC∗1, µNC∗0). Then, it remains to

argue that both optimization problems place the same restrictions on those parameters.

Finally, we can consider the constraint set on q. There are two restrictions in the form of

(5); two restrictions based on the chosen qC∗|C , qC∗|N as qC∗|G = qGC∗/(
∑

H∗∈Gcf
qGH∗); and

probabilities must sum to one. In addition to the five linear equality restrictions, sensitivity

restrictions (10) must be satisfied. By using the linear equality restrictions, we only need

to optimize over a single parameter in the outer problem with q. To see this result, there

are 5 linearly independent restrictions involving q, and we can also write qD = qD as a

trivial relationship. Hence, using a system of 6 equations and 6 unknowns in q, for a given

environment, once we know qD, we know the rest of the q vector. Details are in Appendix

A.2. Consequently, bounds on LATE* can be obtained by solving a cheap linear program in

µ in the inner loop with a one-dimensional optimization over qD in the outer loop.

The next subsection gives examples of selection equations that justify treatment response

groups. It can be skipped without loss of continuity.

3.2 Example of Selection Equations

In counterfactual environments, we could augment ν(Z, u) in Mogstad et al. (2018) to account

for defiers, but it is difficult to do so without more structure on how defiers feature in the
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selection equation. Since characterizing the counterfactual environment based on groups

is new, it is instructive to consider how this approach relates to selection equations. In

particular, I show how selection equations under monotonicity with a binary instrument

maps to groups in the counterfactual environment. I then use that intuition to explain

what happens with a nonseparable selection equation. To begin, I consider the case without

defiers, so the selection equation is given by T = 1[ν̃(Z) ≥ u], where u ∼ U [0, 1]. Since Z is

binary, ν̃(Z) can only take two values, and the environment is illustrated in Figure 1.

In Figure 1, panel (i) illustrates the original environment, so low values of u are always-

takers, those with middle values of u are compliers and those with high values of u are

never-takers. Since u is uniformly distributed, qA = ν̃(0), qC = ν̃(1) − ν̃(0), qN = 1 − ν̃(1).

In panel (ii), we have a counterfactual environment where the threshold is shifted by α such

that T ∗ = 1[ν̃(Z) + α ≥ u]. Consequently, the A∗, C∗, N∗ groups are defined by the new

cutoffs at ν̃(0) + α and ν̃(1) + α. Panel (iii) combines the groups from panels (i) and (ii):

for instance, the CA∗ group are observations with u ∈ [ν̃(0), ν̃(0) + α], as they would have

been compliers in the original environment, but always-takers in the new environment. With

monotonicity, α has a natural interpretation in that propensity for treatment is increased

by α. With the existing illustration, there is no NA∗ group, because α is small. When α

is large enough, we will have a scenario like panel (iv), where, by doing a similar analysis

as before, an NA∗ group exists, but we no longer have a CC∗ group. A corollary is that,

under monotonicity, we can only either have NA∗ or CC∗, but not both. In the empirical

application, I have a relatively small α, so I have the CC∗ group.

When monotonicity fails, we have a nonseparable selection equation T = 1[ν(Z, u) ≥ 0],

u ∼ U [0, 1]. One possible ν(.) function that can generate a nontrivial proportion of defiers
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(though not unique or interpretable) is as follows:

ν(Z, u) = 1

[
u ≤ 2

3

]
sin

(
3uπ − 3

2
Zuπ

)
+ 1

[
u >

2

3

]
sin (6uπ − 6π − Z (3uπ − 3π)) . (11)

The ν(Z, u) is application-specific. The goal here is not to argue for the empirical relevance

of any particular ν(Z, u), but to show that there exists such a function that rationalizes the

group formulation. This function is more clearly illustrated in Figure 2 in panel (i). The

solid nu0 line plots ν(0, u) while the dashed nu1 line plots ν(1, u). For u < 1/3, both the

solid and dashed lines are above 0, so they form the A group. For u ∈ [1/3, 2/3], only the

dashed line is above zero, so they would be treated when Z = 1 and untreated when Z = 0,

so they are the C group. By doing the same analysis, u ∈ [2/3, 5/6] are the defiers and

u ∈ [5/6, 1] are the never-takers. Panel (ii) illustrates the counterfactual environment where

T ∗ = 1[ν(Z, u) + α ≥ 0], which shifts the ν function up by α = 0.5, but the shape remains

unchanged. In this non-monotonic environment, α is less interpretable. By looking at the

regions where the dashed and solid lines are above or below 0, we can work out the new

A∗, C∗, D∗, N∗ groups. Panel (iii) combines the old and new groups from the previous panels

to illustrate the region of u values that form the 9 treatment response groups. Unlike the

separable case, it is possible to generate all 9 groups simultaneously.

If the researcher has a selection function ν in mind, such as (11), then it is possible

to analytically derive the intercepts of the relevant curves and hence the q vector. With q

known, bounds can be obtained conveniently using the linear program. Instead of estimating

ν(Z, u) or imposing additional assumptions on ν, the approach in this paper transparently

makes assumptions on the q vector by using qC∗|C , qC∗|N as extrapolation parameters.

26



4 Empirical Application

In the Angrist and Evans (1998) problem, we are interested in the effect of a third child (T)

on women’s labor force participation (Y), and the instrument is whether the first two kids

are of the same sex (Z). All variables are binary. Defiers are parents who have a preference

for either two boys or two girls. Following Angrist and Evans (1998), I focus on the 1990

IPUMS data for mothers.9 This empirical application illustrates how sensitivity analysis

bridges the two extremes of monotonicity and worst-case bounds for LATE and LATE*,

giving bounds at intermediate values of λ. The bounds vary continuously with λ, and are

sensitive to failures of monotonicity. As a benchmark, De Chaisemartin (2017) argues that

5% of defiers is a conservative upper bound, which translates to λ = 0.44. Further, qD = 0

is in the confidence interval constructed by Noack (2021).

We have n = 380007 observations and the proportions are given by P̂r(Z = 1) = 0.504,

P̂r(T = 1|Z = 1) = 0.402 and P̂r(T = 1|Z = 0) = 0.339. Hence, the first stage is

0.063. Suppose we are interested in a counterfactual environment where there is a childcare

subsidy that has a marginal effect on the probability of a third child. Here, LATE∗ =

E[Y (1)−Y (0)|C∗] is the TE for people who used to be C and remain C∗, and people who were

N but become C∗ when there is a childcare subsidy. The units in the CC∗ group have very

strong preference for gender balance, and are hence unmoved by the subsidy, and the units

in the NC∗ group may be interpreted as those with weak preference for gender balance, but

need a sufficient financial incentive to have a third child. Since existing papers (e.g., Carneiro

et al. (2010)) calculate counterfactual effects at the margin i.e., qC∗|C → 1, qC∗|N → 0, I use

9The baseline implementation follows their Table 5 where no additional covariates were included. The imple-
mentation with covariates follows their Table 8(2).
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qC∗|C = 0.99, qC∗|N = 0.01 to mimic their approach. This environment can also be interpreted

as a 1% change in the relevant proportions.

Figure 3 presents the main result for sensitivity analysis. I impose the condition that

−0.3 ≤ µg1 − µg0 ≤ 0 for all g, which is reasonable when the researcher believes that the

TE for all groups is negative, and the data informs us how negative this TE is. With the

OLS benchmark of −0.134, TE of −0.3 (which is more than twice the OLS benchmark)

is a conservative a priori lower bound. Since the intersection of convex sets is convex, the

additional a priori restriction of µg1−µg0 ∈ [−0.3, 0] satisfies the conditions of Theorem 1.10

Only estimated bounds are presented, and issues on inference are omitted.

The OLS estimate of −0.134 is a benchmark for how informative the bounds are. In-

struments are used in this context because we believe that OLS is downward biased: there

are unobservable characteristics where people who are more likely to have a third child are

also those who are less likely to work. Since IV is used to correct this downward bias,

when the lower bound of the identified set hits the OLS estimate, the procedure is no longer

informative about correcting the downward bias.

The curve labeled LATE is the original policy environment (i.e., no extrapolation). At

λ = 0, there is point identification, resulting in the original LATE of −0.083. It is evident

here that, even without extrapolating, bounds can be very wide (and uninformative) when

monotonicity does not hold, but sensitivity analysis allows us to obtain the intermediate

points. The lower bound of the LATE is above OLS for λ ≤ 0.2, but it becomes uninformative

for λ ≥ 0.25. Hence, we can conclude that the LATE bounds are informative only for small

values of λ. In the special case where the minimal constraint set Mm is imposed, the LATE

10µg1 − µg0 ∈ [−0.3, 0] is the intersection of half planes, which is convex.
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bounds are linear in λ, a result in Noack (2021).

The counterfactual environment labeled LATE* with qA∗|C = 0.01, qC∗|N = 0.01 incen-

tivizes both groups into treatment. When qNC∗ is nonzero, the worst-case bounds of {−0.3, 0}

are imposed for µNC∗1−µNC∗0, and the bounds are no longer linear in λ. When monotonicity

holds, the identified set is [−0.103,−0.0737], which is informative; the bounds become unin-

formative for λ ≥ 0.2. When we relax the sensitivity parameter, the upper bound eventually

gets close to the trivial upper bound of 0. The numerical bounds on LATE* depend on the

extrapolated environment: if we had extrapolated more, the LATE* at λ = 0 can be much

wider than LATE at λ = 0.1. Hence, the bounds are informative only for small violations of

monotonicity, and a counterfactual environment that differs locally.

The curve in Figure 4 uses the same set of covariates as in Angrist and Evans (1998).

Implementing the procedure in Section C yields the curve in Figure 4. The result is qual-

itatively similar to Figure 3, but the magnitudes differ when controls are included. When

there is no extrapolation and monotonicity holds, we point identify the TSLS estimand from

the original study. As we extrapolate the environment and allow λ to increase, we obtain

bounds on the LATE* that widen. The λ required before the result is uninformative is also

higher than the setting without covariates.

5 Conclusion

This paper shows how policy relevant treatment parameters, including LATE and LATE*,

can be partially identified with a sensitivity parameter that controls the extent monotonicity

fails. Identification uses assumptions on proportions of the population that have a particular
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response to the instrument instead of assumptions on the outcome function. This paper

impacts empirical practice by providing a novel tool: sensitivity analysis of PRTP to failures

of monotonicity, even for various treatment effects in extrapolated environments and when

covariates are present. Depending on the empirical application, it may be more sensible to

construct some structural model on selection ν(Z, u) (e.g., Chan et al. (2022)) instead of

parameterizing the problem based on E[Y (d)|g]. Having a structural model is application-

specific and left for future work.
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A Details on LATE*

A.1 Changing Instrument Value

Suppose we have a counterfactual instrument value Z∗. For illustration, I extrapolate the

instrument rightward: in the original study, we have Z ∈ {0, 1}, but now we have Z∗ = 2.

The reasoning is similar if we wish to interpolate the instrument, or extrapolate leftward.11

For every original group G ∈ {A,C,D,N}, individuals can have two possible responses at

Z∗ = 2, resulting in 8 treatment response groups, given by (T (0), T (1), T ∗(2)).

LATE* is the TE for the compliers in the counterfactual environment. Since LATE is

defined on an instrument pair, we have to consider which instrument pair the researcher

is referring to. In the right-extrapolation exercise, one of the instrument values is Z = 2

that we do not have data for, so the LATE* can be defined either at the (0, 2) pair or the

(1, 2) pair. In the Duflo and Saez (2003) running example, we ask what the LATE of the

experiment would have been if we had given people $30 instead of $20. This corresponds

to the (0, 2) pair, because the control group still did not receive any financial incentive,

and the treatment group simply received a larger incentive. Hence, T ∗(0) = T (0). In

the right-extrapolation setup, compliers are those who switch their treatment status from

0 to 1 at the 0-2 instrument margin. This would be groups (0,0,1) and (0,1,1). Thus,

LATE∗ = E[Y (1)−Y (0)|g ∈ {(0, 0, 1), (0, 1, 1)}]. We can write this using the c(q)′µ notation

11Interpolation in Duflo and Saez (2003) with a $20 incentive would ask what the LATE is if $10 had been
offered.
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for the objective function:12

LATE∗ = E[Y (1)− Y (0)|g ∈ {(0, 0, 1), (0, 1, 1)}] =
∑
g,t

cgt(q)µgt = E[Y (1)− Y (0)|C∗].

The four observed distributions will now each be a mixture of four extrapolated groups.

Namely, in T = 0, Z = 0, we originally had N and C. When extrapolating rightward, the

original N consists of (0, 0, 0) = NN∗ and (0, 0, 1) = NC∗ while the original C consists of

(0, 1, 1) = CC∗ and (0, 1, 0) = CN∗. Groups such as NA∗ cannot exist in this environment.

Hence, the distribution Y |T = 0, Z = 0 now contains a mixture of four groups (0,0,0), (0,0,1),

(0,1,1) and (0,1,0). Given q,M(q) is well defined by mean compatibility as before, specialized

to our binary context, and using only the information from the original environment that

we have data for:

MEx
m (q) :=

µ ∈ [0, 1]16 :
∑

g:T (z)=t

qgµgt = ptzE[Y |T = t, Z = z] ∀z ∈ {0, 1}, t ∈ {0, 1}

 .

(A.1)

It remains to consider what Q(λ) is with extrapolation. For the extrapolation parameter,

observe that qC∗|A = qC∗|D = 0 by construction, so we only have to consider qC∗|C and qC∗|N .

To make the extrapolated environment comparable with and without monotonicity, we can

set qN∗|C = 0, so qC∗|C = 1. This rules out the (0, 1, 0) group, which has defiers at the 1-2

12The interpretation for the LATE* is the TE of the meeting for people who are somewhat sensitive to financial
incentives: this group includes (0,0,1) who are less sensitive to the incentive than the original compliers who
are (0,1,1). The coefficient takes the form:

cgt(q) =


(−1)1−tq(0,0,1)
q(0,0,1)+q(0,1,1)

if g = (0, 0, 1)
(−1)1−tq(0,1,1)
q(0,0,1)+q(0,1,1)

if g = (0, 1, 1)

0 otherwise

.
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margin. Hence, the only extrapolation parameter is qC∗|N = Pr((0, 0, 1)|N). At the 0-1 and

1-2 instrument margins, sensitivity restrictions are:

q(1,0,0) + q(1,0,1) ≤ λ(q(0,1,1) + q(0,1,0)), and

q(0,1,0) + q(1,1,0) ≤ λ(q(0,0,1) + q(1,0,1)).

(A.2)

Hence, the constraint set is:

QEx
m (λ; qC∗|N) =

{
q : Eq. (5) and (A.2),

q(0,0,1)
q(0,0,1) + q(0,0,0)

= qC∗|N , q(0,1,0) = 0

}
. (A.3)

Corollary 1. Suppose µgt is finite for all g, t. Then, using M(q) = M∗
m(q) and Q(λ) =

QEx
m (λ), the identified set for the LATE* is an interval.

Extrapolation is characterized by q, so the analysis here does not depend on the value

of Z. Regardless of whether the counterfactual Z is 1.1 or 100, the same argument from

extrapolating rightward applies. Instead, the approach parameterizes the extent of extrapo-

lation by the q vector. Namely, Z = 1.1 is an environment that is very similar to the original

policy, so we expect qC∗|N close to zero. In contrast, with Z = 100, or a very different

propensity score, it is analogous to a large extrapolation with qC∗|N close to 1. For instance,

this could be a monetary incentive, so having a large incentive would move all N into taking

up treatment.

Remark 5. When LATE* is defined as the TE on some subpopulation, we can use the

same method to obtain TE on other subpopulations that are potentially more interesting.

For instance, (1,0,1) is the group that are defiers at the $0-$20 margin, and compliers at
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the $20-$30 margin in Duflo and Saez (2003). Behavioral studies on fund raisers in Gneezy

and Rustichini (2000) show such behavior exist, where giving a bit of financial incentive

disincentivises intrinsic effort, but offering a large financial incentive increases their effort.

LATE* answers: For people with such behavioral responses, what is their take-up rate of a

pension plan?

Remark 6. (Overpowering Experiments). Having a large incentive, say $100 in the Duflo

and Saez (2003) experiment, can incentivize many people into treatment (the meeting). But

this also includes people who go just for the money rather than because they are interested

in the pension plan. If the incentive were $5 instead, the LATE of information on taking up

the pension plan is likely larger, since this excludes the people who are not interested in the

plan. Exercise in extrapolation places bounds on what the results of the experiment would

have been if it had been designed differently.

A.2 Unified Econometric Approach

This section explains how the multi-dimensional optimization in the outer loop over the

vector q in the two different counterfactual environments can be simplified into a one-

dimensional optimization problem in the outer loop. The inner loop is then a function

of this one-dimensional parameter, and solves a linear program. Hence, estimation of the

bounds is tractable. The treatment propensity counterfactual is explained in Section 3.1.

There is an analogous result in the counterfactual that changes the instrument value.
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For right extrapolation, with MEx
m (q) as defined in (A.1), define:

R
Ex
(q) = max

µ∈MEx
m (q)

LATE∗ = max
µ∈MEx

m (q)

q(0,0,1)(µ(0,0,1),1 − µ(0,0,1),0) + q(0,1,1)(µ(0,1,1),1 − µ(0,1,1),0)

q(0,0,1) + q(0,1,1)
.

Lemma 1. Consider q = (q(0,0,0), q(0,0,1), q(0,1,0), q(0,1,1), q(1,0,0), q(1,0,1), q(1,1,0), q(1,1,1)). If qA =

q(1,1,0) + q(1,1,1), qCC∗ = q(0,1,1), qCC′∗ = q(0,1,0), qD = q(1,0,0) + q(1,0,1), qNC∗ = q(0,0,1), and

qNC′∗ = q(0,0,0), then R
Ex
(q) = R̃(q̃).

With Proposition 1 and Lemma 1 telling us that the inner loop of the two counterfactual

programs can be solved using a 6-parameter problem, the main result of this section is:

Theorem 3. With scalar qD, there exists an invertible matrix J and vector v(qD) that are

known functions of (qD, ptz, qC∗|G) such that:

max
q∈QTC

m (λ)
R

TC
(q) = max

qD∈QTC
d (λ)

R̃(J−1v(qD)), and (A.4)

max
q∈QEx

m (λ)
R

Ex
(q) = max

qD∈QEx
d (λ)

R̃(J−1v(qD)), (A.5)

where

QTC
d (λ) =

{
qD ∈ [0, 1] : qD ≤ λ(p00 + p11 − 1)

1− λ

}
, and (A.6)

QEx
d (λ) = QTC

d (λ) ∩
{
qD :

1− (p00 + p11 − qD)(1− qC∗|C)− 2qC∗|C

−2 + qC∗|C
≤ λ

(
qD +

−1 + p11 + qC∗|N + qD

−2 + qC∗|N

)}
.

(A.7)

The result for the minimum is analogous.

The upshot of Theorem 3 is that bounds on the object of interest such as maxq∈QTC
m (λ) R

TC
(q)

can be obtained by solving a one-dimensional optimization problem in qD instead of a multi-
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dimensional problem. Observe that we are using the same R̃, J , and v(qD) in both problems,

so the inner problem is econometrically identical. Further, R̃(q̃) is a linear program in µ̃, so

it can be solved efficiently. To prove this result, first use the previous two lemmas to ob-

tain equivalence in the inner program. Then, observe that there are 5 linearly independent

equality constraints in the q̃ problem, so once qD is known, q̃ = J−1v(qD) is known. Their

expressions are provided in the proof in Appendix D. The remaining constraint set for qD

comes from sensitivity restrictions that have been set up differently.

B Inference

Using Theorem 3, there are six groups when usingMm andQm: (A,CA∗, CC∗, D,NC∗, NC ′∗).

Proportion restrictions on ptz yield:

E[(qCC∗ + qCA∗ + qNC∗ + qNC∗′ − (1− T ))(1− Z)] = 0, and

E[(qCC∗ + qCA∗ + qA − T )Z] = 0.

(B.8)

Mean compatibility constraints are:

E

[(
qNC∗µNC∗0 + qNC′∗µNC′∗0 + qCC∗µCC∗0 + qCA∗µCA∗0

qNC∗ + qNC′∗ + qCC∗ + qCA∗
− Y

)
(1− T )(1− Z)

]
= 0,

E

[(
qAµA1 + qDµD1

qA + qD
− Y

)
T (1− Z)

]
= 0,

E

[(
qNC∗µNC∗0 + qNC′∗µNC′∗0 + qDµD0

qNC∗ + qNC′∗ + qD
− Y

)
(1− T )Z

]
= 0, and

E

[(
qAµA1 + qCA∗µCA∗1 + qCC∗µCC∗1

qA + qCA∗ + qCC∗
− Y

)
TZ

]
= 0.

(B.9)
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Finally, there are inequality constraints imposed by a binary outcome, and further re-

strictions on the q’s imposed by the sensitivity parameter:

0 ≤ µgt ≤ 1, 0 ≤ qg ≤ 1, qD ≤ λ(qCC∗ + qCA∗),
∑
g

qg = 1,

qCC∗

qCC∗ + qCA∗
= qC∗|C , and

qNC∗

qNC∗ + qNC′∗
= qC∗|N .

(B.10)

In general, with moment equalities and inequalities, algorithms such as Andrews and

Soares (2010) can be applied. In this application, uncertainty from the data only features in

moment equalities of (B.8) and (B.9), so I proceed only with moment equalities.

Parameters are denoted θ := (q′, µ′)′. Let m(θ) = 0 denote the moment conditions of

(B.8) and (B.9), where m(θ) is the vector of expectations, and let m̂(θ) be the sample analog.

Under standard CLT assumptions,
√
n(m̂(θ) − m(θ))

d−→ N(0,Ω), where Ω is the variance

covariance matrix for the moment conditions. Sincem(θ) = 0, T (θ) := nm̂(θ)′Ω−1m̂(θ)
d−→ χ2

6

for the test statistic T (θ). The χ2 distribution has 6 degrees of freedom because there are 6

moment conditions. We do not reject θ if T (θ) ≤ χ2
6(1− α) =: cα for a size α test, where cα

denotes the critical value. Since Ω can be consistently estimated, plug in the sample analog

Ω̂ to use feasible test statistic T̂ (θ) := nm̂(θ)′Ω̂−1m̂(θ)
d−→ χ2

6 for inference.

Finally, to calculate the upper bound for the confidence interval, solve the following

problem:

max
θ:=(q′,µ′)′

c(q)′µ s.t. T̂ (θ) ≤ cα, and θ satisfies Eq. (B.10). (B.11)

Calculating the lower bound is analogous. This problem corresponds to having a partially

identified θ that is in confidence set Cθ, and we are interested in the confidence set (CS) of

g(θ) = c(q)′µ, and in particular the extremum of the CS of g(θ). The procedure described
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here is identical to the projection method described in Dufour (1997) Section 5.2 for obtaining

a CS for g(θ). These optimization problems can be implemented using canned packages.

C Extension to Incorporate Covariates

In many situations, the instrument is valid only conditional on covariates, and hence re-

searchers may wish to incorporate covariates into their model. Covariates W feature in

the model through Assumption 1, which would be: E[Y (t)|g, z,W ] = E[Y (t)|g,W ] and

Pr(g|z,W ) = Pr(g | W ) for all g, z,W . There are at least two ways that they can be in-

corporated. One way mimics Noack (2021, appendix A3): we can run the aforementioned

procedure at every covariate level w, then reweigh the bounds by the covariate masses. While

this procedure yields more restrictions and hence tighter bounds, it is computationally in-

tensive, requires the researcher to make an assumption on defier bounds and extrapolation

parameters for every covariate value, and does not nest the two-stage least squares (TSLS)

estimand in general. It is also cumbersome when W is continuous. Without further assump-

tions, this is the only procedure available to the best of my knowledge.

Instead, I propose a second approach for the LATE*. With covariates and without

extrapolation, researchers run the TSLS regression as a standard practice. Hence, a goal

of the procedure is to nest TSLS with covariates as a special case without extrapolation

and when monotonicity holds, and I provide conditions under which such a procedure is

reasonable. This procedure allows some dependence of µgt and qg on W , and augments the

existing linear program.

Without extrapolation and with monotonicity, parametric assumptions are already re-
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quired to interpret TSLS with heterogeneous treatment effects when there are covariates

(e.g., Blandhol et al. (2022)). In particular, theory has developed around interpreting TSLS

as some weighted average of LATE’s (i.e., weighted average of treatment effect of compliers

at different covariate values), but it is often not obvious why that particular weighting is the

most interesting. To circumvent the issue of which weighted average of LATE’s should be

targeted, I consider the environment where the treatment effect for compliers is the same at

all covariate values, motivating the assumption below.

To be clear on notation, linear regressions are run with a constant, and W does not

include the intercept term. T and Z are binary. Assume the following:

Assumption 4. (a) For g ∈ {CA∗, CC∗, NC∗, D}, qg = Pr (g|W1) = Pr (g|W2) for all

W1,W2, while for g ∈ {NC ′∗}, qg = αint
g + α′

gW . qA can depend on W flexibly.

q ∈ [0, 1]dq .

(b) µDt(W ) = ηDt + ξD (W ); for g ∈ {CA∗, CC∗, NC∗}, µgt(W ) = ηgt + ξ′gW ; for g ∈

{NC ′∗} µgt(W ) = ηgt + ξ′gtW . Finally, µAt(W ) can depend on W flexibly.

(c) E [Z|W ] = ξ̃int + ξ̃′W ∈ [0, 1].

There are three parts to the assumption. Part (a) makes restrictions on the q vector; part

(b) makes restriction on the µ vector; part (c) ensures that linear projections are interpretable

as conditional expectations.

In Assumption 4(a), we cannot have qCA∗ , qCC∗ , qD depend on W so that the TSLS esti-

mand does not depend on W . When we are interested in the LATE*, we additionally cannot

have qNC∗ depend on W so that the target object LATE* does not depend on W . qNC′∗ is

linear in W so that the conditional expectation of Y |Z = 0, T = 0,W is quadratic in W .
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Other parametric forms may be possible, but the expression of the conditional expectation

has to match accordingly. qA is allowed to depend on W flexibly, as it is differenced out in

the procedure.

The TE for g ∈ {CA∗, CC∗, NC∗, D} must be constant for all covariate values so that

the LATE* and the TSLS estimand do not depend on W . This requirement is denoted in

Assumption 4(b) as having the same ξg for treated and untreated potential outcomes so

that the treatment effect ηg1 − ηg0 does not depend on W . Having the same TE is required

even without extrapolation and with monotonicity so that TSLS identifies the unique LATE.

The functional form in µ(W ) is required in this paper’s framework so that we can match

coefficients and obtain a linear program. ξD (W ) can depend flexibly on W because it is not

used in coefficient matching. In contrast, for g ∈ {CA∗, CC∗, NC∗}, µgt(W ) is linear in W so

that the conditional expectation of Y |Z = 0, T = 0,W is quadratic in W . For g ∈ {NC ′∗},

µgt(W ) allows ξgt to vary by potential treatments, and its linearity is required for coefficient

matching. No restriction is required for µAt(W ).

Once qD and the extrapolation parameters qC∗|C and qC∗|N are fixed, the rest of the

q vector and α’s are point-identified. Details are in Appendix D.3. With α and q point

identified, and p00(W ) := Pr [T = 0|Z = 0,W ], the assumption implies:

p00(W ) = αint
NC′∗ + α′

NC′∗W + qNC∗ + qCC∗ + qCA∗ ,
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and hence

p00(W )E [Y |Z = 0, T = 0,W ] = αint
NC′∗ηNC′∗0 + qNC∗ηNC∗0 + qCC∗ηCC∗0 + qCA∗ηCA∗0

+
(
ηNC′∗0α

′
NC′∗ + αint

NC′∗ξ′NC′∗0 + qNC∗ξ′NC∗ + qCC∗ξ′CC∗ + qCA∗ξ′CA∗
)
W + α′

NC′∗Wξ′NC′∗0W.

(C.12)

The object of interest can then be written as:

LATE∗ =
1

qCC∗ + qNC∗
(qCC∗ηCC∗1 + qNC∗ηNC∗1 − qCC∗ηCC∗0 − qNC∗ηNC∗0) .

Then, the proposed algorithm for finding LATE* uses the following steps (S):

S1. Run TSLS regression with the full set of controls W to obtain the TSLS estimand β.

S2. Calculate the sample analogs of q and α based on the identification argument of Ap-

pendix D.3 to construct p00(W ). Using the partition on T = 0, Z = 0, run the

regression of p00(W )Y on 1, W , and (α′
NC′∗W )W . Denote the intercept as γ0.

S3. Set up the linear program, whose objective is LATE*, optimizing over parameters

η and appropriate a priori linear restrictions. Additionally, use the following linear

restrictions:

(a) β (qCA∗ + qCC∗ − qD) = qCC∗ (ηCC∗1 − ηCC∗0)+qCA∗ (ηCA∗1 − ηCA∗0)+qD (ηD0 − ηD1),

and

(b) γ0 = αint
NC′∗ηNC′∗0 + qNC∗ηNC∗0 + qCC∗ηCC∗0 + qCA∗ηCA∗0.

To see how this procedure is reasonable, first observe that S1 and S2 merely calculates

objects used in S3, so it suffices to motivate S3. When there is no extrapolation, the TSLS
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estimand without covariates is given by [qC(ηC1−ηC0)+ qD(ηD0−ηD1)]/(qC − qD). Since the

assumptions are constructed such that the TSLS estimand does not depend on W , S3(a) uses

an analogous expression for the TSLS that accommodates the counterfactual environment.

S3(b) is motivated by (C.12). By regressing the left-hand side on W and a quadratic term,

the intercept term γ0 must match the structural objects described.

Due to the constraint in S3(a), the proposed algorithm collapses exactly to TSLS without

extrapolation and under monotonicity. We also use covariate information through S3(b).

D Proof of Results

D.1 Proofs for Section 2

Let b denote the target object, so for a given q, the set of feasible values in the inner problem

is:

B(q) = {b ∈ R : b = c(q)′µ for some µ ∈ M(q)}. (D.1)

Lemma 2. Under Assumption 1, suppose that M(q) is convex for some fixed q. Then,

either M(q) is empty and hence B(q) is empty, or the closure of B(q) is equal to the interval

[R(q), R(q)], defined in (8). Further, if M(q) can be written as a system of linear inequalities

in µ, both optimization problems are linear programs.

Proof of Lemma 2. Convex M(q) is either empty or nonempty. If M(q) is empty, then by

definition B(q) = ∅. Next, consider a nonempty M(q). Since a linear mapping of a convex

set also yields a convex set, and c(q)′µ is a linear map of µ, it follows that B(q) is a convex

set. Thus, any b ∈ [R(q), R(q)] must also be in B(q). Proving that optimization problems are
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indeed linear programs is straightforward from its construction. The constraints are linear

in µ and the objective function is a linear function of µ.

Proof of Theorem 1. Proof for an empty Bλ is identical to the proof in Lemma 2. Only

consider nonempty M(q). The objective is to show that any b ∈ [β
λ
, βλ] is achievable for

some q ∈ Q(λ). For this, I first show first show that R(q) and R(q) are continuous in q.

Continuity of these objects can then be used to complete the argument.

Apply Theorem 2 from Wets (1985) that the objective value of a linear program is con-

tinuous in its hyperparameters. The sufficient condition for the theorem is that the feasible

set in both the primal and dual linear programs are continuous in the hyperparameters. For

the dual problem, it is assumed that M(q) is bounded by Assumption 3(a), so Corollary

11 from Wets (1985) implies that the feasible set of the dual problem is continuous in the

hyperparameters. Turning to the primal problem, continuity in the hyperparameters is given

by Assumption 3(b). The conditions for the Wets (1985) theorem is hence satisfied. Then,

using Theorem 2 from Wets (1985), and the fact that the composition of continuous func-

tions is continuous, with c(q) continuous in q due to Assumption 3(c), R(q) and R(q) are

continuous in q.

It remains to show that any b ∈ [β
λ
, βλ] is achievable for some q ∈ Q(λ). Pick a point

q0 ∈ Q(λ) such that M(q0) is nonempty. This is guaranteed to exist because because we

work in the environment where ∃q ∈ Q(λ) s.t. M(q) is nonempty. Using Lemma 2, any

r ∈ [R(q0), R(q0)] can be satisfied by some µ ∈ M(q0). Since an analogous argument can

be made for [β
λ
, R(q0)], it suffices to show that for all b ∈ [R(q0), βλ], there exists some

q ∈ Q(λ) such that b = R(q). If R(q0) = βλ, the desired conclusion is immediate, so I focus
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on R(q0) < βλ.

Let q be the q that achieves βλ i.e., βλ = R(q). With slight abuse of notation, let

[q0, q] denote the set of convex combinations on Rdq between q0 and q, so it is a convex

set. Since by Assumption 3(d) Q(λ) is convex, any q ∈ [q0, q] must also lie in Q(λ) and is

hence feasible. Since convex sets are connected, [q0, q] is connected. Using the fact that the

image of a connected set is connected for a continuous mapping, R([q0, q]) is a connected

set. Since R(q0) and R(q) are both feasible, and R(.) ∈ R, [R(q0), R(q)] ⊆ R([q0, q]). Hence,

∃q ∈ [q0, q] ⊆ Q(λ) such that R(q) ∈ [R(q0), R(q)].

The following lemma is used to prove Theorem 2.

Lemma 3. Suppose that for any z, z′ ∈ Z ⊂ N , z > z′ implies Pr(T (z) = 1) ≥ Pr(T (z′) =

1). For any n1, n2 ∈ Z+ with n2 > n1 and z + n2 ∈ Z, if
∑

g∈Sd
(z,z+n1)

qg ≤ λ
∑

g′∈Sc
(z,+n1)

qg′

and
∑

g∈Sd
(z+n1,z+n2)

qg ≤ λ
∑

g′∈Sc
(z+n1,z+n2)

qg′, then
∑

g∈Sd
(z,z+n2)

qg ≤ λ
∑

g′∈Sc
(z,+n2)

qg′.

Proof of Lemma 3. The defiers at the (z, z + n2) margin switch exactly once: either at

(z, z+n1) or (z+n1, z+n2). Individuals who switch twice are either always takers or never

takers when looking at the (z, z + n2) margin. It also means that they will be compliers at

either one of the two margins and defiers at the other margin. This implies

S2 := Sd
(z,z+n2)

⊂ Sd
(z,z+n1)

∪ Sd
(z+n1,z+n2)

=: S1.

To be precise, S2 consists of defiers who switch exactly once, and S1\S2 consists of defiers

who switch twice, resulting in their being compliers at one margin.
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Let q(.) be the probability measure on sets. By assumption, q(Sd
(z,z+n1)

) ≤ λq(Sc
(z,z+n1)

)

and q(Sd
(z+n1,z+n2)

) ≤ λq(Sc
(z+1,z+n2)

). Due to binary treatment, the sets Sd
(z,z+n1)

, Sd
(z+n1,z+n2)

are disjoint. Similarly, the sets Sc
(z,z+n1)

, Sc
(z+n1,z+n2)

are also disjoint. Summing the inequal-

ities,

q(S1) = q(Sd
(z,z+n1)

) + q(Sd
(z+n1,z+n2)

) ≤ λ(q(Sc
(z,z+n1)

) + q(Sc
(z+n1,z+n2)

)).

Consider the set Sc
(z,z+n1)

∪ Sc
(z+n1,z+n2)

. This set consists of compliers at the (z, z + n2)

margin (which implies Sc
(z,z+n2)

is a subset), and S1\S2. Namely, Sc
(z,z+n1)

∪ Sc
(z+n1,z+n2)

=

(S1\S2)∪Sc
(z,z+n2)

. Observe that Sc
(z,z+n2)

is the set of compliers who switch their treatment

status exactly once in the correct direction. Then, the summed inequality is:

q(S2) + (q(S1)− q(S2)) ≤ λ(q(Sc
(z,z+n2)

) + q(S1)− q(S2))

⇒ q(S2) ≤ λq(Sc
(z,z+n2)

)− (1− λ)(q(S1)− q(S2))

⇒ q(Sd
(z,z+n2)

) ≤ λq(Sc
(z,z+n2)

).

Proof of Theorem 2. The condition of Lemma 3 is satisfied due to how Z is defined. For

z′ > z, we can write z′ = z + l with l > 0. Thus, it is sufficient to show that
∑

g∈Sd
(z,z+l)

qg ≤

λ
∑

g′∈Sc
(z,z+l)

qg′ for any l ∈ Z+.

Prove by induction. Apply Lemma 3, using n1 = 1, n2 = 2. Since
∑

g∈Sd
(z,z+1)

qg ≤

λ
∑

g′∈Sc
(z,z+1)

qg′ and
∑

g∈Sd
(z+1,z+2)

qg ≤ λ
∑

g′∈Sc
(z+1,z+2)

qg′ , obtain
∑

g∈Sd
(z,z+2)

qg ≤ λ
∑

g′∈Sc
(z,z+2)

qg′ .

Suppose
∑

g∈Sd
(z,z+l)

qg ≤ λ
∑

g′∈Sc
(z,z+l)

qg′ , and we want to show
∑

g∈Sd
(z,z+l+1)

qg ≤ λ
∑

g′∈Sc
(z,z+l+1)

qg′
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due to adjacency. Apply Lemma 3 with n1 = l, n2 = l + 1 to obtain the result.

Proof of Proposition 1. The objective is to show maxµ∈MTC
m (q) LATE

∗ = maxµ̃∈M̃m(q̃) LATE
∗,

where LATE∗ is a function of (qCC∗ , qNC∗ , µCC∗1, µCC∗0, µNC∗1, µNC∗0).

Let h(µ) = µ4 := (µCC∗1, µCC∗0, µNC∗1, µNC∗0)
′ denote the function that extracts the

subvector µ4 from a higher-dimensional vector µ ∈ R18. Then, since LATE∗ only contains

µ4, maxµ∈MTC
m (q) LATE

∗ = maxµ4∈MTC
4 (q) LATE

∗, where

MTC
4 (q) =

{
µ4 : µ4 = h(µ), µ ∈ MTC

m (q)
}
.

Let h̃(.) similarly extract µ4 from µ̃ ∈ R12. Then, maxµ∈M̃m(q̃) LATE
∗ = maxµ4∈M̃4(q̃)

LATE∗:

M̃4(q̃) =
{
µ4 : µ4 = h̃(µ), µ ∈ M̃m(q̃)

}
.

Hence, it is sufficient to show that M̃4(q̃) = MTC
4 (q) to obtain the result. Do change

of variables for MTC
m (q), with the given substitution for q. Then, the respective µ’s can be

redefined:

µNC′∗t =
1

qNC′∗
[qNA∗µNA∗t + qND∗µND∗t + qNN∗µNN∗t],

µDt =
1

qD
[qDA∗µDA∗t + qDD∗µDD∗t], and

µCC′∗t = µCA∗t.

Then, equality constraints characterized by
∑

G:T (z)=t qGµGt = ptzE[Y |T = t, Z = z]

are identical to those of M̃m(q̃). Since the counterfactual µ’s are weighted averages of the
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original µ’s, the counterfactual µ’s in µ̃ must also lie in [0, 1], so MTC
4 (q) ⊆ M̃4(q̃). Then,

it is sufficient to show M̃4(q̃)\MTC
4 (q) = ∅. The set M̃4(q̃)\MTC

4 (q) contains values of µ4

where the µ’s in µ̃ are in [0, 1], but the individual components that construct the averages,

such as µDD∗t need not be in [0, 1]. However, restrictions on µ4 only occur through the

averages in the equality constraints, in addition to µ4 ∈ [0, 1]4. Thus, since the averages in

M̃4(q̃) and in MTC
4 (q) face the same constraints, µ4 face the same constraints in both sets.

Hence, M̃4(q̃)\MTC
4 (q) = ∅, which then implies M̃4(q̃) = MTC

4 (q).

D.2 Proofs for Appendix A

Proof of Corollary 1. The condition satisfies Assumption 3(a). It is sufficient to check other

conditions of Assumption 3, then apply Theorem 1. Continuity of c(q) is immediate. MEx
m (q)

is convex because it is intersection of linear subspaces. To see that Q(λ) = QEx
m (λ) satisfies

convexity, take any two elements q0, q1 ∈ QEx
m (λ) with q0 ̸= q1. Form convex combination

q∗ = αq0+(1−α)q1, with α ∈ (0, 1). Taking the weighted sums of the constraints on q0 and

q1, q∗ ∈ QEx
m (λ) is immediate.

Proof of Lemma 1. By redefining groups as stated, the proof is analogous to Proposition

1.

Proof of Theorem 3. By defining q̃ appropriately and applying Proposition 1 and Lemma 1,

R
TC

(q) = R̃(q̃) and R
Ex
(q) = R̃(q̃).

Then, consider equality restrictions in QTC
m (λ) and QEx

m (λ). In both constraint sets,

there are 5 linearly independent restrictions, with 2 from p11 and p00, 1 from the fact that

probabilities sum to 1, and 2 from the extrapolation parameters. We can also write qD = qD

52



as a trivial relationship. Writing these 6 equations in matrix form, we have Jq̃ = v(qD),

where

J =



0 1 1 0 1 1

1 1 1 0 0 0

1 1 1 1 1 1

0 qC∗|C − 1 1 0 0 0

0 0 0 0 qC∗|N − 1 0

0 0 0 1 0 0



, and

v(qD) = (p00, p11, 1, qC∗|C , qC∗|N , qD)
′.

Note that det(J) = 4− 2qC∗|C − 2qC∗|N + qC∗|CqC∗|N = (2− qC∗|N)(2− qC∗|C) ̸= 0. Since

J is invertible, q̃ = J−1v(qD).

It remains to consider the inequality restrictions imposed by sensitivity parameters. In

MEx
m (q), the specific choice of qDD∗ and qND∗ makes restrictions on qCC∗ and qNC∗ . Since

qCC∗ and qNC∗ are arguments in the optimization problem, the optimum is found by using the

least restrictive setting for qCC∗ and qNC∗ . Due to Proposition 1, setting qDD∗ = qND∗ = 0

is innocuous. Then, qDD∗ + qND∗ ≤ λ(qCC∗ + qNC∗) is automatically satisfied. The only

relevant sensitivity restriction is qD = qDD∗ + qDA∗ ≤ λ(qCC∗ + qCA∗). Using the substitution

in Proposition 1, and q̃ = J−1v(qD), the constraint set results. This constraint set will give

us the optimum, because the objective value has to perform weakly better with one fewer

constraint.

Turning now to QEx
m (λ), use the least restrictive values as before. One can set q(1,0,0) = 0
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so qD = q(1,0,1), and upper bound at the 0-2 margin is the largest possible, while the inner

problem does not change. Then, the constraint at the 0-1 margin will be qD ≤ λ(p00+p11−1)
1−λ

by using the relevant substitutions and q̃ = J−1v(qD). With the relevant substitutions, and

setting q(1,1,0) = 0 (to create the most flexible constraint), the constraint at the 1-2 margin is

qCC′∗ ≤ λ(qNC∗+qD). Finally, substitute q̃ = J−1v(qD) to obtain the required inequality.

D.3 Derivations for Appendix C

p00(W )E [Y |Z = 0, T = 0,W ] =
(
αint
NC′∗ + α′

NC′∗W
)
(ηNC′∗0 + ξ′NC′∗0W ) + qNC∗ (ηNC∗0 + ξ′NC∗W )

qCC∗ (ηCC∗0 + ξ′CC∗W ) + qCA∗ (ηCA∗0 + ξ′CA∗W )

= αint
NC′∗ηNC′∗0 + qNC∗ηNC∗0 + qCC∗ηCC∗0 + qCA∗ηCA∗0

+
(
ηNC′∗0α

′
NC′∗ + αint

NC′∗ξ′NC′∗0 + qNC∗ξ′NC∗ + qCC∗ξ′CC∗ + qCA∗ξ′CA∗

)
W

+ α′
NC′∗Wξ′NC′∗0W

First Stage Identification. Let the first-stage regression be T = πZ + θ0 + θ′W + v.

Then, the first stage estimand is:

π =
E [T (Z − E∗ [Z|W ])]

E
[
(Z − E∗ [Z|W ])2

]
=

E [E [Z|W ] (1− E [Z|W ]) (E [T |Z = 1,W ]− E [T |Z = 0,W ])]

E [E [Z|W ] (1− E [Z|W ])]
.
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Using Assumption 4(a),

E [T |Z = 1,W ]− E [T |Z = 0,W ] = qA(W ) + qCA∗ + qCC∗ − qD − qA(W )

= qCA∗ + qCC∗ − qD = π.

For a given qD and an extrapolation parameter qC∗|C , since π is identified, qCA∗ , qCC∗ , qD

are all identified. Since E [T |Z = 0,W ]− qD = qA(W ) = αint
A + α′

AW , by regressing T − qD

in the partition with Z = 0 on W , αint
A and αA are identified. Conversely,

1− E [T |Z = 1,W ] = qNC∗ + qNC′∗ (W ) + qD

1− E [T |Z = 1,W ]− qNC∗ − qD, and = qNC′∗ (W ) = αint
NC′∗ + α′

NC′∗W.

Observe that 1−E [T |Z = 1] = qNC∗+E [qNC′∗ (W )]+qD. Since qD and qC∗|N are known,

qNC∗ is identified. Then, by regressing 1− T − qNC∗ − qD in the partition with Z = 1 on W ,

αint
NC′∗ and αNC′∗ are identified.

TSLS Estimand. Due to Assumption 4(c), the TSLS estimand is given by

β =
E [Y (Z − E∗ [Z|W ])]

E [T (Z − E∗ [Z|W ])]

=
E [E [Z|W ] (1− E [Z|W ]) (E [Y |Z = 1,W ]− E [Y |Z = 0,W ])]

E [E [Z|W ] (1− E [Z|W ]) (E [T |Z = 1,W ]− E [T |Z = 0,W ])]
.
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Figure 1: Separable Selection Equation

Then, due to Assumptions 4(a) and 4(b),

E [Y |Z = 1,W ]− E [Y |Z = 0,W ] = qCC∗ (µCC∗1(W )− µCC∗0(W )) + qCA∗ (µCA∗1(W )− µCA∗0(W ))

+ qD (µD0(W )− µD1(W ))

= qCC∗ (ηCC∗1 − ηCC∗0) + qCA∗ (ηCA∗1 − ηCA∗0) + qD (ηD0 − ηD1) , and

β =
qCC∗ (ηCC∗1 − ηCC∗0) + qCA∗ (ηCA∗1 − ηCA∗0) + qD (ηD0 − ηD1)

qCA∗ + qCC∗ − qD
.

E Figures
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Figure 2: Nonseparable Selection Equation
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Figure 3: Plot of LATE∗ = E[Y (1) − Y (0)|C∗] bounds against λ without covariates. Impose −0.3 ≤
µg1 − µg0 ≤ 0 for all g. LATE has qC∗|C = 1, qC∗|N = 0 so there is no extrapolation; LATE* has qC∗|C =
0.99, qC∗|N = 0.01. The red horizontal line is the OLS benchmark of -0.134.

Figure 4: Plot of LATE∗ = E[Y (1)−Y (0)|C∗] bounds against λ with covariates. Impose−0.3 ≤ µg1−µg0 ≤
0 for all g. LATE has qC∗|C = 1, qC∗|N = 0 so there is no extrapolation; LATE* has qC∗|C = 0.99, qC∗|N =
0.01. The red horizontal line is the OLS benchmark of -0.164. Covariates include age of mother, age at first
birth, gender of the first two kids, and race indicators for white, black, and hispanic.
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