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Abstract

This paper develops a framework for estimation and inference to analyze the effect
of a policy or treatment in settings with treatment-effect heterogeneity and variation in
treatment timing. We propose a two-stage difference-in-differences (2SDD) estimator
that compares treated and untreated outcomes after removing group and period effects
identified using untreated observations. Our regression-based approach enables us
to conduct inference within a conventional GMM asymptotic framework. It easily
facilitates extensions such as dynamic treatment effects, triple differences, continuous
treatments, time-varying controls, and violations of parallel trends. Simulations of
randomly generated placebo laws in state-level wage data demonstrate that 2SDD
outperforms alternatives in terms of precision and rejection rates. Under homogeneous
treatment effects, 2SDD yields similar standard errors as TWFE regressions, unlike
other heterogeneity-robust estimators. Analyzing the rate of extreme 𝑡-statistics and
outlying standard errors for various methods across seven empirical applications, 2SDD
stands out as a practical choice for applied researchers.
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1 Introduction
Difference-in-differences (DD) estimation has emerged as an indispensable tool for empirical

researchers seeking to evaluate the impact of a given intervention or policy. Its appeal stems
in part from the conceptual simplicity of comparing changes in outcomes for groups affected
by an intervention to changes for unaffected groups. A potential reason for the widespread
use of two-way fixed-effects (TWFE) in settings with multiple groups and time periods is
a presumption that it should identify the average effect of the treatment on the treated.
Although this intuition is accurate when the heterogeneous treatment effects are distributed
identically across groups and periods (a condition that is automatically satisfied in the classic
two-group, two-period setting), it does not hold in general. When these distributions are not
identical, conditional mean outcomes are no longer linear in group, period, and treatment
status, causing the TWFE regression model to be misspecified for conditional mean outcomes,
and thus it is unable to identify the average treatment effect on the treated.

This paper develops a two-stage regression-based approach to identification, along with
an accompanying GMM-based variance estimator, which is robust to treatment-effect hetero-
geneity when adoption of the treatment is staggered over time. The two-stage difference-in-
differences (2SDD) estimator, along with valid asymptotic standard errors, can be implemented
easily using standard statistical software, with little programming or computational time
beyond that required to estimate a regression.1 Alternative implementations of the two-stage
framework rely on variance estimation methods that are asymptotically conservative and
more computationally intensive (Borusyak, Jaravel and Spiess, 2024).

The proposed two-stage methodology regresses outcomes on group and period fixed effects
using the subsample of untreated observations in the first stage. The second stage subtracts
the estimated group and period effects from observed outcomes and regresses the resulting
residualized outcomes on treatment status. Under the usual parallel trends assumption, this
procedure identifies the overall average effect of the treatment on the treated (i.e., across
groups and periods), even when average treatment effects are heterogeneous over groups
and periods. This approach preserves the intuition behind identification in the two-group,
two-period case: it recovers the average difference in outcomes between treated and untreated
units, after removing group and period effects.

Our approach inherits the flexibility for which researchers have come to appreciate

1This contrasts with alternative approaches that rely on bootstrapping for inference (e.g., de Chaisemartin
and d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021). We provide example Stata syntax that shows how
to implement the two-stage difference-in-differences approach (with valid asymptotic standard errors) via
GMM or the did2s Stata package (Butts, 2021) in Appendix A; also see the did2s R package (Butts and
Gardner, 2022).
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regression as a tool for applied empirical analysis, making it adaptable to the wide variety of
settings where difference-in-differences analyses are used in practice, with standard inference
procedures naturally applying. This extensibility is aided by our straightforward GMM
approach, which naturally and efficiently maintains valid inference within a familiar regression-
based framework without requiring additional computational steps. For instance, our basic
approach can easily be extended to estimate the dynamic effects of treatments, implement
tests of parallel trends, and handle models with individual fixed effects using a variation
of the within estimator. It can also accommodate settings where parallel trends holds
only after conditioning on time-varying covariates by simply including those covariates as
regressors in the first stage, or where covariate-specific trends are needed by interacting
time-invariant covariates with time indicators. In settings with continuous treatments, by
replacing binary treatment status with a continuous treatment variable in the second stage,
our approach preserves interpretability and computational simplicity while ensuring valid
inference. Similarly, our method extends seamlessly to triple-differences analyses with only a
simple modification to the first stage, offering clear advantages in ease of implementation over
alternative methods. We also discuss how to extend our approach to settings with partial
violations of parallel trends, and how it can be adapted to design-based analyses.2

In the canonical two-period, two-group DD setup, we show that our proposed two-stage
estimator exactly matches the variance of the traditional TWFE estimator. By contrast, other
popular heterogeneity-robust estimators (Callaway and Sant’Anna, 2021; Sun and Abraham,
2021; Wooldridge, 2021; de Chaisemartin and d’Haultfoeuille, 2024) yield strictly wider
confidence intervals—even in this most basic setting. Thus, while heterogeneity-robustness
typically entails an efficiency penalty, the equivalence between 2SDD and TWFE under
the simplest designs demonstrates that such a trade-off is not inevitable. From an applied
perspective, 2SDD not only retains the intuitive clarity, interpretability, and extensibility of
TWFE, but also avoids much of the precision losses inherent in other heterogeneity-robust
estimators.

To further evaluate the performance of the proposed variance estimation procedure and
the broader methodology, we conduct simulations of randomly generated laws using state-level
wage data. This simulation builds on the seminal work of Bertrand, Duflo and Mullainathan
(2004), extending their analysis to a setting with heterogeneous treatment effects and staggered
treatment timing. In particular, we analyze the performance of various DD estimators and
their associated inference procedures with randomly drawn treated states, their associated

2Our approach to inference accommodates design-based sources of uncertainty. As Abadie et al. (2020)
emphasize, the design-based perspective provides a coherent interpretation for standard errors, particularly
for empirical settings where the source of randomness is known.
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years of passage, and treatment effects. Using a 42-year panel, we compare rejection rates
at the 5 percent significance level from recently proposed heterogeneity-robust procedures
(CS2021; SA2021; W2021; BJS2024; dCDH2024).3 Simulations highlight the value of our
approach to estimation and inference by demonstrating its finite-sample performance. Our
procedure consistently offers the best performance in terms of rejection rates, computational
speed, and efficiency. This result holds even in comparison with the imputation approach from
BJS2024 that provides identical point estimates to ours with different variance estimators.4

We obtain similar results using independent and identically distributed data. Furthermore,
we document these advantages even in cases with homogeneous treatment effects. In such
cases, our method yields comparable standard errors to the TWFE estimator, while other
heterogeneity-robust estimators tend to yield much larger standard errors.

We also compare the relative performance of the different estimators across seven empirical
applications. In these applications, unlike in the simulation environment, the “true” treatment
effects remain unknown. This mirrors the challenge empirical researchers face, where the
choice of estimator can potentially influence their conclusions. In such situations, a method
that produces fewer outliers or inconsistencies relative to the alternatives reduces the potential
for skewed results. Our approach consistently provides stable conclusions across the empirical
applications, with the lowest rate of extreme 𝑡-statistics and the fewest outlying standard
errors relative to the other estimators. In contrast, the CS2021 estimator yields large standard
errors with a large number of treatment cohorts (e.g., Bailey and Goodman-Bacon, 2015;
Deryugina, 2017), while the SA2021 and dCDH2024 estimators perform relatively poorly
with a relatively large number of small cohorts (e.g., Lafortune, Rothstein and Schanzenbach,
2018; Tewari, 2014; Ujhelyi, 2014).

Our work adds to an emerging body of research highlighting limitations of the traditional
TWFE approach for DD estimation in the presence of staggered treatment timing and
when the effects of a treatment vary across groups and time.5 We motivate our approach by
elucidating how misspecified TWFE regression models project heterogeneous treatment effects

3Our analysis does not include the local projections approach (Dube et al., 2023) due to its lack of a
theoretical framework for inference.

4The “imputation” estimator, which first appears in Borusyak, Jaravel and Spiess (2021), is numerically
identical to the two-stage estimators initially proposed by Gardner (2020), Thakral and Tô (2020), and Liu,
Wang and Xu (2019). However, they develop a different asymptotic theory, resulting in an asymptotically
conservative default variance estimator and a leave-one-out modification which they show results in improved
finite-sample performance. BJS2024 note that similar approaches have been proposed for factor models by
Gobillon and Magnac (2016) and Xu (2017), while Arkhangelsky and Imbens (2024) note that the two-stage
approach can be viewed as a particular extension of a broader class of estimation strategies for panel models
developed by Chamberlain (1992) and extended by Graham and Powell (2012) and Arellano and Bonhomme
(2012).

5See, for example, dCDH2020, Goodman-Bacon (2021), Imai and Kim (2021), SA2021, Athey and Imbens
(2022), and BJS2024.
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onto treatment status, group effects, and period fixed effects. The simple observation that
untreated outcomes are linear in group and period effects under parallel trends then naturally
leads to our proposed two-stage method. Several papers provide alternative representations of
the TWFE estimand. BJS2024 show that TWFE identifies a regression-weighted mean of the
average effect of the treatment in each post-treatment period, and dCDH2020 show that all
TWFE regression estimates (which include DD regressions as a special case) identify weighted
averages of group- and period-specific average treatment effects. Since the weights in both of
these representations can be negative, interpreting the TWFE estimand becomes challenging.
Goodman-Bacon (2021) further shows that the TWFE estimate represents a weighted average
of all two-group, two-period differences in differences, which under parallel trends identifies
a combination of weighted averages of group×period-specific average treatment effects and
changes over time in those effects. These decomposition results tend to motivate alternative
methodologies based on manually averaging cohort×period-specific average treatment effects
(dCDH2020; CS2021; SA2021). Although Harmon (2024) shows how these procedures are
more efficient than imputation-based procedures such as BJS2024 when residuals are strongly
serially correlated, the simplicity of our procedure makes it easy to adapt to be more efficient
in the presence of serial correlation.

In the presence of staggered treatment adoption, several alternatives to the TWFE
regression approach exhibit robustness to heterogeneity across groups and periods. One
alternative, as mentioned earlier, is to estimate separate average treatment effects for each
group and period, which can then be aggregated to form measures of the overall effect of
the treatment.6 In comparison to this approach, our regression-based methodology offers
simplicity in estimation and inference, significant computational speed advantages, and strong
finite-sample performance. In addition, our approach retains the efficiency advantages pointed
out by BJS2024. We also discuss how to mitigate bias from violations of parallel trends by
using an appropriate subset of untreated observations in the first stage.

Alternative regression-based approaches include the “stacked” difference-in-differences
(see, e.g., Gormley and Matsa, 2011; Deshpande and Li, 2019; Cengiz et al., 2019; Dube
et al., 2023), which attempts to transform the staggered adoption setting to a two-group,
two-period design (in which difference in differences identifies the overall average effect of the
treatment on the treated) by stacking separate datasets containing observations on treated
and control units for each treatment cohort, and the extended TWFE approach (W2021).
Several limitations arise when applying these methods. First, the stacked estimator identifies

6Gibbons, Suárez Serrato and Urbancic (2018) suggest an approach like this for fixed effects models;
Borusyak, Jaravel and Spiess (2021) suggest such a solution for DD models in which the duration-specific
effects of the treatment are identical across groups, as do Callaway and Sant’Anna, 2021 for the case when
treatment effects vary by group and duration and Sun and Abraham, 2021 in the event-study context.
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a particular weighted average of group-specific average treatment effects that depends on
arbitrary features of the data, making the resulting estimate more challenging to interpret.7

Second, implementing the stacked approach requires defining a fixed event time window
and ensuring a balanced panel throughout this period. Third, stacking involves using the
same control groups across different stacked datasets but lacks a theoretical framework for
inference. Finally, the extended TWFE approach only considers time-invariant covariates
and assumes a linear relationship between covariates and treatment effects. Our method
overcomes these issues by delivering clear and interpretable estimates, providing a theoretical
framework for inference, and allowing for flexible implementation across various contexts,
including those with time-varying covariates that interact arbitrarily with treatment effects
and the other extensions of our procedure discussed above.

Given the multitude of alternative approaches for DD estimation, our empirical and
simulation exercises constitute a distinct contribution to this literature. Our empirical
exercises complement recent work by Chiu et al. (2023), which reanalyzes a set of political
science publications that estimate TWFE regressions. They emphasize that TWFE estimates
correlate strongly with the estimates from alternative methods but find that the latter
tend to be less precise. Under homogeneous treatment effects, as our simulation results
demonstrate, our proposed approach to inference achieves the closest standard error to
that of a TWFE estimator that imposes a null effect in the pre-treatment periods.8 Our
simulation exercises present a novel and systematic comparison of standard errors and
rejection rates across different estimators in staggered adoption settings based on typical
empirical applications. Subsequent work by Egerod and Hollenbach (2024) and Weiss (2024)
also compare heterogeneity-robust estimators using simulations. Weiss (2024) focuses on the
CS2021, SA2021, BJS2024, and dCDH2024 approaches (but does not examine 2SDD) and
shows that their built-in variance estimators can perform poorly in small samples. Egerod and
Hollenbach (2024) reinforce our finding of systematically low coverage among most methods,
with CS2021 and 2SDD providing significantly better coverage. They further document power
issues that arise in small samples and show that BJS2024 exhibits a notably high probability
of reporting the wrong sign for the estimated effect conditional on a significant result. As our
method for achieving robustness to treatment-effect heterogeneity entails minimal efficiency
loss in settings where TWFE provides an unbiased estimate, it offers arguably the most
compelling alternative to the TWFE approach in practice.

The paper proceeds as follows. In Section 2, we provide intuition for why the TWFE

7The weights depend on the relative sizes of the group-specific datasets and the variance of treatment
status within those datasets, as Appendix G shows.

8As a result, our proposed estimator results in greater precision than the fully dynamic event-study
specification using TWFE.
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approach to DD estimation may not identify the average effect of the treatment on the treated,
show how our proposed two-stage regression-based approach is robust to treatment-effect
heterogeneity in settings with variation in treatment timing, and discuss extensions. Sections 3
to 5 demonstrate the performance of the two-stage approach compared to alternative proposals
in simulations and empirical applications. We conclude in Section 6.

2 Inference with a two-stage approach

2.1 The problem with difference-in-differences regression
Difference-in-differences (DD) research designs attempt to identify the causal effects

of treatments under the parallel or common trends assumption. This assumption asserts
that, absent the treatment, treated units would experience the same change in outcomes as
untreated units. Mathematically, this amounts to the assumption that average untreated
potential outcomes decompose into additive group and period effects. Let 𝑖 index units (e.g.,
states or, with microdata, individuals) and 𝑡 index calendar time (often years). Further
partition units and time into treatment groups 𝑔 ∈ {0, 1, … , 𝐺} and periods 𝑝 ∈ {0, 1, … , 𝑃}
defined by the adoption of the treatment among successive groups, so that members of group
0 are untreated in all periods, only members of group 1 are treated in period 1, members of
groups 1 and 2 are treated in period 2, and so on, and define corresponding group and time
variables 𝐺𝑖 and 𝑃𝑡. Let 𝑌𝑖𝑡, 𝑌𝑖𝑡(𝑑 = 1) and 𝑌𝑖𝑡(𝑑 = 0) denote the observed, treated, and
untreated potential outcomes for unit 𝑖 at time 𝑡, let 𝐷𝑖𝑡 be an indicator for whether 𝑖 is
treated at 𝑡, and let 𝛽𝑔𝑝 = 𝔼[𝑌𝑖𝑡(𝑑 = 1) − 𝑌𝑖𝑡(𝑑 = 0) | 𝑔, 𝑝] denote the average causal effect
of the treatment for members of 𝑔 in 𝑝.9 Assume for simplicity that the treatment is both
irreversible and unanticipated (though these assumptions can be at least partially relaxed, as
detailed in Section 2.5). Under parallel trends, mean outcomes satisfy

𝔼[𝑌𝑖𝑡 | 𝑔, 𝑝, 𝐷𝑖𝑡] = 𝜆𝑔 + 𝛼𝑝 + 𝛽𝑔𝑝𝐷𝑖𝑡. (1)

The idea behind differences in differences is to eliminate the permanent group effects
𝜆𝑔 and secular period effects 𝛼𝑝 in order to identify the average effect of the treatment. In
the classic setup, there are only two periods (pre and post) and two groups (treatment and
control). In this setting, within-group differences over time eliminate the group effects and
within-period differences between groups eliminate the period effects. Hence the between-
group difference in post-pre differences (i.e., the difference in differences) identifies the average
effect of the treatment for members of the treatment group during the post-treatment period.

9Causal effects for the never-treated group may be normalized to zero, since they are not identified.
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The two-period, two-group difference-in-differences estimate can be obtained using a
regression of outcomes on group and period fixed effects and a treatment-status indicator:

𝑌𝑖𝑡 = 𝜆𝑔(𝑖) + 𝛼𝑝(𝑡) + 𝛽𝐷𝑖𝑡 + 𝜀𝑖𝑡, (2)

where 𝑔(𝑖) is the group index for unit 𝑖 and 𝑝(𝑡) is the period index at time 𝑡. It follows from
Equation (1) that the coefficient on 𝐷𝑖𝑡 in Equation (2) identifies the average effect of the
treatment on the treated, 𝔼[𝑌𝑖𝑡(𝑑 = 1) − 𝑌𝑖𝑡(𝑑 = 0) | 𝐷𝑖𝑡 = 1].10

The regression approach suggests a natural way to extend the DD idea to settings with
multiple groups and time periods. Unfortunately, as several authors have noted (dCDH2020;
Goodman-Bacon, 2021; Imai and Kim, 2021; Athey and Imbens, 2022; BJS2024), when the
average effect of the treatment varies across groups and over periods, the coefficient on 𝐷𝑖𝑡 in
specification (2) does not always identify an easily interpretable measure of the “typical” effect
of the treatment. Although this result is now well established, because it is also somewhat
counterintuitive, it bears further clarification.

While there are multiple ways to think about the typical effect of the treatment when that
effect varies across groups and over time, an obvious candidate is the average 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑖𝑡 = 1] =
𝔼[𝑌𝑖𝑡(𝑑 = 1) − 𝑌𝑖𝑡(𝑑 = 0) ∣ 𝐷𝑔𝑝 = 1] of group- and period-specific average treatment effects,
taken over all units that receive the treatment and all times during which they receive it (i.e.,
the expectation of 𝛽𝑔𝑝 over the joint distribution of 𝑔 and 𝑝, conditional on being treated).
This is analogous to the average 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] identified by difference in differences in
the two-period, two-group case. Hence, parallel trends can be expressed as

𝔼[𝑌𝑖𝑡 ∣ 𝑔, 𝑝, 𝐷𝑔𝑝] = 𝜆𝑔 + 𝛼𝑝 + 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]𝐷𝑔𝑝 + [𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]]𝐷𝑔𝑝.

The difficulty with the regression approach is that, except in special cases, the “error term”
[𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1]]𝐷𝑔𝑝 in this expression varies at the group×period level, and is not
mean zero conditional on group membership, period, and treatment status. Consequently, the
regression is misspecified in the sense that the conditional expectation 𝔼[𝑌𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, 𝐷𝑔𝑝] is
not a linear function of those variables (at least, not one in which the coefficient on 𝐷𝑔𝑝 is
𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1].) In contrast to the two-group, two-period case, the coefficient on 𝐷𝑔𝑝 from

10There are several equivalent variations on this regression. Specification (2) is identical to a regression of
outcomes on an indicator 𝑃𝑜𝑠𝑡𝑖𝑡 for whether 𝑡 occurs in the post-treatment period, an indicator 𝑇 𝑟𝑒𝑎𝑡𝑖𝑡
for whether 𝑖 belongs to the treatment group, and an interaction between the two. Often, the group and
period effects 𝜆𝑔 and 𝛼𝑝 in Equation (2) are replaced with individual and time effects 𝜆𝑖 and 𝛾𝑡. By the
Frisch-Waugh-Lovell theorem, the coefficient on 𝐷𝑖𝑡 in Equation (2) can be obtained by regressing 𝑌𝑖𝑡 on
the residuals from a regression of treatment status on group and period effects. Since treatment status only
varies by group and period, these residuals are the same as those from a regression of treatment status on
individual and time effects, so the coefficients on treatment status from both specifications are identical.
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the regression DD specification (2) does not identify 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] unless those average
effects are independent of group and period (in which case 𝛽𝑔𝑝 = 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1] = 𝛽).
Outside of this special case, when average treatment effects vary across groups and periods,
and the adoption of the treatment by different groups is staggered over time, difference-
in-differences regression does not recover a simple group×period average treatment effect
(dCDH2020; Goodman-Bacon, 2021; BJS2024). In Appendix B, we derive a simple expression
for what regression DD does identify in the special case of cohort fixed effects and no
covariates.

2.2 A two-stage approach
The observation that the problem arises from misspecification of Equation (2) suggests a

simple two-stage average treatment effect estimator for the multiple group and period case.
As long there are untreated and treated observations for each group and period, 𝜆𝑔 and 𝛼𝑝 are
identified from the subpopulation of untreated groups and periods. The overall group×period
average effect of the treatment on the treated is then identified from a comparison of mean
outcomes between treated and untreated groups, after removing the group and period effects.

This logic suggests the following regression-based two-stage estimation procedure:

1. Estimate the model
𝑌𝑖𝑡 = 𝜆𝑔(𝑖) + 𝛼𝑝(𝑡) + 𝑢𝑖𝑡

on the sample of observations for which 𝐷𝑖𝑡 = 0, retaining the estimated group and
time effects 𝜆̂𝑔 and ̂𝛼𝑝.

2. Regress adjusted outcomes 𝑌𝑖𝑡 − 𝜆̂𝑔(𝑖) − ̂𝛼𝑝(𝑡) on 𝐷𝑖𝑡.

Since parallel trends implies that

𝔼[𝑌𝑖𝑡 | 𝑔, 𝑝, 𝐷𝑖𝑡] − 𝜆𝑔 − 𝛼𝑝 = 𝛽𝑔𝑝𝐷𝑖𝑡 = 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑖𝑡 = 1]𝐷𝑖𝑡 + [𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑖𝑡 = 1]]𝐷𝑖𝑡,

where 𝔼[[𝛽𝑔𝑝 − 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑖𝑡 = 1]]𝐷𝑖𝑡 ∣ 𝐷𝑖𝑡] = 0, this procedure identifies 𝔼[𝛽𝑔𝑝 ∣ 𝐷𝑔𝑝 = 1],
even when the adoption and average effects of the treatment are heterogeneous with respect to
groups and periods. A straightforward application of the continuous mapping theorem shows
that this two-stage estimator is consistent for the overall average effect of the treatment.

We now formalize the logic of this argument, and extend it to specifications that include
time-varying covariates and unit-level fixed effects. Suppose that we observe (𝑌𝑖𝑡, 𝑋𝑖𝑡, 𝐷𝑖𝑡),
where 𝑌𝑖𝑡 denotes outcomes, 𝐷𝑖𝑡 treatment status, and 𝑋𝑖𝑡 a vector of covariates, where
𝑖 ∈ {1, 2, ⋯ , 𝑁} indexes individuals and 𝑡 ∈ {1, 2, ⋯ , 𝑇 } indexes time, so that there are 𝑁𝑇
observations in a balanced panel.
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We assume that outcomes are generated from a potential outcomes model with 𝑌𝑖𝑡(𝑑) =
𝑌𝑖𝑡(0) + 𝛽𝑖𝑡𝑑, with observed outcomes given by 𝑌𝑖𝑡 = 𝑌𝑖𝑡(𝐷𝑖𝑡). This notation implicitly
assumes that there are no anticipation effects, as 𝑌𝑖𝑡 = 𝑌𝑖𝑡(0) for all 𝑖𝑡 such that 𝐷𝑖𝑡 = 0.
When the treatment 𝐷𝑖𝑡 is binary, 𝛽𝑖𝑡 = 𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0) can be interpreted as the treatment
effect. We further assume that the treatment is irreversible and that the covariates are
unaffected by treatment status, so that 𝑋𝑖𝑡 = 𝑋𝑖𝑡(0), where 𝑋𝑖𝑡(0) denotes the counterfactual
untreated value of the covariate.11

As in CS2021, SA2021, and W2021, we assume that {𝑌𝑖𝑡(0), 𝛽𝑖𝑡, 𝐷𝑖𝑡, 𝑋𝑖𝑡}
𝑇
𝑡=1 are iid

(across individuals), and hence that the observed 𝑌𝑖𝑡 is also iid.12 We also assume that 𝑇 is
fixed and 𝑁 → ∞, which the most common case encountered by researchers.

Our object of interest is the overall average effect of the treatment on the treated (ATT),
which we define as13

𝛽 ∶= 𝐸 [𝛽𝑖𝑡 ∣ 𝐷𝑖𝑡 = 1] .

We implicitly assume that this object is well-defined in that 𝐸 [𝐷𝑖𝑡] > 0. This assumption is
easily satisfied in event studies. This average treatment effect parameter can be also written
as a ratio of moments:

𝐸 [𝛽𝑖𝑡 ∣ 𝐷𝑖𝑡 = 1] = 𝐸 [𝛽𝑖𝑡𝐷𝑖𝑡]
𝐸 [𝐷𝑖𝑡]

.

Our difference-in-differences approach is based on the following parallel trends assumption.

Assumption 1 (Parallel trends). There exist non-stochastic 𝛾, 𝜆𝑖 such that

𝐸 [𝑌𝑖𝑡(0) ∣ {𝑋𝑖𝑡}𝑇
𝑡=1, 𝐺𝑖 = 𝑔] = 𝜆𝑖 + 𝑋′

𝑖𝑡𝛾 (3)

for all 𝑖𝑡.

This notation subsumes the familiar time fixed effects into the vector 𝑋𝑖𝑡 as time indicators
(i.e., if 𝑋𝑖𝑡 consists of a set of time indicators, this assumption takes form 𝐸[𝑌𝑖𝑡(0) ∣ 𝐺𝑖 =
𝑔] = 𝜆𝑖 + 𝛼𝑡, where 𝛼𝑡 are time fixed effects). Also note that conditioning on the treatment
group 𝑔 is equivalent to conditioning on a particular sequence {𝐷𝑖𝑡}

𝑇
𝑡=1 of treatment paths.

11This assumption is actually stronger than necessary. As Callaway, Goodman-Bacon and Sant’Anna
(2021) note, it suffices to assume that the treated and untreated covariate distributions are the same.

12This iid setup is somewhat stronger than merely having clustered error terms, but our derivation will
still go through even if the observations are inid.

13This definition implicitly treats the treatment effects 𝛽𝑖𝑡 as a random variable drawn from a hierarchical
distribution that varies with time (rather than a series of time-specific random variables). One advantage
of this notation is that it clarifies the weights with which our estimator aggregates group- and period-
specific treatment effects, since regardless of whether covariates are included in the first stage, we have that
𝐸(𝛽𝑖𝑡|𝐷𝑖𝑡 = 1) = ∑𝑔,𝑝 𝛽𝑔𝑝 Pr(𝑔, 𝑝).
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Under Assumption 1, we can express observed outcomes using the regression specification

𝑌𝑖𝑡 = 𝜆𝑖 + 𝛽𝐷𝑖𝑡 + 𝑋′
𝑖𝑡𝛾 + 𝜀𝑖𝑡, (4)

where 𝑋𝑖𝑡 absorbs a time trend such that time fixed effects 𝛼𝑡 are a part of 𝛾, and can be
consistently estimated.

To remove the individual fixed effects, we define the transformation ̃𝑌𝑖𝑡 ∶= 𝑌𝑖𝑡 −
1

𝑇 0
𝑖

∑𝑇 0
𝑖

𝑡=1 𝑌𝑖𝑡, where 𝑇 0
𝑖 ∶= ∑𝑇

𝑡=1 (1 − 𝐷𝑖𝑡) is the last time period before individual 𝑖 gets
treated (or equivalently, the number of periods in which 𝑖 is observed in an untreated state).
For ̃𝑌𝑖𝑡 to be well-defined, we assume that, for all 𝑖, there is some 𝑡 where 𝐷𝑖𝑡 = 0. The
transformed 𝑋̃𝑖𝑡 and ̃𝜀𝑖𝑡 are defined in a similar manner.

Using this transformation, (4) can also be written

̃𝑌𝑖𝑡 = 𝛽𝐷𝑖𝑡 + 𝑋̃′
𝑖𝑡𝛾 + ̃𝜀𝑖𝑡.

Lemma 1. If Assumption 1 holds, then 𝐸 [∑𝑡 𝐷𝑖𝑡 ̃𝜀𝑖𝑡] = 0 and 𝐸 [∑𝑡 𝑋̃𝑖𝑡 ̃𝜀𝑖𝑡 ∣ 𝐷𝑖𝑡 = 0] = 0.

Assumption 1 is hence the key identifying assumption for this procedure, as it implies
moment conditions for regressions. Due to Lemma 1, running a standard regression of ̃𝑌𝑖𝑡

on 𝑋̃𝑖𝑡 for observations with 𝐷𝑖𝑡 = 0 yields a consistent estimator for 𝛾. We refer to this
regression that obtains 𝛾 as the first-stage regression. Then, using the estimated ̂𝛾, we
can regress ̃𝑌𝑖𝑡 − 𝑋̃𝑖𝑡 ̂𝛾 on 𝐷𝑖𝑡 to obtain an estimate of 𝛽; we refer to this regression as the
second-stage regression.

To be precise about these regressions, we define a few objects. Using 𝑋𝑘𝑖𝑡 to denote
regressor 𝑘 for individual 𝑖 at time 𝑡, we define the 𝑇 × 𝐾 matrix 𝑋̃0𝑖 as

𝑋̃0𝑖 =
⎡
⎢
⎢
⎣

(𝑋1𝑖1 − 1
𝑇 0

𝑖
∑𝑇

𝑡=1 𝑋1𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖1) ⋯ (𝑋𝐾𝑖1 − 1
𝑇 0

𝑖
∑𝑇

𝑡=1 𝑋𝐾𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖1)

⋮ ⋱ ⋮
(𝑋1𝑖𝑇 − 1

𝑇 0
𝑖

∑𝑇
𝑡=1 𝑋1𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖𝑇) ⋯ (𝑋𝐾𝑖𝑇 − 1

𝑇 0
𝑖

∑𝑇
𝑡=1 𝑋𝐾𝑖𝑡 (1 − 𝐷𝑖𝑡)) (1 − 𝐷𝑖𝑇)

⎤
⎥
⎥
⎦

.

Similarly, ̃𝑌0𝑖 is a 𝑇 × 1 vector of the form

̃𝑌0𝑖 = [ ̃𝑌𝑖1 (1 − 𝐷𝑖1) ⋯ ̃𝑌𝑖𝑇 (1 − 𝐷𝑖𝑇)]
′
.

The coefficient estimator from the first stage regression is then

̂𝛾 = (
𝑁

∑
𝑖=1

𝑋̃′
0𝑖𝑋̃0𝑖)

−1

(
𝑁

∑
𝑖=1

𝑋̃′
0𝑖

̃𝑌0𝑖) .
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Observe that both sums are over independent individuals 𝑖 (the sum over time is already
implicit in the matrix multiplication) and that the second stage-regression is done without a
constant, because the data are already demeaned. Hence, the two-stage difference in difference
estimator is

̂𝛽 = (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃𝑖𝑡 ̂𝛾)) .

To summarize, the two-stage procedure now becomes:

1. Regress ̃𝑌0𝑖 on 𝑋̃0𝑖 to obtain ̂𝛾.

2. Regress adjusted outcomes ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡 ̂𝛾 on 𝐷𝑖𝑡 to obtain ̂𝛽.

For these regressions to be feasible, we need to assume a rank condition such that
(∑𝑁

𝑖=1 𝑋̃′
0𝑖𝑋̃0𝑖) is invertible. This invertibility condition rules out identification of unit and

time fixed effects separately in environments where treatment cohorts are too small and we
are using too few periods.

Assumption 2 (Rank condition). 𝐸[𝑋̃′
0𝑖𝑋̃0𝑖] and 𝐸[𝐷𝑖𝑡] are invertible.

Inference can then proceed by standard GMM arguments. To apply limit theorems, it
suffices to assume that the moments of stochastic objects are bounded.

Assumption 3 (Bounded moments). There exists 𝐶 < ∞ such that 𝐸[𝑌𝑖𝑡(0)4] ≤ 𝐶, 𝐸[𝑋8
𝑘𝑖𝑡] ≤

𝐶, and 𝐸[𝛽4
𝑖𝑡] ≤ 𝐶 for all 𝑡.

The first- and second-stage regressions can be written as the solution to the sample analog
of the following moment conditions:

𝐸 [
𝑋̃′

0𝑖 ( ̃𝑌0𝑖 − 𝑋̃0𝑖𝛾)
∑𝑇

𝑡=1 𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡𝛾 − 𝛽𝐷𝑖𝑡)

] = 0,

where we have 𝐾 + 1 moment conditions, with 𝐾 in the first stage and one in the second
stage.14

Theorem 1. If Assumptions 1 to 3 hold, then ̂𝛾
𝑝
−→ 𝛾, ̂𝛽

𝑝
−→ 𝛽 and

√
𝑁 ( ̂𝛽 − 𝛽) 𝑑−→ 𝑁(0, 𝑉 ),

where 𝑉 = 𝐺−1
𝛽 𝐸 [(𝑔𝑖 + 𝐺𝛾𝜓𝑖) (𝑔𝑖 + 𝐺𝛾𝜓𝑖)

′] 𝐺−1′
𝛽 , with

𝐺𝛽 = −𝐸 [
𝑇

∑
𝑡=1

𝐷𝑖𝑡] ,

14Note that the joint solution to this GMM problem is numerically identical to the “manual” two-stage
procedure described above.
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𝐺𝛾 = −𝐸 [
𝑇

∑
𝑡=1

𝐷𝑖𝑡𝑋̃𝑖𝑡] ,

𝜓𝑖 = 𝐸 [𝑋̃′
0𝑖𝑋̃0𝑖]

−1
𝑋̃′

0𝑖 ( ̃𝑌0𝑖 − 𝑋̃0𝑖𝛾) ,

and

𝑔𝑖 =
𝑇

∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡𝛾 − 𝛽𝐷𝑖𝑡)

The sample analogs are:

̂𝐺𝛽 = − 1
𝑁 ∑

𝑖
∑

𝑡
𝐷𝑖𝑡,

̂𝐺𝛾 = − 1
𝑁 ∑

𝑖
∑

𝑡
𝐷𝑖𝑡𝑋̃𝑖𝑡,

̂𝜓𝑖 = [ 1
𝑁 ∑

𝑖
𝑋̃′

0𝑖𝑋̃0𝑖]
−1

(𝑋̃′
0𝑖 ( ̃𝑌0𝑖 − 𝑋̃0𝑖 ̂𝛾)) ,

and

̂𝑔𝑖 = ∑
𝑡

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡 ̂𝛾 − ̂𝛽𝐷𝑖𝑡) .

With ̂𝑉 = ̂𝐺−1
𝛽

1
𝑁 ∑𝑖 [( ̂𝑔𝑖 + ̂𝐺𝛾 ̂𝜓𝑖) ( ̂𝑔𝑖 + ̂𝐺𝛾 ̂𝜓𝑖)

′
] ̂𝐺−1

𝛽 , we have ̂𝑉
𝑝
−→ 𝑉.

Theorem 1 states that the 2SDD estimator is consistent for 𝛽, and is asymptotically normal.
Further, the plug-in variance estimator is consistent, which suffices for feasible inference. The
proof in Appendix C proceeds by standard arguments (see Newey and McFadden 1994).

2.3 Event studies
DD analyses are often accompanied by event-study regressions of the form

𝑌𝑖𝑡 = 𝜆𝑔(𝑖) + 𝛼𝑡 +
𝑅

∑
𝑟=−𝑅

𝜂𝑟𝑊𝑟𝑖𝑡 + 𝑢𝑖𝑡, (5)

where for 𝑟 ≤ 0 the 𝑊𝑟𝑖𝑡 ∈ {𝑊−𝑅𝑖𝑡, … , 𝑊0𝑖𝑡} are (𝑟 + 1)-period leads of treatment adoption,
and for 𝑟 > 0 the 𝑊𝑟𝑖𝑡 ∈ {𝑊1𝑖𝑡, … , 𝑊𝑅𝑖𝑡} are 𝑟-period lags of adoption (i.e., indicators
for being 𝑟 periods since treatment). SA2021 show that, when duration-specific average
treatment effects vary across groups, event-study regressions suffer from the same problem as

12



DD regressions.15

The two-stage procedure developed above can be extended to the event-study setting by
amending the second stage of the procedure to:

2’. Regress 𝑌𝑖𝑡 − 𝜆̂𝑔(𝑖) − ̂𝛼𝑡 on 𝑊−𝑅𝑖𝑡, … , 𝑊0𝑖𝑡, … , 𝑊𝑅𝑖𝑡.

Following the logic of the previous section, because 𝔼[𝑌𝑖𝑡 | 𝑔, 𝑡, (𝑊𝑟𝑖𝑡)]−𝜆𝑔 −𝛼𝑡 is linear in the
𝑊𝑟𝑖𝑡, the coefficients on the 𝑊𝑟𝑖𝑡, 𝑟 > 0, identify the average effects 𝔼[𝜂𝑟𝑖𝑡 | 𝑊𝑟𝑖𝑡 = 1].16 For
𝑟 ≤ 0, the coefficients on the 𝑊𝑟𝑖𝑡 can be used to test the hypothesis that 𝔼[𝑌𝑖𝑡 | 𝑔, 𝑡, 𝑊𝑟𝑖𝑡 = 1] =
𝜆𝑔 + 𝛼𝑡 (i.e., that the mean first-stage population residual is zero for all units who are 𝑟 + 1
periods away from adopting the treatment), as implied by parallel trends. Note that, by
the same logic, the treatment-duration indicators in step 2’ can be replaced with group- or
period-specific treatment-status indicators in order to identify group- or period-specific ATTs.

To formalize and extend this argument, let 𝑡∗(𝑖) denote the time at which individual 𝑖
becomes treated, and let 𝑊𝑟𝑖𝑡 = 1 [𝑡 − 𝑡∗(𝑖) = 𝑟] denote whether individual 𝑖 is 𝑟 periods
away from treatment at time 𝑡, with 𝑟 ∈ {−𝑅, ⋯ , 𝑅}, where we assume that there is an 𝑅∗

such that parallel trends holds for all observations 𝑡 − 𝑡∗(𝑖) < −𝑅∗. Researchers typically
assume that 𝑅∗ = 0, so that parallel trends holds in all pre-treatment periods. Allowing
𝑅∗ > 0 allows us to relax the assumption that the treatment is unanticipated, and as we
discuss below, provides us with one method of testing whether parallel trends is satisfied.

The elements of 𝑊𝑟𝑖𝑡 can be stacked into an 𝑅 + 𝑅 + 1-dimensional vector 𝑊𝑖𝑡, where 𝑤
is a potential value of 𝑊𝑖𝑡. To adapt the reasoning from the DD setup, we have potential
outcomes 𝑌𝑖𝑡(𝑤) = 𝑤′𝜂𝑖𝑡 + 𝑌𝑖𝑡(0), where 𝑤 is a vector of treatment-duration indicators.17

The object of interest is now 𝜂 = (𝜂−𝑅, ⋯ , 𝜂𝑅), where 𝜂𝑟 ∶= 𝐸[𝜂𝑟𝑖𝑡 ∣ 𝑡 − 𝑡∗(𝑖) = 𝑟] is the
average causal effect across individuals who are 𝑟 periods away from receiving the treatment.
For 𝑟 > 0, 𝜂𝑟 can be interpreted as the treatment effect 𝑟 periods after treatment. Since our
parallel trends assumption implies that 𝜂𝑟 = 0 for all 𝑟 < −𝑅∗, the estimated 𝜂𝑟, 𝑟 < −𝑅∗

provide a test of whether the data are consistent with this assumption, even in the presence of
𝑅∗ periods of treatment-anticipation effects. Below, we discuss several alternative approaches
to testing parallel trends.

15An argument similar to the one presented for DD regressions in Section 2.1 can also be used to show
that the coefficients on the 𝑊𝑟𝑖𝑡 do not identify the average effect of being treated for 𝑟 periods.

16This expectation is taken over all groups with treatment durations of at least 𝑟. Since under staggered
adoption the completed treatment duration varies by group, the groups over which these duration-specific
effects are averaged will vary across durations. These averages are also what the interaction-weighted estimator
proposed by SA2021 identifies. If all groups are treated for at least 𝑃̄ periods, an alternative is to exclude
observations corresponding to treatment durations longer than 𝑃̄ periods from the second-stage sample, in
which case the two-stage approach identifies duration-specific treatment effects, averaged over all groups.

17Here, 𝑌𝑖𝑡(0) should be understood as the potential outcome for 𝑡 − 𝑡∗(𝑖) < −𝑅∗. Then, the parallel
trends assumption as stated in Assumption 1 can still be used.
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Define 𝑄𝑖𝑡 ∶= 1 [𝑡 − 𝑡∗(𝑖) < −𝑅∗]. Then, by analogy to the case for the overall ATT,
define 𝑇 𝑄

𝑖 ∶= ∑𝑇
𝑡=1 𝑄𝑖𝑡. Now,

̃𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 1
𝑇 𝑄

𝑖

𝑇 𝑄
𝑖

∑
𝑡=1

𝑌𝑖𝑡𝑄𝑖𝑡,

with a similar definition applying to 𝑋̃𝑖𝑡 and ̃𝜀𝑖𝑡. Analogously,

𝑋̃𝑄𝑖 =
⎡
⎢
⎢
⎢
⎣

(𝑋1𝑖1 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋1𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖1 ⋯ (𝑋𝐾𝑖1 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋𝐾𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖1

⋮

(𝑋1𝑖𝑇 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋1𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖𝑇 ⋯ (𝑋𝐾𝑖𝑇 − 1
𝑇 𝑄

𝑖
∑𝑇

𝑡=1 𝑋𝐾𝑖𝑡𝑄𝑖𝑡) 𝑄𝑖𝑇

⎤
⎥
⎥
⎥
⎦

,

and

̃𝑌𝑄𝑖 = [ ̃𝑌𝑖1𝑄𝑖1 ⋯ ̃𝑌𝑖𝑇𝑄𝑖𝑇] .

In this environment, our analogous two-stage procedure becomes:

1. Regress ̃𝑌𝑄𝑖 on 𝑋̃𝑄𝑖 to obtain ̂𝛾.

2. Regress adjusted outcomes ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡 ̂𝛾 on 𝑊𝑖𝑡 to obtain ̂𝜂.

Hence, the first- and second-stage estimators are

̂𝛾 = ( 1
𝑁 ∑

𝑖
𝑋̃′

𝑄𝑖𝑋̃𝑄𝑖)
−1

( 1
𝑁 ∑

𝑖
𝑋̃′

𝑄𝑖
̃𝑌𝑄𝑖) ,

and

̂𝜂 = (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡𝑊 ′
𝑖𝑡)

−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝑊𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃𝑖𝑡 ̂𝛾)) .

As before, the estimators can be written as the solution to a GMM problem:

𝐸 [
𝑋̃′

𝑄𝑖 ( ̃𝑌𝑄𝑖 − 𝑋̃𝑄𝑖𝛾)
∑𝑇

𝑡=1 𝑊𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡𝛾 − 𝑊 ′

𝑖𝑡𝜂𝑖𝑡)
] = 0

The normality and consistency results are analogous.

2.4 Alternative approaches to testing parallel trends
There are alternative approaches to testing the validity of parallel trends within the

two-stage framework. BJS2024 recommend testing for parallel trends by including leads of
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treatment status in the first stage of the estimator, noting that their approach can, under
some conditions, circumvent concerns about conditioning difference-in-differences estimates
on passing tests for parallel trends (note that inference in this approach is based on standard
OLS asymptotics). Another approach is to assume that parallel trends holds up to 𝑅∗ + 1
periods before the adoption of the treatment, then use the two-stage procedure to estimate
the 𝑅∗ pre-treatment placebo ATTs (i.e., the coefficients on 𝐷𝑟𝑖𝑡 for 𝑟 ∈ {−𝑅∗, … , −1}).
This approach is also suggested by Liu, Wang and Xu (2022), who develop an equivalence
test to increase the power of tests based on this idea.18

The two-stage framework suggests another approach still, this one motivated by the fact
that it is not necessary to use all pre-treatment periods to identify the group (or individual)
and time effects used by the second stage of the estimator. For example, instead of using all
untreated observations, the first stage can be estimated from the sample of all observations
for never-treated units (from which the period effects and group effects for never-treated
units are identified) as well as all observations for eventually-treated units in the period
immediately before they adopt the treatment (from which the group effects for treated units
are identified).19 Under the normalization that parallel trends holds in the last pre-treatment
period (i.e., that eventually-treated units experience the same time effects in that period
as never-treated units), the coefficients on the 𝐷𝑟𝑖𝑡 for 𝑟 ∈ {−𝑅, … , −1} for this variant of
the two-stage procedure identify average pre-treatment deviations among eventually-treated
units from never-treated units’ trends.20 Although this restriction of the first-stage sample
may reduce the efficiency of the second-stage estimates, it addresses some of the challenges
associated with interpreting coefficients that represent tests of parallel trends from within
the two-stage framework (cf. footnote 18 and Roth 2024). In Figure A1, we show that
two-stage estimates obtained using this modified procedure correctly identify both pre- and
post-treatment trends in the setting where Roth (2024) shows that the default dCDH2020,
CS2021, and BJS2024 estimators do not. While the coefficients on leads of treatment status
from this modified procedure are more readily interpretable, the analogous coefficients from

18While all of the methods discussed above are capable of identifying violations of parallel trends, none of
them reliably identify parameters that can be interpreted as average deviations from trends in pre-treatment
periods. Second-stage coefficients on leads of treatment status test whether average first-stage residuals are
close to zero in pre-treatment periods, first-stage coefficients on such leads presumably identify a (potentially
non-convex) weighted average of deviations from trend for all groups and periods, and placebo ATTs only
represent such deviations under the assumption that parallel trends holds prior to the adoption of the placebo
treatment. This contrasts with traditional event-studies based on two-way fixed-effects regressions with
homogeneous duration-specific average treatment effects, in which the coefficients on leads can be interpreted
as average deviations from trends, subject to a normalization.

19The last treated cohort can be used as the never-treated cohort in the absence of a pure control group.
20The normalization required here is the same as that required for traditional two-way fixed-effects event

studies.
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the “standard” two-stage approach (i.e., using the full untreated sample in the first stage)
still represent valid tests of parallel trends, even if they cannot be interpreted as average
deviations from never-treated trends.

A further advantage of this modified procedure is that it may offer superior performance in
cases when the divergence between untreated outcomes between eventually- and never-treated
units increases over time (an advantage that dCDH2024 argue is shared by other estimators
that do not compare treated observations to all untreated observations).

2.5 Discussion of assumptions and extensions
The simplicity of our regression-based estimation and inference procedure allows us to

flexibly incorporate several extensions and relaxations of the assumptions. We provide sample
Stata code in Appendix A both using the in-built gmm command and the did2s package.

Other average treatment effects. While the discussion so far has focused on identification
of the overall and duration-specific ATTs, as these are the most common objects of interest
in difference-in-difference analyses, the logic behind our two-stage approach also applies to
other average treatment effect measures. In particular, it can be used to identify group×time-
specific ATTs by amending the second stage to include a full set of group×time indicators,
which can be examined individually or aggregated to form further summary measures of
the treatment. Similarly, modifying the second stage to include full sets of group or time
indicators identifies group- or time-specific ATTs.

Parallel trends assumption. The theoretical results presented above assume parallel
trends for every group and between every pair of consecutive time periods, as in dCDH2020 and
SA2021. This assumption is stronger than the one used in CS2021, who only require parallel
trends between treated groups and never-treated groups after their treatment time. While
this accommodates cases where parallel trend fails prior to treatment time, the distinction
may not matter in practice, as testing for parallel trends prior to treatment time is often used
as a proxy for the infeasible test for parallel trends post treatment. If the stronger version of
parallel trends fails, researchers tend to have little confidence in the weaker version.

Nevertheless, our procedure can be modified to accommodate the weaker version. If we
only believe in the weak version of parallel trends, our procedure can be modified to estimate
the first stage using only never-treated observations and the first pre-treatment period for
eventually-treated units (which is necessary in order to estimate the unit FEs for treated
units). In contrast, even if the stronger version of parallel trend holds, the CS2021 approach
does not yield a more precise estimate because it does not make use of data from treated
observations before relative time −1.
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Our approach can be adapted to reduce bias when the parallel trends assumption is
violated. The potential for a larger bias arises if the parallel trends assumption does not
hold exactly and the difference in trends between groups increases over time. To reduce
the bias, we can simply estimate the first stage using untreated data within a few periods
of being treated. Group-specific linear trends may also be included in the regression-based
approach to remove the group trends directly. In particular, 𝑋𝑖𝑡 in Equation (3) may include
1{𝑔(𝑖) = 𝑔}𝑡, where 𝑔(𝑖) denotes the group to which observation 𝑖 belongs.

Triple differences. Triple differences-in-differences use the evolution of observed outcomes
for auxiliary untreated units to control for potential violations of parallel trends, and can
easily be accommodated from within our two-stage framework. For example, if only members
of states that belong to a particular subgroup are treated, then the first-stage regression
can be modified to include state, time, and state×time, state×subgroup and time×subgroup
fixed effects, which can be collected into the vector 𝑋𝑖𝑡. Under the hypothesis that state-
level deviations from parallel trends are identical across subgroups within states, two-stage
estimates will recover the overall ATT.

Serial correlation. It is possible to adapt the procedure to obtain an efficient estimator even
in the presence of serial correlation. Since the estimator is identical to the imputation estimator
of BJS2024, it is known that the estimator is efficient in the canonical normal homoskedastic
model. If there is serial correlation in the error term following an AR(1) process for each 𝑖, we
can make a simple adjustment to the regression. If 𝜀𝑖𝑡 in Equation (3) is AR(1) with correlation
parameter 𝜌, then Equation (3) can be written as 𝑌𝑖𝑡 = 𝜌𝑌𝑖𝑡−1 + 𝛿𝑖𝑡𝐷𝑖𝑡 + 𝜆̃𝑖 + ̃𝛾𝑡 + 𝜈𝑖𝑡, with
𝜈𝑖𝑡|𝐷𝑖𝑡, 𝑌 𝑡−1

𝑖 ∼ 𝒩(0, 𝜎2) for an appropriately defined 𝜆̃𝑖, ̃𝛾𝑡 and 𝑌 𝑡−1
𝑖 ≔ {𝑌𝑖1, 𝑌𝑖2, ⋯ , 𝑌𝑖𝑡−1}.

Our procedure can be analogously implemented by: (1) regressing 𝑌𝑖𝑡 on 𝑌𝑖𝑡−1, 𝑋𝑖𝑡, and fixed
effects for observations with 𝐷𝑖𝑡 = 0, (2) regressing 𝑌𝑖𝑡 − ̂𝜌𝑌𝑖𝑡−1 −(1− ̂𝜌)𝜆𝑔(𝑖) −𝛼𝑡 + ̂𝜌 ̂𝛼𝑡−1 on
𝐷𝑖𝑡. Since the OLS estimator coincides with the maximum likelihood estimator, the resulting
estimator is efficient under the normal homoskedastic benchmark. While the estimated
coefficients are not the coefficients of interest due to the Nickell bias, they can be combined
to recover the coefficients of interest in a manner detailed in the appendix.21

Continuous and multivalued treatments. Our approach to estimation and inference
extends to continuous treatments and discrete (non-binary) treatments. In this setting,
observations have 𝐷𝑖𝑡 = 0 prior to treatment, but the treatment value may be continuous
post-treatment. The two-stage procedure still applies, with the first-stage consisting of a
regression of the outcome on 𝑋 for 𝐷𝑖𝑡 = 0 to obtain ̂𝛾, and the second stage consisting of

21While Harmon (2024) emphasizes the efficiency advantages of alternative approaches under strongly
correlated errors, the procedure outlined here highlights how our estimator can be adapted to such settings.
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a regression of 𝑌𝑖𝑡 − 𝑋′
𝑖𝑡 ̂𝛾 on 𝐷𝑖𝑡 to obtain ̂𝛽. With a continuous treatment, the two-stage

procedure identifies a (positive) Yitzhaki-weighted average of the derivatives of the causal
response function (Yitzhaki, 1996; Angrist and Krueger, 1999; Angrist and Pischke, 2009).
Inference proceeds through GMM as before.22

Anticipation effects. The procedure can be extended to accommodate anticipation effects.
If the treatment is anticipated for 𝑟 periods before adoption, we can redefine treated to mean
having adopted the treatment for at least 𝑟 periods.

Reversible treatment and several treatments. The procedure can be extended to
accommodate reversible treatment and having several treatments. If the treatment is reversible,
one way to apply our results is to use the (potentially strong) assumption that there are no
within-unit spillovers of the treatment to future periods. Alternatively, if there are within-unit
spillovers of the treatment to future periods, we can define 𝑊𝑖𝑡 in Section 2.3 as a vector of
indicators for the treatment path, which is defined as the sequence of treatment indicators
since first treatment.23 Observations that have been treated prior to 𝑡 are excluded from the
first stage. The asymptotics hold when there are many observations with the same treatment
path. The estimands remain interpretable as the corresponding coefficients are effects relative
to the untreated group. If there are several treatments, say 𝐷1 and 𝐷2, then we can similarly
define each treatment path as a tuple of the treatment duration of (𝐷1, 𝐷2), so 𝑊𝑖𝑡 is a
vector of indicators for every combination of these tuples. The rest of the procedure and
interpretation are identical to that of having reversible treatment with within-unit spillovers.

Design-based analysis. The 2SDD estimand is also interpretable in a design-based world.
Let 𝐴1𝑖 denote the number of periods that individual 𝑖 has been treated, with 𝐴1𝑖 = 1
in the period that 𝑖 was first treated. Further, assume that 𝛽𝑖𝑡 = 𝛽𝑖 for all 𝑡. Define the
estimand as 𝛽 ≔ 𝔼[𝛽𝑖𝑡 | 𝐷𝑖𝑡 = 1]. Using an argument similar to the proof of Lemma C.1 in
Appendix C, 𝛽 = plim(∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝐷𝑖𝑡)

−1
(∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝐷𝑖𝑡𝛽𝑖𝑡). Hence, in the setting with

staggered treatment adoption, 𝛽 = plim(∑𝑁
𝑖=1 𝐴𝑖)

−1
(∑𝑁

𝑖=1 𝐴𝑖𝛽𝑖). Under the Athey and
Imbens (2022) setup where the adoption time of treatment is as good as random, 𝐴𝑖 is
randomly assigned across individuals in our setting, so 1

𝑁 ∑𝑁
𝑖=1 𝐴𝑖

𝑝
−→ 𝑎, and 𝔼[𝐴𝑖] = 𝑎 for

all 𝑖.24 Thus, the estimand becomes 𝛽 = 1
𝑎𝑁𝔼[∑𝑁

𝑖=1 𝐴𝑖𝛽𝑖] = 1
𝑎𝑁 ∑𝑁

𝑖=1 𝔼[𝐴𝑖]𝛽𝑖 = 1
𝑁 ∑𝑁

𝑖=1 𝛽𝑖,

22When using this approach to approximate the causal response to a multivalued treatment, the second-
stage regression should include a constant term.

23For instance, (0, 1, 0, 1) and (0, 1, 1, 1) are two different treatment paths. While both groups begin
being treated in the second period, the only first group becomes untreated in the third period. The coefficient
on the third and fourth periods are then allowed to be different for the two groups to accommodate the
different treatment paths.

24The difference in identifying assumptions not only affects the interpretation of the estimand, but also
affects inference. The design-based environment models the assignment process 𝐴𝑖 instead of 𝑌𝑖(0), so
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which is exactly the average treatment effect (ATE). Inference is straightforward due to the
GMM framework: it suffices to cluster on 𝑖 since 𝐴𝑖 is randomly assigned.

Linear combination of treatment effects. The procedure can also be extended to
estimating any linear combination of coefficients. Recall that we have the model 𝑌𝑖𝑡 = 𝐷𝑖𝑡𝛽𝑖𝑡+
𝑋′

𝑖𝑡𝛾 +𝜀𝑖𝑡 with 𝔼[𝜀𝑖𝑡 ∣ {𝐷𝑖𝑡, 𝑋𝑖𝑡}
𝑇
𝑡=1] = 0. This model implies that 𝔼[𝑌𝑖𝑡 − 𝐷𝑖𝑡𝛽𝑖𝑡 − 𝑋′

𝑖𝑡𝛾] =
0. We are interested in 𝜏 ≔ 𝑤𝑖𝑡𝛽𝑖𝑡, where 𝑤𝑖𝑡 is a nonstochastic weight. Due to the moment
condition, and 𝑤𝑖𝑡 being nonstochastic,

𝔼[𝑤𝑖𝑡𝑌𝑖𝑡 − 𝑤𝑖𝑡𝑋′
𝑖𝑡𝛾] − 𝔼[𝐷𝑖𝑡]𝑤𝑖𝑡𝛽𝑖𝑡 = 0.

Assume that heterogeneity in 𝔼[𝐷𝑖𝑡] occurs at some level ℎ, and 𝜁 is the vector of values it can
take, so that 𝔼[𝐷𝑖𝑡] = 1(ℎ)′

𝑖𝑡𝜁. Assume that 𝜁 is either known or can be consistently estimated,
and all elements of 𝜁 are nonzero. Then, by summing 𝑤𝑖𝑡𝛽𝑖𝑡 = 𝔼[𝑤𝑖𝑡𝑌𝑖𝑡 − 𝑤𝑖𝑡𝑋′

𝑖𝑡𝛾]/𝔼[𝐷𝑖𝑡]
over 𝑖, 𝑡:

𝜏 = ∑
𝑖,𝑡

𝑤𝑖𝑡𝛽𝑖𝑡 = ∑
𝑖,𝑡

𝑤𝑖𝑡𝔼[
𝑌𝑖𝑡 − 𝑋′

𝑖𝑡𝛾
1(ℎ)′

𝑖𝑡𝜁
]

Hence, writing everything as a system of moment conditions,

𝔼
⎡
⎢
⎢
⎣

1(ℎ)𝑖𝑡 (𝐷𝑖𝑡 − 1(ℎ)′
𝑖𝑡𝜁)

𝑋𝑖𝑡 (1 − 𝐷𝑖𝑡) (𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾)

𝜏 − 𝑤𝑖𝑡 (𝑌𝑖𝑡−𝑋′
𝑖𝑡𝛾

1(ℎ)′
𝑖𝑡𝜁 )

⎤
⎥
⎥
⎦

= 0

The just-identified system of equations enables the application of GMM in the same way as
before.

Test for treatment effect heterogeneity. The GMM approach also allows us to test
for treatment effect heterogeneity. One approach is to use the fact that, under the null
of constant treatment effects, the two-way fixed effects estimator has the same probability
limit as the 2SDD estimator that is robust to heterogeneity. Then, we can test if the two
estimators are equal. An alternative approach is to obtain coefficients in the second stage
that correspond to group (or covariate-specific) treatment effects. We can then use a standard
F test to jointly test if the coefficients are equal.

parallel trends is no longer required to interpret 𝛽 as the ATE. For inference in the design-based environment,
if there is clustered assignment for 𝐴𝑖 on dimension 𝐶 where several individuals 𝑖 can belong to some cluster 𝑐,
then researchers should cluster at the 𝑐 level instead of 𝑖. However, if we instead assume parallel trends in our
original environment, even if there is clustered assignment, it suffices to cluster on unit 𝑖 if we are targeting
a conditional estimand (i.e., the ATT): by conditioning on 𝐷𝑖𝑡, the dependence structure is irrelevant for
inference.
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3 Comparison with other approaches to inference
The remaining sections of the paper compare 2SDD against several leading estimators

frequently used in empirical research. We begin with the simplest possible setting that
underlies standard difference-in-differences logic—a 2 × 2 design—and show that 2SDD
produces exactly the same variance as the classical TWFE estimator. While 2SDD does not
sacrifice any precision in the most basic environment, we demonstrate that other heterogeneity-
robust procedures perform strictly worse under this canonical benchmark. We also clarify
the relationship between 2SDD and the BJS2024 imputation estimator.

3.1 Equivalence with TWFE and improved precision over alterna-
tives in the 2 × 2 case

We provide a simple example to demonstrate that none of the other commonly used
DD methods produce the same confidence interval as TWFE in canonical 2 × 2 designs.
While TWFE and our proposed two-stage approach yield identical estimates and confidence
intervals, other popular methods produce confidence intervals that are strictly wider.

We construct a minimal 2 × 2 example with four units observed for two periods, with
two units receiving treatment in the second period, and we choose the outcome data so that
the treatment effect is 1 and the variance estimate using TWFE (clustering standard errors
at the unit level) is 1.25 To examine the behavior of confidence intervals when the sample
grows, we replicate the dataset either 1, 10, or 100 times and add a random normal error
with standard deviation 0.05 to the outcome variable for each observation.

We apply several recently proposed heterogeneity-robust DD approaches (CS2021; SA2021;
W2021; dCDH2024) and present the 95% confidence intervals in Table 1.26 The TWFE and
2SDD confidence intervals are identical for all three different expansions of the original data.
By contrast, the other heterogeneity-robust methods entail efficiency losses relative to TWFE
even in the basic 2 × 2 case.

We show theoretically that the TWFE and 2SDD variances are asymptotically identical
in this setting, with full details provided in Appendix D.27

25Units 1 and 2 are never treated, while units 3 and 4 eventually receive treatment. Letting 𝑦𝑖𝑡 denote
the outcome for unit 𝑖 in period 𝑡, we specify that 𝑦11 = 2, 𝑦12 = 0, 𝑦21 = 𝑦22 = 3, 𝑦31 = 1, 𝑦32 = 0,
𝑦41 = 2, and 𝑦42 = 3.

26We do not include the imputation estimator from BJS2024 in the table because it coincides with 2SDD
in this case. Section 3.2 compares the two estimators more generally, highlighting how the default BJS2024
variance estimator is anti-conservative if are treatment cohorts that are not very large.

27Proofs of numerical equivalence of the coefficient and variance estimators under homoskedasticity are
also available upon request.

20



3.2 Relationship with imputation estimator
We conclude this section with a brief discussion of how our approach to inference differs

from that developed in BJS2024, whose imputation estimator produces numerical point
estimates to our two-stage estimator.

First, BJS2024 primarily consider a setting in which treatment status is non-stochastic
(fixed in repeated samples) and the treatment effects are also non-stochastic. Consequently,
the variance of their target parameter is smaller than the variance of ours, and, accordingly,
they use a different variance estimator. When treatment status is in fact random, their
default variance estimator is no longer appropriate, while our approach already accounts for
the potential stochasticity of treatment status.

Second, even in settings where treatment status is fixed, our approach is more robust to
small-sample issues—particularly those arising from having very few observations per cohort.
While both variance estimators achieve consistency as the sizes of the treatment cohorts grow
without bound, the small-sample performance of the variance estimators can differ regardless
of whether treatment status is fixed or random. The standard errors for the imputation
estimator developed in BJS2024 are constructed based on the residuals ̃𝜀𝑖𝑡 = ̂𝜏𝑖𝑡 − ̂̄𝜏𝑖𝑡, where
̂𝜏𝑖𝑡 is the estimated treatment effect for unit 𝑖 at time 𝑡 and ̂̄𝜏𝑖𝑡 is some average of these

estimated individual treatment effects. While they consider different values for ̂̄𝜏𝑖𝑡, their
recommended default is to use cohort-period averages.28 When the groups are small, their
variance estimator can therefore become anti-conservative (which results in size distortions);
in the extreme case with a group consisting of only one observation, ̂̄𝜏𝑖𝑡 = ̂𝜏𝑖𝑡, so ̃𝜀𝑖𝑡 = 0.
This problem is not alleviated even with the leave-one-out modification to their variance
estimator: with one observation in a group, there are no observations to calculate ̂̄𝜏𝑖𝑡. In
contrast, our approach uses ̂̄𝜏𝑖𝑡 = ̂𝛽, which does not share the same small-sample problem.

4 Rejection rates for randomly generated interventions
This section conducts Monte Carlo simulation exercises inspired by Bertrand, Duflo

and Mullainathan (2004) to evaluate the two-stage approach and provide insight into how
various difference-in-differences (DD) methods perform under realistic conditions. First, we
aim to assess finite-sample performance in environments that resemble common empirical
applications. Second, acknowledging that theoretical frameworks often rely on the assumption
of i.i.d. data, we simulate scenarios that incorporate autocorrelation and reflect real-world
datasets more accurately. Third, the proliferation of recently proposed alternatives for
DD estimation necessitates a comparative analysis to discern their relative strengths and

28To be precise, ̂̄𝜏𝑖𝑡 = (∑𝑖∶𝑔(𝑖)=𝑔 ∑𝑡∶𝑝(𝑡)=𝑝 ̂𝜏𝑖𝑡) / (∑𝑖∶𝑔(𝑖)=𝑔 ∑𝑡∶𝑝(𝑡)=𝑝 1).
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weaknesses. Lastly, since the BJS2024 method shares point estimates with ours, it becomes
essential to assess the distinct approaches to inference.

4.1 Data and methodology
Our primary dataset consists of wage data for women between the ages of 25 and 50 from

the Current Population Survey (CPS). We define wage as the natural logarithm of weekly
earnings, which are recorded in the fourth interview month in the Merged Outgoing Rotation
Group of the CPS.29 The data span a 42-year period from 1979 to 2020 and contain over
one million women reporting strictly positive weekly earnings. Using data from 50 states, we
construct a state-by-year panel dataset comprising average wages in 2,100 state-year cells for
our Monte Carlo exercises. In such environments, the theoretical results of BJS2024 regarding
efficiency, which also hold for our estimator, may not apply (though see our discussion in
Section 2.5). In addition, we generate an i.i.d. dataset by drawing the outcome variable from
a normal distribution with the same mean and variance as wages in our CPS sample.

Our simulation study adopts a “random design” strategy. This approach introduces
stochasticity by randomly drawing treated states, treatment effects, and treatment timing in
each iteration. By doing so, we create a more realistic representation of real-world scenarios
where the assignment of treatments may not follow a fixed pattern (Athey and Imbens,
2022). Importantly, we also document some inherent limitations of considering treatment
and treatment timing as non-stochastic as in the “fixed design” approach of BJS2024.30

To simulate a staggered treatment setting, we randomly assign states to the treatment
group and generate treatments that occur randomly over a specified period. This contrasts
with the original exercise by Bertrand, Duflo and Mullainathan (2004), in which the placebo
treatment timing is homogeneous across treated states and drawn uniformly at random. In
all cases, we restrict the earliest treatment year to 1982 and the latest treatment year to
2014. Since treatment is an absorbing state, this ensures that we observe outcome data in all
treated states for at least 5 years after the treatment event.

We estimate the effects of the randomly generated interventions using the two-stage
approach (with our analytical standard errors) as well as a number of alternative methods
for comparison. In particular, we consider the imputation approach from BJS2024, using
both their “default” asymptotically conservative standard errors and “leave-out” version
with improved finite-sample performance, as well as various alternative estimators (CS2021;

29Using the logarithmic transformation excludes women with zero weekly earnings. While many recent
papers use quasi-logarithmic transformations to incorporate zero-valued observations, Thakral and Tô (2023)
document substantial biases arising from the use of such transformations, and thus we focus on women with
strictly positive earnings following Bertrand, Duflo and Mullainathan (2004).

30See Appendix E for further discussion, though we note that our conclusions do not require random
designs.
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SA2021; dCDH2024; W2021).31 Standard errors are adjusted for clustering at the state level,
following Bertrand, Duflo and Mullainathan (2004).

4.2 Simulation results
We conduct an event-study analysis to estimate the effect of the randomly generated

interventions in each of the five years starting from the time of treatment. The primary
measure we use to evaluate the performance of each method is the relative frequency of
rejecting the null hypothesis of the true generated effect size at the 5 percent significance
level over 500 simulations. We also report the mean bias, root-mean-square error (RMSE),
and average per-simulation computational speed.

The baseline environment consists of states being treated over a 20-year period, which
corresponds to an empirical example highlighted in the recent Miller (2023) guide to event-
study models (the impact of state-level school finance reforms in 26 states from 1990–2011
from Lafortune, Rothstein and Schanzenbach, 2018). However, we consider 40 treated states
in our baseline environment and ensure at least 2 treated states per year, with the goal
of providing the BJS2024 approach to inference with a more balanced assessment since
computing their leave-out variance estimator requires that no treatment cohort consists only
of a single state. Treatment effects are heterogeneous and drawn from a normal distribution,
with an average value randomly drawn between 2 percent and 5 percent of the average wage
and a standard deviation equal to 10 percent of the average wage.

Table A1 reports results from the baseline environment, in which the average true effect
is approximately 0.2. Our proposed two-stage method with the GMM approach to inference
leads to rejection rates near 5 percent, with standard errors around 0.10. Despite having the
same point estimates, the default BJS2024 variance estimator leads to the most substantial
levels of over-rejection, ranging from 13 percent to 16.8 percent, with standard errors around
0.08. Their leave-out variance estimator, on the other hand, leads to overly conservative
estimates, with rejection rates around 1 percent and standard errors around 0.14. Compared
to the leave-out variance estimator, the SA2021 method leads to similar rejection rates with a
larger standard error (around 0.17) and the CS2021, dCDH2024, and W2021 methods result
in similar standard errors (around 0.14) but achieve rejection rates closer to 5 percent.

The two-stage approach and the imputation approach share a speed advantage, outper-

31We conduct these analyses in Stata using the packages did2s (Butts, 2021), did_imputation
(Borusyak, 2021), csdid (Rios-Avila, Sant’Anna and Callaway, 2023), eventstudyinteract (Sun, 2021),
did_multiplegt_dyn (de Chaisemartin et al., 2023), and jwdid (Rios-Avila, Nagengast and Yotov, 2022).
For CS2021, we use the asymptotic standard errors (the default in the Stata package, obtained via influ-
ence functions), though we note that the wild bootstrap generally yields wider confidence intervals. With
the exception of jwdid, the authors of the respective methodological papers were directly involved in the
development of the packages.

23



forming most alternatives by a factor of 100 or more. This highlights the simplicity of the
two-stage estimator, which can be computed straightforwardly using OLS regressions, and
the advantage of having analytical standard errors based on the familiar GMM approach to
inference.

Next we alter the baseline environment to allow for a correlation between treatment
assignment and untreated potential outcomes. In particular, we use the treatment assignment
probability model from Arkhangelsky et al. (2021) to construct an environment that “reflect[s]
actual differences across states with respect to important economic variables.” The 2SDD
and CS2021 approaches continue to yield rejection rates around 5 percent, though the latter
results in larger standard errors, as Table A2 shows. To emphasize the nontrivial nature
of this robustness exercise, note that the change in treatment assignment mechanism can
meaningfully impact rejection rates: the default BJS2024, dCDH2024, and W2021 methods
all result in higher rejection rates than before. The BJS2024 leave-out variance estimator
and the SA2021 method continue to lead to under-rejection.

To further evaluate these methods, we proceed to vary the minimum number of treated
states in each year, the number of years during which the treatment can occur, and the total
number of treated states. We then extend our analysis to environments with homogeneous
treatment effects and i.i.d. data.
4.2.1 Size of treatment cohorts

Many datasets, such as the setting from Lafortune, Rothstein and Schanzenbach (2018),
have the feature that treatment cohorts may consist of only a single treated unit. To
accommodate such instances, we remove the restriction that at least two states must be
treated in each period. In this case, the leave-out variance estimator from BJS2024 can no
longer be computed. Aside from that, removing the restriction leads to similar results for
all methods (Table S1). The same holds when using the alternative non-uniform treatment
assignment probability model from Arkhangelsky et al. (2021) (Table S2). With the (overly)
conservative leave-out option no longer available, over-rejection becomes a significant concern
with the imputation approach.
4.2.2 Number of treatment cohorts

Table 2 shows how the results change after increasing the number of treatment cohorts
to 30 from the baseline of 20. This change has little effect on two-stage approach and the
CS2021 estimator, with both leading to similar rejection rates (near 5 percent) and standard
errors (around 0.10 for 2SDD and around 0.14 for CS) as before. The SA2021 standard
error also changes little and leads to similar rates of under-rejection as before. In contrast,
the default BJS2024 variance estimator leads to even more severe over-rejection rates than
before, ranging from 25 percent to 30 percent, with much smaller standard errors of around

24



0.06. In this case, the leave-out variance estimator cannot be computed. Additionally, the
dCDH2024 and W2021 estimators lead to smaller standard errors than before (0.10 and 0.12,
respectively), leading to over-rejection (rates around 20 percent and 10 percent respectively).

Decreasing the number of treatment cohorts to 15 similarly has little effect on the
performance of the two-stage approach, the CS2021 estimator, and the SA2021 estimator, as
Table S3 show. The default BJS2024 variance estimator continues to lead to over-rejection,
though with a rejection rate of only around 10–12 percent, while the dCDH2024 and W2021
estimators lead to slightly higher rejection rates than before.

Overall, these results highlight the anti-conservativeness of the default imputation approach
to inference. This can be attributed to over-fitting in finite samples. This observation also
explains why the imputation default performs poorly when the number of groups increases
relative to 𝑁.32 Due to over-fitting when the group size is small, the extent of over-rejection
using that approach becomes more severe if treatment timing is staggered over a longer
period. In practice, we find evidence of over-rejection using the imputation default variance
estimator even if the treatment is staggered over fewer periods (see Tables S4 to S6).

4.2.3 Number of treatment units

The baseline environment consists of 40 treated states. However, many empirical examples
such as the Lafortune, Rothstein and Schanzenbach (2018) setting consist of fewer treated units
(26 states in that case). Before proceeding, we note that BJS2024 suggest a minimum effective
number of treated observations of 30 because, as their documentation states, “inference
on coefficients which are based on a small number of observations is unreliable” (see the
Herfindahl condition in their paper). Given the prevalence of empirical examples with smaller
numbers of treated units, we evaluate the performance of the various methods in such settings
to shed light on their relative strengths and weaknesses.

To hold fixed the number of treatment cohorts while ensuring that the BJS2024 leave-out
variance estimator can be computed even when the number of treated states is only 30, we
consider settings with 15 treatment cohorts. In all cases except for the default BJS2024
variance estimator and the W2021 estimator, when decreasing the number of treated states
from 40 (Table S3) to 30 (Table S7), the standard error appreciably increases and the
resulting rejection rates remain stable. These simulation results suggest that most difference-
in-difference methods may still apply reliably in empirical settings with smaller numbers of
treated units and, furthermore, highlight an important advantage of the GMM approach to
inference.

32Since their default is to use ̂̄𝜏𝑖𝑡 = ̂̄𝜏𝑔𝑝, as 𝐺 increases, the groups become finer, so ̃𝜀𝑖𝑡 → 0, which
underestimates the variance. This problem is avoided if the imputation method were to use the largest group
available, where ̂̄𝜏𝑖𝑡 = ̂̄𝜏 = ̂𝛽, as GMM does.
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4.2.4 Homogeneous treatment effects

While the possibility of misspecification under the TWFE regression model in situations
with heterogeneous treatment effects motivates the development of alternative methods for
DD estimation, the case of homogeneous treatment effects provides a useful benchmark for
comparing different methods. The various alternative approaches eliminate bias that arises
when estimating average treatment effects in the presence of treatment effect heterogeneity
with staggered treatment timing. A natural question, however, is whether the reduction in
bias comes at the cost of considerably increasing the variance even when the TWFE model is
correctly specified.

We therefore conduct a set of simulations in which treatment effects are homogeneous
across units and time periods. In these simulations, the normal distribution from which
treatment effects are drawn has an average value equal to 5 percent of the average wage, the
maximum value of the range from before.

When treatment effects are homogeneous, we find that the two-stage approach performs
almost as well as a TWFE estimator that imposes a null effect in the pre-treatment periods, as
Table A3 shows. Both methods achieve rejection rates around 5 percent, though TWFE gives
slightly smaller standard errors (an average of 0.102 instead of 0.103).33 Since homogeneous
treatment effects is a special case of our setup, the 2SDD estimand converges to the true
treatment effect 𝛽, which is the same limit as TWFE.34

The other methods, however, are markedly outperformed by TWFE. The BJS2024 default
variance estimator gives much smaller standard errors of about 25 percent smaller than under
TWFE, leading to rejections of the null hypothesis of the true effect about three times as
often as under TWFE. The BJS2024 leave-out variance estimator (standard error 0.14) and
the SA2021 approach (standard error 0.17) reject only 20–40 percent as often as TWFE.
The CS2021, dCDH2024, and W2021 estimators yield similar rejection rates as our approach
and TWFE, but with a relatively large standard errors (around 0.13–0.14). The two-stage
approach, in comparison, provides the most natural way to extend DD estimation to achieve
robustness to treatment effect heterogeneity without much efficiency loss.

33In comparison, the fully dynamic event-study specification using TWFE yields an average standard
error of 0.137.

34Due to the FWL theorem, the estimator ̂𝛽TWFE is numerically identical to the result we would obtain
by first regressing 𝑌𝑖𝑡 and 𝐷𝑖𝑡 on 1(𝑔)′

𝑖𝑡, 1(𝑝)′
𝑖𝑡 for all observations, and then regressing the residual

of 𝑌𝑖𝑡 on the residual of 𝐷𝑖𝑡. In the first stage, 𝜆̂TWFE = 𝜆(1 + 𝑜𝑃(1)) and 𝛼̂TWFE = 𝛼(1 + 𝑜𝑃(1)),
when there are homogeneous treatment effects. The 2SDD approach is similar, except that the first stage
regression uses only the untreated observations, so 𝜆̂2SDD = 𝜆(1 + 𝑜𝑃(1)), 𝛼̂2SDD = 𝛼(1 + 𝑜𝑃(1)). Then,
asymptotically, the residual generated in both procedures will be ̃𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝜆̂′1(𝑔)𝑖𝑡 − 𝛼̂′1(𝑝)𝑖𝑡 =
𝑌𝑖𝑡 − 𝜆′1(𝑔)𝑖𝑡 − 𝛼′1(𝑝)𝑖𝑡 + 𝑜𝑃(1). 2SDD and TWFE hence only differ in the second stage: TWFE regresses

̃𝑌𝑖𝑡 on the residual of 𝐷𝑖𝑡 while 2SDD regresses ̃𝑌𝑖𝑡 on 𝐷𝑖𝑡. Since both estimators converge to the same
limit, the only difference in inference is the variance.
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4.2.5 I.i.d. data

The data that we use for our primary simulation exercises exhibit realistic features such
as higher-order serial correlation. However, we note that the advantages of the two-stage
approach do not rely on this particular feature of the data. We show this by conducting
the much simpler exercise of generating i.i.d. data and comparing the performance of the
different estimators.

All of our conclusions persist in the i.i.d. environment. The baseline environment (Ta-
ble A4) continues to show rejection rates close to 5 percent for the two-stage approach. The
same also holds for the CS2021, dCDH2024, and W2021 estimators, though with standard
errors around 30 percent larger. Also as before, the default BJS2024 variance estimator
leads to over-rejection (rejection rates ranging from 14.4 percent to 17.6 percent), while their
leave-out variance estimator is overly conservative (rejection rates ranging from 0.2 percent
to 1.8 percent), as is the SA2021 estimator. The same patterns hold in the simple case of
homogeneous treatment effects (Table S8). The comparison between Tables S9 to S12 shows,
as before, that a larger number of treatment cohorts leads to smaller standard errors for all
methods but keeps rejection rates stable for all except the default BJS2024 variance estimator,
the dCDH2024 estimator, and the W2021 estimator, for which rejection rates reach as high
as 31.7 percent, 21.2 percent, and 13.2 percent, respectively. Analogously, the comparison
between Tables S13 and S14 shows, as before, that decreasing the number of treated states
leads to notably larger standard errors and correspondingly stable rejection rates for all
methods except the default BJS2024 variance estimator (for which rejection rates increase
from 10.6–12.6 percent to 14.2–19.0 percent as the number of treated states decreases from
40 to 30) and the W2021 estimator (for which rejection rates increase to 8.6–10.6 percent as
the number of treated states decreases to 30).

5 Empirical applications
This section illustrates the performance of our two-stage estimator through a variety of

empirical applications. In particular, we replicate all papers with variation in treatment timing
and a single treatment event listed in Table 1 of SA2021 using the existing heterogeneity-
robust estimators that have been published as well as 2SDD.35 The seven papers that we
reanalyze appear in Table 3, with the number of treatment cohorts ranging from 5 to 21. The

35As the different packages mentioned in Section 4 have different data processing requirements, we provide
a Stata package didio to harmonize the input and output format for all of them, which can be used by other
researchers interested in implementing any subset of methods. Compared to Section 4, the larger datasets
and extensive set of covariates commonly used in empirical applications magnify the differences in runtime.
Some methods can take many hours (SA2021) or even days (CS2021) to run for a single outcome, while the
equivalent TWFE regressions run within minutes.
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applications cover a range of fields including development, education, environmental, finance,
health, political economy, and public economics. This allows us to assess the estimator’s
performance in real-world scenarios that deviate from the stylized setting in the simulations.

Going beyond our Monte Carlo analysis of wage data poses an inherent challenge because
the true effects are no longer known. However, except for the two-way fixed effects (TWFE)
estimator, the different methods tend to produce fairly comparable point estimates with one
another (Figure 1), and all of the methods that we compare have at least some theoretical
justification for their approach to inference, so we do not strictly need to observe a “true”
baseline to learn about their reliability. Our discussion therefore largely focuses on the extent
of agreement in terms of confidence intervals and 𝑡-statistics across the different methods,
assessing which methods tend to yield outliers in repeated applications. While we provide
the full set of results in the online appendix, we emphasize in the main text notable instances
in which conclusions may differ depending on the choice of method.

Several patterns emerge from our analysis of the differences in results across estimators.
We first investigate differences in coverage of confidence intervals, including a discussion of
differences between our method and that of BJS2024. Next, we examine consistency between
the 𝑡-statistics and standard error estimates across methods, highlighting instances where
they disagree most. We then address differences in the pre-event coefficient estimates. Finally,
we discuss how the various estimators compare with TWFE.

5.1 Event-study estimates
For the first event-study analysis in each empirical paper, we provide the corresponding

estimates using the different methods in Figure 1.36 Figure 2 reports the average standard
error for each method applied to each of these papers (also see regression results in Table S15),
which we discuss below. We only consider the default BJS2024 variance estimator because
five out of seven of our empirical settings contain treated cohorts with only one unit.

The Bailey and Goodman-Bacon (2015) analysis of the effects of increasing access to
primary care on mortality rates consists of data on more than 3,000 U.S. counties over a
40-year period, with 15 treatment cohorts and a never-treated group. The large standard
errors using the CS2021 estimator create difficulty in visually discerning the differences
between the other methods in Figure 1a, but Figure 2 and Table S15 make the comparison
clearer. In this case, the SA2021 estimator seems to perform best, yielding the most precise
estimates, followed by 2SDD and then the dCDH2024 estimator. Notably, the BJS2024
estimator in some cases produces a standard error over twice as large as that of 2SDD. This

36The exception is Kuziemko, Meckel and Rossin-Slater (2018), discussed in Appendix F, with estimates
presented in Figure A2. The remaining estimates appear in Figures S1 to S5.
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possibility can arise in finite samples when the covariance between the residual and the
estimated treatment effect for unit 𝑖 at time 𝑡 contributes a sufficiently negative component
to the BJS2024 variance estimator.37

Deryugina (2017) studies the effect of hurricanes on government transfers using data from
over 1,000 U.S. counties over a 44-year period, with 15 treatment cohorts and a never-treated
group. In this case, we find the most precise estimates using the SA2021 and dCDH2024
estimators and the least precise estimates again using the CS2021 estimator. Unlike in the
previous example, for all 11 post-treatment periods and all 15 outcome variables, the BJS2024
estimator results in smaller standard errors compared to 2SDD.

He and Wang (2017) examine the impact of increased bureaucrat quality on the effec-
tiveness of social assistance programs in rural China. The authors present a case study,
including field interviews with local officials and bureaucrats, administrative records, and
online surveys, as well as analyze a panel dataset consisting of a representative sample of
255 villages over a 12-year period, with between 1 and 30 villages being treated in each of
8 treatment cohorts. Only 2SDD and the BJS2024 event-study estimates provide evidence
that supports the case study results by showing evidence of a significant improvement in
the delivery of public services to poor households for all four outcomes. Among the other
methods, the estimates from dCDH2024 support the finding of a significant effect on one
outcome (increase in subsidized population), shown in Figure 1c.

Next, consider the Lafortune, Rothstein and Schanzenbach (2018) analysis of school
finance reforms that largely aim for “higher spending in low-income than in high-income
districts, to compensate for the out-of-school disadvantages that low-income students face.”
Their data consist of 49 states over a 25-year period, with 11 treatment cohorts consisting
of only a single state, 6 treatment cohorts consisting of only two states, and the remaining
treatment cohort consisting of only three states. While most methods agree about the resulting
sustained increase in state transfers per pupil in the lowest-income districts (Figure 1d),
only the BJS2024 variance estimator indicates a significant increase for the highest-income
districts, and it does so for five out of the first nine years following the reform (Figure S5b).
On average, the BJS2024 approach generates standard errors that are half the size of those
produced by the other methods, and their conservative leave-out variance estimator remains

37To be precise, let 𝑣𝑖𝑡 denote the weights on residual 𝜀𝑖𝑡 when constructing the vari-
ance of the coefficient, hats denote the estimators for the various coefficients, and ̂𝜏𝑖𝑡 de-
note the treatment effect for unit 𝑖 at time 𝑡 estimated by the BJS2024 shrinkage method.
The variance estimator of BJS2024 uses 𝜎̂2

BJS = ∑𝑖(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾̂ − 𝐷𝑖𝑡 ̂𝜏𝑖𝑡))2, while

we use 𝜎̂2
2SDD = ∑𝑖(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′

𝑖𝑡𝛾̂ − 𝐷𝑖𝑡 ̂𝜏))2 = 𝜎̂2
BJS + ∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))2 +

∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾̂ − 𝐷𝑖𝑡 ̂𝜏)). Hence, the BJS2024 variance estimator can be

larger when ∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))2 + ∑𝑖(∑𝑡 𝑣𝑖𝑡𝐷𝑖𝑡( ̂𝜏𝑖𝑡 − ̂𝜏))(∑𝑡 𝑣𝑖𝑡(𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾̂ − 𝐷𝑖𝑡 ̂𝜏)) < 0.
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infeasible. Excluding their method, the 2SDD approach results in the smallest standard
errors, followed by the CS2021 approach. We note that the estimates in Figure 2 understate
the advantage of 2SDD because the table conditions on post-treatment periods when all five
methods produce estimates, and the dCDH2024 approach only produces treatment-effect
estimates up to 10 years after the event (11 estimates instead of 20) for all outcomes. In the
periods when dCDH2024 does not produce an estimate, the difference in standard errors
between 2SDD and SA2021 nearly triples, and the difference with CS2021 grows fivefold.

Tewari (2014) studies how mortgage access changed following the removal of geographic
restrictions on banks using a dataset of 39 states over a 32-year period. The data consist
of 20 treatment cohorts, including 13 cohorts each consisting of only a single state and 3
cohorts each consisting of only two states. The SA2021 approach provides extremely precise
estimates and implies a treatment effect that fluctuates between a significant positive and
significant negative effect, while the other methods always generate positive point estimates.
The dCDH2024 and CS2021 approaches show some evidence supporting a significant positive
effect of deregulation on homeownership. However, we note that only 2SDD is able to estimate
the full set of dynamic treatment effects. In particular, the CS2021, SA2021, and dCDH2024
methods do not yield point estimates for the effect of the treatment 9 years after the event.
Additionally, the CS2021 and BJS2024 methods do not yield point estimates for the effect
of the treatment 9–11 years before the event, the dCDH2024 method does not yield point
estimates for the effect of the treatment 6–11 years before the event. The most apparent
feature of Figure 1e is the difference between the 2SDD and BJS2024 approaches in the
periods preceding the event, which we discuss in Section 5.3.

Finally, Ujhelyi (2014) investigates the impact of the state-level adoption of merit-based
recruitment systems for civil service on government expenditure patterns. The data consist
of 48 states over a 25-year period, with 10 treatment cohorts each consisting of only a single
state, 6 treatment cohorts each consisting of only two states, and the 5 remaining treatment
cohorts each consisting of only three states. While the SA2021 and dCDH2024 methods
give the widest confidence intervals on average, we tend to find the narrowest confidence
intervals using the CS2021 method. However, the precision of the CS2021 estimator varies
substantially across periods.38 As Figure 1f shows, for the year of the introduction of the
merit system, their standard error is about three times larger than that of the other methods.
In comparison with CS2021, the 2SDD and BJS2024 approaches give slightly higher, but less
variable, standard errors.

38In addition, the CS2021 method does not provide estimates for any of the periods before the event in
this application.
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5.2 Comparison of performance across methods

5.2.1 Synthesizing results on confidence interval coverage

In the simulations from Section 4, the 2SDD and CS2021 estimators both deliver rejection
rates closest to 5 percent, albeit with a larger standard error for the latter. In Figure 2,
we obtain comparable standard error estimates using the 2SDD and CS2021 estimators in
four settings (He and Wang, 2017; Lafortune, Rothstein and Schanzenbach, 2018; Tewari,
2014; Ujhelyi, 2014). However, we find substantially larger standard errors using the CS2021
estimator in the remaining settings (Bailey and Goodman-Bacon, 2015; Deryugina, 2017),
highlighting the merits of our approach.

We present a concise summary of the points discussed in the preceding section in Table 4,
which primarily focuses on comparing standard errors as a measure of performance. While
these results derive from a limited sample of empirical papers, the 2SDD estimator stands
out as a practical choice for applied researchers.

The SA2021 and dCDH2024 approaches offer notable advantages when the number of
groups is large (Bailey and Goodman-Bacon, 2015; Deryugina, 2017) but are outperformed by
the CS2021 and 2SDD estimators with a relatively large number of small cohorts (Lafortune,
Rothstein and Schanzenbach, 2018; Tewari, 2014; Ujhelyi, 2014). On the other hand, the
CS2021 estimator seems to perform particularly poorly, yielding larger standard errors, when
the number of groups is large. With a medium-sized number of groups (He and Wang, 2017),
all of the methods seem to perform adequately. In five empirical applications (with Bailey and
Goodman-Bacon, 2015 as the exception), the BJS2024 estimator produces smaller standard
errors than 2SDD does.39

5.2.2 Consistency between standard errors

To further examine the level of consistency between the various dynamic treatment effect
estimators, we compare the standard error of each event-study coefficient with the average of
the standard errors across the other four methods for the same coefficient, normalized by
the average standard error for that coefficient. We similarly compute, for each event-study
coefficient, the difference between each method’s 𝑡-statistic and its associated leave-out mean,
normalized by the average of the absolute value of the 𝑡-statistics for that coefficient. Both
sets of normalized differences roughly follow a normal distribution. To highlight discrepancies
between the different estimators, we focus on outliers in these distributions. Outliers in
the right tail of the distribution represent imprecise estimates, while outliers in the left tail
suggest overly precise estimates.

39The differences are significant except in two settings where the sample size of estimates is small
(Table S15).
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Estimates for which a given method’s standard error diverges from its counterparts’
average standard error appear in Figure A3.40 Each row in the figure corresponds to a
single event-study coefficient for which the normalized difference falls in the top or bottom
5 percent of the distribution, along with the normalized differences for all five methods. A
negative normalized difference indicates that a method produces a more precise estimate
than its counterparts, while a positive normalized difference indicates the opposite. This
representation shows several striking patterns. First, we find the greatest number of outliers
for the CS2021 estimator, despite excluding estimates for the Bailey and Goodman-Bacon
(2015) paper. Nearly all of the outliers using this method fall in the imprecise end of the
distribution. 2SDD results in the fewest outliers, mostly in cases where it produces more
conservative standard error estimates than other methods, rather than for producing overly
precise estimates. On the other hand, for the BJS2024, SA2021, and dCDH2024 methods,
most outliers arise because the estimates are unusually precise. For the SA2021 estimator,
as previously noted, this occurs in part due to the overly precise standard errors for the
Tewari (2014) paper. For the dCDH2024 estimator, the issue relates to its high precision in
estimating short-term treatment effects, and relatively low precision in estimating longer-term
treatment effects, which we highlight next.

5.2.3 Standard errors across periods

While the preceding discussions focus on the average standard error estimates across
methods, we now consider how the estimates within the same method vary across time
since treatment. In settings with staggered treatment timing, the presence of later-treated
cohorts increases the effective sample size for estimating shorter-run treatment effects but
not longer-run treatment effects. Thus, all methods exhibit less precision for treatment effect
estimates over longer time horizons. To compare performance along this dimension, for each
paper, we take the sample of all dynamic treatment effect estimates produced by all five
methods and regress the standard errors on indicators for time since treatment, indicators
for each method, and method-specific linear period trends. We report the difference between
each method’s linear period trend and that of 2SDD in Table A5. A positive value for
a given method indicates that it produces relatively less precise estimates of longer-term
treatment effects. In four of the empirical applications (Deryugina, 2017; Lafortune, Rothstein
and Schanzenbach, 2018; Tewari, 2014; Ujhelyi, 2014), the dCDH2024 estimator results in
significantly lower precision for longer-term effects compared to 2SDD. In three of these
cases Deryugina (2017); Lafortune, Rothstein and Schanzenbach (2018); Ujhelyi (2014), the

40We exclude estimates from the Bailey and Goodman-Bacon (2015) paper; otherwise, that paper would
account for all the outliers due to the large standard errors that arise when applying the CS2021 estimator in
this setting.
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SA2021 estimator also leads to significantly larger standard errors for longer-term treatment
effects, and the same holds for the CS2021 estimator in the first two cases. Other than cases
in which other methods yield overly precise standard errors (i.e., Lafortune, Rothstein and
Schanzenbach, 2018 for Borusyak, Jaravel and Spiess, 2024, and Tewari, 2014 for Sun and
Abraham, 2021), we find only two instances in which another method yields relatively greater
precision for long-run treatment effects compared to 2SDD (He and Wang, 2017 and Ujhelyi,
2014 for Callaway and Sant’Anna, 2021) at the 10 percent significance level.

5.2.4 Consistency between 𝑡-statistics

To build on our discussion of the consistency between standard error estimates, we
present a complementary analysis of 𝑡-statistics in Figure 3. The normalized difference
between 𝑡-statistics falls in the top or bottom 5 percent of the distribution most often
for the CS2021 and dCDH2024 estimators and least often for the 2SDD estimator. Using
the top or bottom 1 percent of the distribution as the cutoff, the dCDH2024 and SA2021
estimators result in the most outliers. Analyzing absolute 𝑡-statistics rather than normalized
differences reveals additional insights (Table A6 Panel A). Compared to the 2SDD approach,
the BJS2024, SA2021, and dCDH2024 estimators produce larger absolute 𝑡-statistics on
average (column 1) and a higher share of statistically significant event-study coefficients
(column 2). Moreover, those estimators produce a higher share of estimates with extreme levels
of statistical significance, defined using as thresholds the 90th percentile of the distribution
(approximately 4.3, 𝑝 < 10−5) and the 99th percentile of the distribution (approximately 7.4,
𝑝 < 10−13) of 𝑡-statistics in our sample. The CS2021 estimator leads to significantly smaller
absolute 𝑡-statistics and a significantly smaller share of significant event-study coefficients,
but no significant reduction in extreme levels of statistical significance. These conclusions
continue to hold if we use weights to adjust for differences in the number of periods for each
outcome variable. In fact, when weighting by the inverse of the number of outcomes for
each paper (Table A6 Panel C), the CS2021 estimator produces higher absolute 𝑡-statistics,
more significant event-study coefficients, and a greater proportion of extremely statistically
significant estimates. We also find similar results when restricting the sample to the subset
of estimates that all five estimators agree are statistically significant (Table S16), as well as
when expanding the sample to include estimates that only a subset of methods produce and
adding paper-outcome-period fixed effects (Table S17). Overall, the 2SDD estimator appears
to demonstrate more moderate performance compared to the alternatives, particularly given
the low frequency of normalized 𝑡-statistic differences in the tails (Figure 3); this moderation
places the 2SDD estimator toward the conservative end of the spectrum, evident from its low
rate of extreme 𝑡-statistics (Table A6).
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5.3 Differences in pre-event coefficients
One of the most noticeable features of the event-study graphs is the difference in estimates

in the periods leading up to the event. While the dCDH2024 and SA2021 estimators tend
to produce greater statistical significance in the post-treatment period (Table A6), we do
not find the same pattern in the pre-treatment periods (Table S18), where greater statistical
significance would indicate violations of parallel trends.41 In the case of the CS2021 estimator,
we see significantly fewer significant coefficients in the pre-treatment periods.42 This suggests
that the 2SDD and BJS2024 methods may offer a more conservative approach.

The discrepancy in pre-event coefficient estimates between 2SDD and BJS2024 requires
further discussion. These differences do not stem from a fundamental distinction in the
methodologies. Instead, they reflect different choices about what pre-event coefficients to
estimate, with both methods accommodating either choice. One approach, which BJS2024
advocate, is to estimate the pre-event coefficients in the first stage of estimation, which
uses only untreated observations. This approach results in more outlier standard errors
(Figure A4). Another option is to estimate them in the second stage alongside the dynamic
treatment effects.

The first- and second-stage approaches would both lead to appropriate rejection rates
in our simulations. We note, however, that they estimate distinct quantities. Under the
first-stage approach, pre-event coefficients are estimated in a separate regression from and are
thus not directly comparable to the post-event coefficients. Estimates using both approaches
can still serve a useful role in testing the validity of the parallel trends assumption. When
parallel trends fails, the first- and second-stage pre-treatment coefficients identify different
parameters, although they should both approach zero when parallel trends holds. While our
event-study figures follow the convention of displaying the pre-treatment and post-treatment
period estimates on the same figure, this representation may not be as suitable for the
first-stage approach.

5.4 Comparison with TWFE
To take stock of our results, we address the concluding remarks of the recent survey by

de Chaisemartin and d’Haultfoeuille (2023), which states, “It is also important to stress that
at this stage, it is still unclear whether researchers should systematically abandon TWFE
estimators.” Our analysis provide some clarity on this issue, suggesting that 2SDD should

41These comparisons exclude the period immediately preceding the event because some of the methods
(SA2021; dCDH2024) normalize the effect in this period to zero.

42CS2021 impose a weaker parallel trends assumption than the other methods, though applied researchers
may question whether treatment cohorts could be expected to follow the same trend as the never-treated
group once they are treated if they were on different trends beforehand.
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replace TWFE as the default approach for estimating dynamic treatment effects in settings
with staggered treatment timing.

First, for nearly one-sixth of the dynamic treatment effect estimates in our sample, the
conclusions based on the TWFE estimator—regarding whether an effect is significantly
positive, significantly negative, or insignificant—do not align with those based on any of
the heterogeneity-robust estimators.43 This is not a problem of the heterogeneity-robust
estimators simply being imprecise: In about 40 percent of these instances, the discrepancy
arises because all of the heterogeneity-robust estimates are statistically significant with
the same sign while the TWFE estimate is not significantly different from zero. While
de Chaisemartin and d’Haultfoeuille (2023) conjecture that such issues are less likely to arise
for “simple designs (e.g.: a single binary and staggered treatment),” our findings suggest that
they are not uncommon even in such settings.

Second, while other heterogeneity-robust estimators show pronounced reductions in
precision in environments with treatment effect homogeneity, the 2SDD estimator does not
share this limitation (recall Table A3). Considering the prevalence of discrepancies between
the conclusions of TWFE and heterogeneity-robust estimators highlighted above, defaulting
to an assumption of homogeneity seems unjustified. Using 2SDD with inference via GMM
yields similar results as using TWFE in settings with homogeneous treatment effects while
safeguarding against potential bias due to heterogeneity.

6 Conclusion
When adoption of a treatment is staggered across time, and the average effects of the

treatment vary by group and period, the usual difference-in-differences regression specification
does not identify an easily interpretable measure of the typical effect of the treatment. When
the duration-specific effects are also heterogeneous, neither do the coefficients from the usual
event-study specification. The ultimate source of these identification failures is that outcomes
are not necessarily linear in group, period, and treatment status, as difference-in-differences
and event-study regression specifications assume.

The two-stage approach developed in this paper is motivated by the observation that,
under parallel trends, untreated outcomes are linear in group and period effects. Those
effects are therefore identified from a first-stage regression estimated using the sample of
untreated observations. The average effect of the treatment on the treated is then identified
from a regression of outcomes on treatment status, after removing group and period effects.

43This issue occurs in four out of the six papers for which we can estimate dynamic treatment effects using
all the methods (Bailey and Goodman-Bacon, 2015; Deryugina, 2017; Lafortune, Rothstein and Schanzenbach,
2018; Tewari, 2014), and for nearly half of the outcomes in our data.
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This procedure transparently handles the complexities of staggered treatment adoption with
familiar and straightforward tools, analogous to traditional regression methods. Estimation
and inference are simple and intuitive, and can be easily extended to a variety of different
treatment effect measures, including event studies, group-specific treatment effects, design-
based analyses, continuous treatments, and triple-difference analyses.

Monte Carlo simulations demonstrate that the two-stage estimator correctly identifies
informative average treatment effect measures, outperforming the more complex and com-
putationally demanding alternative methods. Examining these methods across a series of
empirical exercises also supports our two-stage approach to estimation and inference as a
viable and effective option for applied research. More broadly, the close relationship between
our two-stage approach and the traditional TWFE estimator suggests that the two-stage ap-
proach provides the most natural extension of the difference-in-differences method to settings
with heterogeneous treatment effects. This facilitates adaptations to a variety of problems,
and indeed, the general approach proposed in this paper has already been developed by
other authors to address settings where time-varying covariates are affected by the treatment
(Caetano et al., 2022), to interactive fixed effects models (Brown and Butts, 2023), and to
local-projections estimation (Dube et al., 2023).
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Table 1: Estimated 95% confidence intervals for the treatment effect in 2 × 2 simulations

(1) (2) (3)
Spec. Lower Upper Lower Upper Lower Upper

TWFE -1.20211 2.87373 0.37141 1.61166 0.80560 1.19847
GTTY -1.20211 2.87373 0.37141 1.61166 0.80560 1.19847
CS -1.48911 3.16073 0.36838 1.61469 0.80552 1.19855
SA -3.68518 5.35680 0.33505 1.64802 0.80450 1.19956
dCDH (dyn) -2.04625 3.71786 0.35530 1.62777 0.80510 1.19896
dCDH (old) -1.39136 3.06298 0.35969 1.62338 0.80451 1.19956
W -1.94852 3.62014 0.35541 1.62766 0.80510 1.19896

Note: The table reports the estimated 95% confidence intervals for the treatment effect in simulations of a
2 × 2 design. The first pair of columns report the lower and upper bounds of the confidence interval for the
8-data-point example described in Section 3.1. The second pair of columns report the same information
for a tenfold expansion of the dataset, and the third pair of columns report the same information for a
100-fold expansion of the dataset. TWFE refers to the two-way fixed effects estimator and GTTY refers to
the method proposed in the current paper, while CS, SA, dCDH (dyn), dCDH (old), and W refer to the
methods proposed by Callaway and Sant’Anna (2021), Sun and Abraham (2021), de Chaisemartin and
d’Haultfoeuille (2024), de Chaisemartin and d’Haultfoeuille (2020), and Wooldridge (2021), respectively.
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Table 2: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 30 years (at least 1 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.39 0.1014 -0.0006 0.0962 0.07
1 5.59 0.1024 -0.0006 0.1016
2 3.79 0.1030 -0.0005 0.1011
3 4.59 0.1030 0.0006 0.1029
4 6.99 0.1040 0.0074 0.1076

BJS 0 27.94 0.0550 -0.0029 0.1041 0.21
1 25.95 0.0554 0.0077 0.0961
2 29.74 0.0551 -0.0078 0.1041
3 28.54 0.0566 0.0002 0.1028
4 25.35 0.0573 0.0012 0.0984

CS 0 3.79 0.1404 0.0015 0.1327 47.32
1 6.39 0.1398 0.0092 0.1459
2 5.99 0.1407 0.0040 0.1398
3 4.19 0.1412 -0.0046 0.1385
4 4.79 0.1418 0.0049 0.1438

SA 0 1.40 0.1654 -0.0016 0.1370 143.55
1 1.20 0.1663 -0.0036 0.1371
2 1.40 0.1677 -0.0011 0.1350
3 1.60 0.1666 -0.0017 0.1347
4 2.00 0.1693 0.0068 0.1372

dCDH 0 22.95 0.0924 -0.0024 0.1403 3.64
1 20.36 0.0938 -0.0024 0.1399
2 17.96 0.0949 -0.0023 0.1370
3 19.36 0.0938 -0.0011 0.1354
4 18.36 0.0965 0.0060 0.1394

W 0 12.38 0.1155 -0.0017 0.1378 180.58
1 11.18 0.1173 -0.0037 0.1373
2 10.78 0.1187 -0.0012 0.1354
3 10.38 0.1180 -0.0018 0.1349
4 9.98 0.1210 0.0067 0.1376

Note: The table reports results from 501 simulations of 40 treated states over 30 years, with at least one treated
state in each of those years. The data consist of log wages for women between the ages of 25 and 50 from the CPS.
Treatment effects are heterogeneous and drawn from a normal distribution, with an average value drawn uniformly at
random between 2 and 5 percent of the average wage and a standard deviation equal to 10 percent of the average
wage. Rejection rate denotes the percentage of simulations in which the specified parameter estimate significantly
differs from the true value at the 5 percent significance level. S.E. denotes the standard error averaged across all
simulations. Bias denotes the average difference between the point estimate and the true value. RMSE denotes the
root-mean-square error. GTTY refers to the method proposed in the current paper. BJS and BJS (leave out) refer
to the default asymptotic standard errors and leave-out versions from BJS2024. CS, SA, dCDH, and W refer to the
methods proposed by CS2021, SA2021, dCDH2024, and W2021, respectively. Average speed per simulation using the
corresponding Stata package for each method is reported in seconds.
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Table 3: Empirical applications: List of references

Paper Groups Periods Treatment
cohorts

Always
treated

Never
treated

Tewari (2014) 39 states 1976–2007 20 ✓
Ujhelyi (2014) 48 states 1960–1984 21 ✓ ✓
Bailey and
Goodman-Bacon (2015) 3062 counties 1959–1998 9 ✓

Deryugina (2017) 1183 counties 1969–2012 15 ✓
He and Wang (2017) 255 villages 2000–2011 8 ✓ ✓
Kuziemko, Meckel and
Rossin-Slater (2018) 250 counties 1993–2001 5 ✓

Lafortune, Rothstein and
Schanzenbach (2018) 49 states 1990–2014 18 ✓

Note: This table describes the set of empirical papers that we reexamine using publicly available data
and code. We exclude one from the set of main empirical settings because the paper reports treatment
effect estimates at the yearly level while the timing of treatment is at the monthly level (Kuziemko,
Meckel and Rossin-Slater, 2018); see Appendix F for further discussion. The list derives from Table 1 of
Sun and Abraham (2021), which reports eight papers with variation in treatment timing. We exclude
one paper (Gallagher, 2014) due to the presence of multiple treatments.

Table 4: Empirical applications: Comparison of standard errors

BGB2015 D2017 HW2017 LRS2018 T2014 U2014
GTTY (+)

Small s.e.
(+)
Significant

(+)
Small s.e.

(+)
Full set of
estimates

BJS (-)
Large s.e.

(+)
Significant

(-)
Overly
small s.e.

CS (-)
Largest s.e.

(-)
Largest s.e.

(+)
Small s.e.,
significant

(+)
Smallest
s.e.

SA (+)
Smallest
s.e.

(+)
Smallest
s.e.

(-)
Largest s.e.

(-)
Overly
small s.e.

(-)
Largest s.e.

dCDH (+)
Small s.e.

(+)
Small s.e.

(+)
Significant

(-)
Missing
estimates

(+)
Significant

(-)
Large s.e.

Note: This table summarizes the findings discussed in Section 5.1. The full set of event-study estimates
appear in Figure 1 and figures S1 to S5.

42



Figure 1: Empirical applications: Event-study estimates

(a) Bailey and Goodman-Bacon (2015) (b) Deryugina (2017)

(c) He and Wang (2017) (d) Lafortune, Rothstein and Schanzenbach
(2018)

(e) Tewari (2014) (f) Ujhelyi (2014)

Note: This table reports event-study estimates from applying each estimator to the first event-study
specification for each of the main empirical settings in Table 3.
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Figure 2: Empirical applications: Comparison of standard errors

Note: This figure reports the average standard error across all dynamic treatment effect estimates for each
replicated paper and each estimation method. The set of papers corresponds to the main empirical settings
from Table 3.
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Figure 3: Empirical applications: Outlier post-treatment normalized 𝑡-statistic differences

Note: Each panel of this figure corresponds to one of the five estimators we investigate. Each entry for a
given estimator corresponds to an estimate (associated with a particular post-treatment period, outcome
variable, and empirical setting) for which that estimator’s 𝑡-statistic significantly deviates from the average
of the other methods’ 𝑡-statistics. Each entry displays the difference between each method’s 𝑡-statistic and
its associated leave-out mean, normalized by the average of the absolute value of the 𝑡-statistics for that
coefficient. The criterion for determining that an estimator’s 𝑡-statistic significantly deviates from that of
the other estimators is that the normalized difference falls in the top 2.5 percent or bottom 2.5 percent
of the distribution (vertical bars closer to zero as thresholds), excluding estimates from the Bailey and
Goodman-Bacon (2015) paper. The numbers in the bottom left of each panel indicate the number of such
outlier estimates at the 5 percent level and 1 percent level, respectively.
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Online Appendix

A Stata syntax
Suppose that y refers to the outcome, year the year, id the group, and d treatment

status. In the simplest case, the two-stage difference-in-differences estimator can be obtained,
along with valid cluster-robust asymptotic standard errors, via GMM using the single Stata
command:

gmm (eq1: (y - {xb: i.year} - {xg: ibn.id})*(1-d)) ///
(eq2: y - {xb:} - {xg:} - {delta}*d), ///
instruments(eq1: i.year ibn.id) ///
instruments(eq2: d, noconstant) winitial(identity) ///
onestep quickderivatives vce(cluster id)

The did2s package (Butts, 2021) implements the same procedure more efficiently and
scales more easily with individual fixed effects. The analogous implementation is as follows.

did2s y, first_stage(i.year ibn.id) second_stage(d) treatment(d) cluster(id)

Variations on the two-stage estimator (such as the the two-stage event-study estimator)
can be obtained using similar syntax, which we briefly mention below. We present both the
gmm and did2s implementations.

Event Studies. We let wr be an indicator for having 𝑟 periods since treatment. Let d0
denote the untreated observations.

gmm (eq1: (y - {xb: i.year} - {xg: ibn.id})*d0) ///
(eq2: y - {xb:} - {xg:} - {b1}*w1 ... - {bR}*wR) ///
instruments(eq1: i.year ibn.id) ///
instruments(eq2: w1 ... wR, noconstant) winitial(identity) ///
onestep quickderivatives vce(cluster id)

did2s y, first_stage(i.year ibn.id) second_stage(w1... w5) treatment(d)
cluster(id)

The coefficients b1 to bR are then our event study coefficients. 2SDD is a special case of
the above where we only use b1. Design-based analysis does not change the code—it only
changes the interpretation.

Parallel trends failure. If we want to estimate the first stage only using untreated data
within a 𝑅 periods of being treated, then we would define d0 accordingly.
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gen d0 = (year - treatment_year > -R)*(1-d)

For did2s, use the following.

gen md0 = 1 - d0
did2s y, first_stage(i.year ibn.id) second_stage(d) treatment(md0) cluster(id)

Triple differences. With state, time, and subgroup as described in our main text, we
can use the same gmm command as before, just that eq1 is modified to be the following.

(eq1: (y - {xb: i.state##i.time i.state##i.subgroup i.time##i.subgroup})*d0)

Continuous and multivalued treatments. We can allow d to be continuous or
multivalued without changing the syntax. For instance, the original 2SDD implementation
would use the following. With a multivalued 𝑑, we need a constant when approximating the
causal response function for treated units.

gen d0 = d==0
gmm (eq1: (y - {xb: i.year} - {xg: ibn.id})*d0) ///
(eq2: y - {xb:} - {xg:} - {delta}*d), ///
instruments(eq1: i.year ibn.id) ///
instruments(eq2: d) winitial(identity) ///
onestep quickderivatives vce(cluster id)

gen md0 = 1 - d0
did2s y, first_stage(i.year ibn.id) second_stage(contX) treatment(md0)
cluster(id)

Reversible treatment and several treatments. We write our approach for several
treatments as coding for the treatment path with reversible treatments is analogous. Suppose
we have two binary treatments d1 and d2.

gen d0 = d1==0 & d2==0
gen p1 = d1*(1-d2)
gen p2 = d2*(1-d1)
gen p3 = d1*d2
gmm (eq1: (y - {xb: i.year} - {xg: ibn.id})*d0) ///
(eq2: y - {xb:} - {xg:} - {b1}*p1- {b2}*p2 - {b3}*p3), ///
instruments(eq1: i.year ibn.id) ///
instruments(eq2: p1 p2 p3, noconstant) winitial(identity) ///
onestep quickderivatives vce(cluster id)
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did2s y, first_stage(i.year ibn.id) second_stage(p1 p2 p3) treatment(d)
cluster(id)

Test for treatment effect heterogeneity. We can conduct the joint test of whether
interactions of treatment with covariates are significant. Suppose we have a region covariate.

gmm (eq1: (y - {xb: i.year} - {xg: ibn.id})*(1-d)) ///
(eq2: y - {xb:} - {xg:} - {xf: region#d d}) ///
instruments(eq1: i.year ibn.id) ///
instruments(eq2: region#d d, noconstant) winitial(identity) ///
onestep quickderivatives vce(cluster id)
test _b[xf:0b.region#1.d] == _b[xf:2.region#1.d] == 0

did2s y, first_stage(i.year ibn.id) second_stage(region#d d) treatment(d)
cluster(id)
test _b[0b.region#1.d] == _b[2.region#1.d] == 0

B The TWFE estimand
From Equation (1), we can write

𝑌𝑖𝑡 = 𝜆𝑔(𝑖) + 𝛼𝑝(𝑡) +
𝐺

∑
ℎ=1

𝑃
∑
𝑞=ℎ

𝛽ℎ𝑞1(ℎ, 𝑞)𝑖𝑡 + 𝑒𝑖𝑡, (6)

where 1(ℎ, 𝑞)𝑖𝑡 is an indicator for whether observation (𝑖, 𝑡) corresponds to group ℎ and
period 𝑞, and 𝔼[𝑒𝑔𝑝𝑖𝑡 ∣ 𝑔, 𝑝, (1(ℎ, 𝑞)𝑖𝑡)] = 0.

Let 𝐷̃𝑖𝑡 denote the residual from a population regression of 𝐷𝑖𝑡 on group and period
fixed effects. By the Frisch-Waugh-Lovell theorem, the coefficient on 𝐷𝑖𝑡 from a population
regression of 𝑌𝑖𝑡 on 𝐷𝑖𝑡 and group and period effects is

𝛽∗ =
𝔼[𝐷̃𝑖𝑡𝑌𝑖𝑡)]

𝔼[𝐷̃2
𝑖𝑡]

=
𝔼[𝐷̃𝑖𝑡 ∑𝐺

ℎ=1 ∑𝑃
𝑞=ℎ 𝛽ℎ𝑞1(ℎ, 𝑞)𝑖𝑡]

𝔼[𝐷̃2
𝑖𝑡]

=
𝐺

∑
ℎ=1

𝑃
∑
𝑞=ℎ

𝔼[𝐷̃𝑖𝑡1(ℎ, 𝑞)𝑖𝑡]𝛽ℎ𝑞

𝔼[𝐷̃2
𝑖𝑡]

=
𝐺

∑
𝑔=1

𝑃
∑
𝑝=𝑔

𝜔𝑔𝑝𝛽𝑔𝑝.
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where 𝜔𝑔𝑝 is the coefficient from a regression of 1(ℎ, 𝑞)𝑖𝑡 on 𝐷𝑖𝑡 and group and period fixed
effects. The second equality uses the facts that 𝑒𝑖𝑡 is mean-independent of the regressors and
that 𝐷̃𝑖𝑡 is uncorrelated with group and period effects by construction.44

The weight 𝜔𝑔𝑝 that difference in differences places on 𝛽𝑔𝑝 is the coefficient on 𝐷𝑖𝑡 from a
regression of 1(𝑔, 𝑝)𝑖𝑡 on 𝐷𝑖𝑡 and group and period fixed effects. By the Frisch-Waugh-Lovell
theorem, this is equivalent to the slope coefficient from a population regression of 1(𝑔, 𝑝)𝑖𝑡

on the residual from an auxiliary regression of 𝐷𝑖𝑡 on group and period effects. Using the
two-way within or double-demeaned transformation, this residual can be expressed as

𝐷̃𝑖𝑡 = [𝐷𝑖𝑡 − Pr(𝐷𝑖𝑡 = 1 | 𝑔)] − [Pr(𝐷𝑖𝑡 = 1 | 𝑝) − Pr(𝐷𝑖𝑡 = 1)]. (7)

Since 𝔼[𝐷̃2
𝑖𝑡] = 𝔼[𝐷̃𝑖𝑡𝐷𝑖𝑡], 𝜔𝑔𝑝 can also be expressed as

𝜔𝑔𝑝 =
𝔼[1(𝑔, 𝑝)𝑖𝑡𝐷̃𝑖𝑡]

Var[𝐷̃𝑖𝑡]

=
𝔼[𝐷̃𝑖𝑡 ∣ 1(𝑔, 𝑝)𝑖𝑡 = 1] Pr(1(𝑔, 𝑝)𝑔𝑝𝑖𝑡 = 1)

𝔼[𝐷̃𝑖𝑡 ∣ 𝐷𝑖𝑡 = 1] Pr(𝐷𝑖𝑡 = 1)

=
[1 − Pr(𝐷𝑖𝑡 = 1 | 𝑔) − (Pr(𝐷𝑖𝑡 = 1 | 𝑝) − Pr(𝐷𝑖𝑡 = 1))] Pr(𝑔, 𝑝)

∑𝐺
𝑔′=1 ∑𝑃

𝑝′=𝑔′[1 − Pr(𝐷𝑖𝑡 = 1 | 𝑔′) − (Pr(𝐷𝑖𝑡 = 1 | 𝑝′) − Pr(𝐷𝑖𝑡 = 1))] Pr(𝑔′, 𝑝′)
, (8)

where the final equality uses Equation (7).

C Proofs
Proof of Lemma 1.

𝐸 [∑
𝑡

𝐷𝑖𝑡 ̃𝜀𝑖𝑡] = 𝐸 [∑
𝑡

𝐷𝑖𝑡 (𝜀𝑖𝑡 − 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝜀𝑖𝑡)]

= 𝐸 [∑
𝑡

𝐷𝑖𝑡 (𝑌𝑖𝑡 − 𝐷𝑖𝑡𝛽 − 𝑋′
𝑖𝑡𝛾 − 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾))]

= 𝐸 [∑
𝑡

𝐷𝑖𝑡 (𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾 − 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾)) − ∑

𝑡
𝐷𝑖𝑡𝛽]

= 𝐸 [∑
𝑡

𝐷𝑖𝑡 (𝑌𝑖𝑡 (𝐷𝑖𝑡) − 𝑋′
𝑖𝑡𝛾 − 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) − ∑

𝑡
𝐷𝑖𝑡𝛽]

44This, and the related result in Sun and Abraham (2021), can also be established by thinking of the term
∑𝐺

ℎ=1 ∑𝑃
𝑞=ℎ 𝛽ℎ𝑞1(ℎ, 𝑞)𝑖𝑡 in Equation (6) as an omitted variable, and taking its projection onto the included

regressors.
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= 𝐸 [∑
𝑡

𝐷𝑖𝑡𝐸 [(𝑌𝑖𝑡 (𝐷𝑖𝑡) − 𝑋′
𝑖𝑡𝛾 − 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) ∣ {𝐷𝑖𝑡}

𝑇
𝑡=0]] − ∑

𝑡
𝐸 [𝐷𝑖𝑡𝛽]

= 𝐸 [∑
𝑡

𝐷𝑖𝑡𝐸 [(𝑌𝑖𝑡(0) + 𝛽𝑖𝑡𝐷𝑖𝑡 − 𝑋′
𝑖𝑡𝛾 − 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) ∣ {𝐷𝑖𝑡}

𝑇
𝑡=0]] − ∑

𝑡
𝐸 [𝐷𝑖𝑡𝛽]

(𝐴1)= 𝐸 [∑
𝑡

𝐷𝑖𝑡𝐸 [(𝜆𝑖 + 𝛽𝑖𝑡𝐷𝑖𝑡 − 𝜆𝑖) ∣ {𝐷𝑖𝑡}
𝑇
𝑡=0]] − ∑

𝑡
𝐸 [𝐷𝑖𝑡𝛽]

= 𝐸 [∑
𝑡

𝐷𝑖𝑡 (𝛽𝑖𝑡𝐷𝑖𝑡) − ∑
𝑡

𝐷𝑖𝑡𝛽]

= 𝐸 [∑
𝑡

𝛽𝑖𝑡𝐷𝑖𝑡] − ∑
𝑡

𝐸 [𝐷𝑖𝑡]
∑𝑡 𝐸 [𝛽𝑖𝑡𝐷𝑖𝑡]

∑𝑡 𝐸 [𝐷𝑖𝑡]
= 0

𝐸 [∑
𝑡

𝑋̃𝑖𝑡 ̃𝜀𝑖𝑡 ∣ 𝐷𝑖𝑡 = 0]

= 𝐸 [∑
𝑡

𝑋̃𝑖𝑡 (𝜀𝑖𝑡 − 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝜀𝑖𝑡) ∣ 𝐷𝑖𝑡 = 0]

= 𝐸 [
𝑇 0

𝑖

∑
𝑡=1

(𝑋𝑖𝑡 − 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) (𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾 − 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡 − 𝑋′
𝑖𝑡𝛾)) ∣ 𝐷𝑖𝑡 = 0]

= 𝐸 [
𝑇 0

𝑖

∑
𝑡=1

(𝑋𝑖𝑡 (𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾) − ( 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) (𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) ∣ 𝐷𝑖𝑡 = 0]

− 𝐸 [
𝑇 0

𝑖

∑
𝑡=1

𝑋𝑖𝑡 ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) −

𝑇 0
𝑖

∑
𝑡=1

( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) ∣ 𝐷𝑖𝑡 = 0]

= 𝐸 [𝐸 [
𝑇 0

𝑖

∑
𝑡=1

(𝑋𝑖𝑡 (𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾) − ( 1

𝑇 0
𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) (𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) ∣ {𝑋𝑖𝑡}𝑇

𝑡=1, {𝐷𝑖𝑡}𝑇
𝑡=1] ∣ 𝐷𝑖𝑡 = 0]

− 𝐸 [𝐸 [
𝑇 0

𝑖

∑
𝑡=1

𝑋𝑖𝑡 ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) −

𝑇 0
𝑖

∑
𝑡=1

( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝑌𝑖𝑡(0) − 𝑋′
𝑖𝑡𝛾)) ∣ {𝑋𝑖𝑡}𝑇

𝑡=1, {𝐷𝑖𝑡}𝑇
𝑡=1] ∣ 𝐷𝑖𝑡 = 0]

(𝐴1)= 𝐸 [
𝑇 0

𝑖

∑
𝑡=1

(𝑋𝑖𝑡𝜆𝑖 − ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) (𝜆𝑖)) −
𝑇 0

𝑖

∑
𝑡=1

𝑋𝑖𝑡 ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝜆𝑖)) +
𝑇 0

𝑖

∑
𝑡=1

( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

(𝜆𝑖)) ∣ 𝐷𝑖𝑡 = 0]

= 𝐸 [
𝑇 0

𝑖

∑
𝑡=1

(𝑋𝑖𝑡𝜆𝑖 − ( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) 𝜆𝑖) −
𝑇 0

𝑖

∑
𝑡=1

𝑋𝑖𝑡𝜆𝑖 +
𝑇 0

𝑖

∑
𝑡=1

( 1
𝑇 0

𝑖

𝑇 0
𝑖

∑
𝑡=1

𝑋𝑖𝑡) 𝜆𝑖 ∣ 𝐷𝑖𝑡 = 0] = 0

Lemma C.1. Under Assumptions 1-3, ̂𝛾
𝑝
−→ 𝛾 and ̂𝛽

𝑝
−→ 𝛽.

Proof of Lemma C.1. We have
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̃𝑌0𝑖 − 𝑋̃0𝑖𝛾 =
⎡
⎢⎢
⎣

( ̃𝜀𝑖1) (1 − 𝐷𝑖1)
⋮

( ̃𝜀𝑖𝑇) (1 − 𝐷𝑖𝑇)

⎤
⎥⎥
⎦

=∶ ̃𝜀0𝑖.

Hence,

̂𝛾 = 𝛾 + ( 1
𝑁 ∑

𝑖
𝑋̃′

0𝑖𝑋̃0𝑖)
−1

( 1
𝑁 ∑

𝑖
𝑋̃′

0𝑖 ̃𝜀0𝑖) .

The rank conditions in Assumption 2 ensure that the limit of the denominator is invertible.
Lemma 1 implies that the first moment of the numerator is indeed zero due to Assumption 1.
To apply the weak law of large numbers (WLLN) for iid observations and the continuous
mapping theorem (CMT) on the respective objects, we just need bounded second moments. In
particular, with 𝜀𝑖𝑡 = 𝑌𝑖𝑡(0), 𝐸[𝜀4

𝑖𝑡] ≤ 𝐶, 𝐸[𝑋8
𝑘𝑖𝑡] ≤ 𝐶 from Assumption 3 imply 𝐸[ ̃𝜀4

𝑖𝑡] < ∞
and 𝐸∥𝑋̃′

0𝑖𝑋̃0𝑖∥
4

< ∞ by repeated applications of the Cauchy-Schwarz inequality. Hence,

𝐸 ∥𝑋̃′
0𝑖𝑋̃0𝑖∥

2
≤ 𝐶 and 𝐸 ∥𝑋̃′

0𝑖 ̃𝜀0𝑖∥
2

≤ 𝐸 ∥𝑋̃′
0𝑖𝑋̃0𝑖∥ 𝐸[ ̃𝜀2

0𝑖] ≤ 𝐶, so WLLN and CMT imply that
̂𝛾

𝑝
−→ 𝛾.

The OLS estimator is:

̂𝛽 = (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃𝑖𝑡 ̂𝛾))

= (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 (𝛽𝑖𝑡𝐷𝑖𝑡 + ̃𝜀𝑖𝑡 − 𝑋̃′
𝑖𝑡 ( ̂𝛾 − 𝛾)))

= (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡𝛽𝑖𝑡) + (
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡)
−1

(
𝑁

∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝜀𝑖𝑡 − 𝑋̃′
𝑖𝑡 ( ̂𝛾 − 𝛾))) .

Using WLLN, 1
𝑁 ∑𝑁

𝑖=1 ∑𝑇
𝑡=1 𝐷𝑖𝑡

𝑝
−→ 𝐸[∑𝑡 𝐷𝑖𝑡] and 1

𝑁 ∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡𝛽𝑖𝑡
𝑝
−→ 𝐸[∑𝑡 𝐷𝑖𝑡𝛽𝑖𝑡],

so (∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡)
−1

(∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡𝛽𝑖𝑡)
𝑝
−→ 𝛽. Applying a similar argument for the second

term, since both 𝐷𝑖𝑡 ̃𝜀𝑖𝑡 and 𝐷𝑖𝑡𝑋̃𝑖𝑡 have bounded moments (∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡)
−1

(∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡 ̃𝜀𝑖𝑡)
𝑝
−→

0 and (∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡)
−1

(∑𝑁
𝑖=1 ∑𝑇

𝑡=1 𝐷𝑖𝑡 (𝑋̃′
𝑖𝑡 ( ̂𝛾 − 𝛾))) = 𝑂𝑃(1)𝑜𝑃(1) = 𝑜𝑃(1). Hence,

̂𝛽
𝑝
−→ 𝛽.

Proof of Theorem 1. If the conditions of Theorem 6.1 of Newey and McFadden (1994) are
satisfied, the result automatically follows. Hence, the proof verifies its conditions. Due to
Lemma C.1, we already have ̂𝛾

𝑝
−→ 𝛾 and ̂𝛽

𝑝
−→ 𝛽, fulfilling the probability limit requirement.

Next, we want to show the following:
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1. 𝛽 is in the interior of the parameter space.
2. 𝑔(𝑍; 𝛾, 𝛽) is continuously differentiable around 𝛽.
3. 𝔼[𝑔(𝑍; 𝛾, 𝛽)] = 0 and 𝔼[‖𝑔(𝑍; 𝛾, 𝛽)‖2] is finite.
4. 𝔼[sup(𝛾,𝛽) ‖∇𝑔(𝑍; 𝛾, 𝛽)‖] < ∞, where ∇𝑔(𝑍; 𝛾, 𝛽) is the derivative of 𝑔 with respect

to (𝛾′, 𝛽).
5. 𝔼[∇𝑔(𝑍; 𝛾, 𝛽)]′𝔼[∇𝑔(𝑍; 𝛾, 𝛽)] is nonsingular.
6. 1

𝑁 ∑𝑁
𝑖=1 𝑔 (𝑍𝑖; ̂𝛾, 𝛽)

𝑝
−→ 0 and 1

𝑁 ∑𝑁
𝑖=1 ∑𝑇

𝑡=1 (𝑋̃′
0𝑖 ( ̃𝑌0𝑖 − 𝑋̃0𝑖𝛾))

𝑝
−→ 0.

Condition 1 is straightforward as long as no further constraints are imposed on 𝛽, which is true
in the setting. For condition 2, observe that ∇𝛽𝑔(𝑍; 𝛾, 𝛽) = − ∑𝑡 𝐷𝑡, which is continuously
differentiable. For condition 3, 𝔼[𝑔(𝑍; 𝛾, 𝛽)] = 0 is immediate by assumption, and we have

𝔼[‖𝑔(𝑍; 𝛾, 𝛽)‖2] = 𝔼[(
𝑇

∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡𝛾 − 𝐷𝑖𝑡𝛽))

2

]

= 𝔼[(
𝑇

∑
𝑡=1

[ ̃𝜀𝑖𝑡 + (𝛽𝑖𝑡 − 𝛽) 𝐷𝑖𝑡] 𝐷𝑖𝑡)
2

] < ∞

due to those objects finite moments and 𝑇 being finite. Condition 4 is immediate from finite
moments, and condition 5 is immediate from the rank condition. For condition 6,

1
𝑁

𝑁
∑
𝑖=1

𝑔(𝑍𝑖; ̂𝛾, 𝛽) = 1
𝑁

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃𝑖𝑡 ̂𝛾 − 𝐷𝑖𝑡𝛽)

= 1
𝑁

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

[𝛽𝑖𝑡𝐷𝑖𝑡 + ̃𝜀𝑖𝑡 − 𝑋̃′
𝑖𝑡 ( ̂𝛾 − 𝛾) − 𝐷𝑖𝑡𝛽] 𝐷𝑖𝑡

= 1
𝑁

𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

[ ̃𝜀𝑖𝑡 − 𝑋̃′
𝑖𝑡 ( ̂𝛾 − 𝛾) + (𝛽𝑖𝑡 − 𝛽) 𝐷𝑖𝑡] 𝐷𝑖𝑡 = 𝑜𝑃(1)

due to previous arguments. Finally, the second part of condition 6 is immediate from the
WLLN. Hence, we obtain the normality result and it remains to show that the variance
estimator is consistent.

By CMT, we can use 𝛾, 𝛽 in place of ̂𝛾, ̂𝛽 in the variance since moments of random
variables are bounded

̂𝑉 = 𝐺−1
𝛽 ( 1

𝑁 ∑
𝑖

𝐸 [(𝑔𝑖 + 𝐺𝛾𝜓𝑖) (𝑔𝑖 + 𝐺𝛾𝜓𝑖)
′]) 𝐺−1

𝛽 + 𝑜𝑃(1)

It suffices to consider the meat, since ̂𝐺𝛽 converges to 𝐺𝛽:

𝑔𝑖 + 𝐺𝛾𝜓𝑖 = ∑
𝑡

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡𝛾 − 𝛽𝐷𝑖𝑡) + 𝐺𝛾𝐸 [𝑋̃′

0𝑖𝑋̃0𝑖]
−1

𝑋̃′
0𝑖 ( ̃𝑌0𝑖 − 𝑋̃0𝑖𝛾) .
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Since observations are independent across 𝑖 applying WLLN results in the consistency
result. To apply the WLLN, the sufficient conditions are 𝐸∥𝑋̃′

0𝑖 ̃𝜀0𝑖∥
4

< ∞, 𝐸 ̃𝜀4
𝑖𝑡 < ∞,

𝐸(𝛽𝑖𝑡 − 𝛽)4 < ∞, and 𝐸∥𝑋̃′
0𝑖𝑋̃0𝑖∥

4
< ∞. Note that 𝐸 ̃𝜀4

𝑖𝑡 < ∞, and 𝐸(𝛽𝑖𝑡 − 𝛽)4 < ∞ result
from how ̃𝑌𝑖𝑡 is also squared. Since 𝐸[𝛽4

𝑖𝑡] ≤ 𝐶 implies 𝐸(𝛽𝑖𝑡 − 𝛽)4 < ∞, 𝐸[𝑋8
𝑘𝑖𝑡] ≤ 𝐶 implies

𝐸∥𝑋̃′
0𝑖𝑋̃0𝑖∥

4
< ∞, and 𝐸∥𝑋̃′

0𝑖 ̃𝜀0𝑖∥
4

≤ 𝐸∥𝑋̃′
0𝑖𝑋̃0𝑖∥

4
𝐸[ ̃𝜀4

𝑖𝑡] by Cauchy-Schwarz inequality, the
sufficient conditions are satisfied and the variance estimator is consistent.

D Comparison with TWFE in 2 × 2 case
We have two treatment groups indexed by 𝐵 ∈ {0, 1} for the treated and untreated group

respectively, and two time periods indexed 𝑇 ∈ {0, 1} for pre and post periods respectively.
The treatment variable is 𝐷𝑖𝑡 = 𝐵𝑖𝑡𝑇𝑖𝑡, so a unit needs to be both in the treatment group
𝐵𝑖𝑡 = 1 and in the post period to be treated. Then, we can write the regression equation as:

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝐵𝑖𝑡 + 𝛽2𝑇𝑖𝑡 + 𝛽3𝐷𝑖𝑡 + 𝜀𝑖𝑡

We focus on the estimand and hence use the actual residual instead of the estimated
residual i.e., 𝜀𝑖𝑡 instead of ̂𝜀𝑖𝑡. Let 𝐷̃ denote the treatment 𝐷 with group and time fixed
effects (B,T) partialled out. The estimands are:

𝑉𝑇 𝑊𝐹𝐸 = 𝐸 [∑
𝑡

𝐷̃2
𝑖𝑡]

−1

𝐸 [(∑
𝑡

𝐷̃𝑖𝑡𝜀𝑖𝑡)
2

] 𝐸 [∑
𝑡

𝐷̃2
𝑖𝑡]

−1

𝑉2𝑆𝐷𝐷 = 𝐸 [∑
𝑡

𝐷𝑖𝑡]
−1

𝐸 [(𝑔𝑖 + 𝐺𝛾𝜓𝑖)
2] 𝐸 [∑

𝑡
𝐷𝑖𝑡]

−1

Lemma D.1. 𝑉𝑇 𝑊𝐹𝐸 = 𝑉2𝑆𝐷𝐷.

Proof. We characterize the estimands entirely in terms of primitive parameters, where 𝑏 in-
dexes the treatment group and 𝑡 indexes time. Define 𝜇 ∶= 𝐸 [𝐵𝑖𝑡] and 𝑣𝑏𝑡 ∶= 𝑉 𝑎𝑟 (𝑌𝑖𝑡 ∣ 𝑏, 𝑡) =
𝐸 [𝜀2

𝑖𝑡 ∣ 𝑏, 𝑡]. We show that: 𝑉𝑇 𝑊𝐹𝐸 = 1
𝜇 (𝑣11 + 𝑣10) + 1

(1−𝜇) (𝑣01 + 𝑣00) = 𝑉2𝑆𝐷𝐷.
We start with 𝑉𝑇 𝑊𝐹𝐸. To construct 𝐷̃𝑖𝑡, we decompose 𝐷𝑖𝑡 as 𝐷𝑖𝑡 = 𝛼0 +𝛼1𝐵𝑖𝑡 +𝛼2𝑇𝑖𝑡 +

𝑒𝑖𝑡, and express 𝛼0, 𝛼1, 𝛼2 in terms of primitives of the model by using moment conditions
𝐸 [𝑒𝑖𝑡] = 𝐸 [𝐵𝑖𝑡𝑒𝑖𝑡] = 𝐸 [𝑇𝑖𝑡𝑒𝑖𝑡] = 0. We can use the results that 𝐸 [𝐷𝑖𝑡] = 𝐸 [𝐷2

𝑖𝑡] = 1
2𝜇,

𝐸 [𝐵𝑖𝑡] = 𝜇, 𝐸 [𝑇𝑖𝑡] = 1/2 and 𝐸 [𝐵𝑖𝑡𝐷𝑖𝑡] = 𝐸 [𝑇𝑖𝑡𝐷𝑖𝑡] = 1
2𝜇. The moment conditions yield:

𝐸 [𝐷𝑖𝑡] = 𝛼0 + 𝛼1𝜇 + 𝛼2
1
2 = 1

2𝜇
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𝐸 [𝐵𝑖𝑡𝑒𝑖𝑡] = 𝐸 [𝐵𝑖𝑡 (𝐷𝑖𝑡 − 𝛼0 − 𝛼1𝐵𝑖𝑡 − 𝛼2𝑇𝑖𝑡)]

= 1
2𝜇 − 𝛼0𝜇 − 𝛼1𝜇 − 𝛼2

1
2𝜇 = 0

𝐸 [𝑇𝑖𝑡𝑒𝑖𝑡] = 𝐸 [𝑇𝑖𝑡 (𝐷𝑖𝑡 − 𝛼0 − 𝛼1𝐵𝑖𝑡 − 𝛼2𝑇𝑖𝑡)]

= 1
2𝜇 − 𝛼0

1
2 − 𝛼1

1
2𝜇 − 𝛼2

1
2 = 0

Solving for the 𝛼’s, we obtain 𝛼0 = −1
2𝜇, 𝛼1 = 1

2 and 𝛼2 = 𝜇, so

𝐷̃𝑖𝑡 = 𝐷𝑖𝑡 + 1
2𝜇 − 1

2𝐵𝑖𝑡 − 𝜇𝑇𝑖𝑡.

By splitting the denominator into a component with 𝑡 = 0 and another with 𝑡 = 1,

𝐸 [𝐷̃2
𝑖0] = 𝐸 [1

2𝜇 (𝐷𝑖0 + 1
2𝜇 − 1

2𝐵𝑖0 − 𝜇𝑇𝑖0)] − 𝐸 [1
2𝐵𝑖0 (𝐷𝑖0 + 1

2𝜇 − 1
2𝐵𝑖0 − 𝜇𝑇𝑖0)]

= 1
4𝜇 (1 − 𝜇)

and 𝐸 [𝐷̃2
𝑖1] = 1

4𝜇 (1 − 𝜇), so 𝐸 [∑𝑡 𝐷̃2
𝑖𝑡] = 1

2𝜇 (1 − 𝜇). Proceeding with the numerator,
we can expand the expression:

𝐸 [(∑
𝑡

𝐷̃𝑖𝑡𝜀𝑖𝑡)
2

] = 𝐸 [𝐷̃2
𝑖0𝜀2

𝑖0 + 2𝐷̃𝑖0𝜀𝑖0𝐷̃𝑖1𝜀𝑖1 + 𝐷̃2
𝑖1𝜀2

𝑖1] .

We have: 𝐸 [𝐷̃𝑖0𝜀𝑖0𝐷̃𝑖1𝜀𝑖1] = 0 using the assumption that 𝐸 [𝜀𝑖𝑡 ∣ 𝑔, 𝑡] = 0. Using the
moment results that 𝐸 [𝐷𝑖0𝜀2

𝑖0] = 0, 𝐸 [𝐵𝑖0𝜀2
𝑖0] = 𝜇𝑣10, 𝐸 [𝑇𝑖0𝜀2

𝑖0] = 0, 𝐸 [𝜀2
𝑖0] = 𝜇𝑣10 +

(1 − 𝜇) 𝑣00, 𝐸 [𝐷𝑖1𝜀2
𝑖1] = 𝜇𝑣11, 𝐸 [𝐵𝑖1𝜀2

𝑖1] = 𝜇𝑣11, 𝐸 [𝑇𝑖1𝜀2
𝑖1] = 𝜇𝑣11 + (1 − 𝜇) 𝑣01, and

𝐸 [𝜀2
𝑖1] = 𝜇𝑣11 + (1 − 𝜇) 𝑣01, we obtain

𝐸 [𝐷̃2
𝑖0𝜀2

𝑖0] = 𝐸 [(𝐷𝑖0 + 1
2𝜇 − 1

2𝐵𝑖0 − 𝜇𝑇𝑖0)
2

𝜀2
𝑖0]

= 1
4𝜇 (1 − 𝜇) (𝜇𝑣00 + (1 − 𝜇) 𝑣10)

and

𝐸 [𝐷̃2
𝑖1𝜀2

𝑖1] = 𝐸 [𝐷𝑖1 (𝐷𝑖1 + 1
2𝜇 − 1

2𝐵𝑖1 − 𝜇𝑇𝑖1) 𝜀2
𝑖1] + 1

2𝜇𝐸 [(𝐷𝑖1 + 1
2𝜇 − 1

2𝐵𝑖1 − 𝜇𝑇𝑖1) 𝜀2
𝑖1]

− 1
2𝐸 [𝐵𝑖1 (𝐷𝑖1 + 1

2𝜇 − 1
2𝐵𝑖1 − 𝜇𝑇𝑖1) 𝜀2

𝑖1] − 𝜇𝐸 [𝑇𝑖1 (𝐷𝑖1 + 1
2𝜇 − 1

2𝐵𝑖1 − 𝜇𝑇𝑖1) 𝜀2
𝑖1]
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= 1
4𝜇 (1 − 𝜇) (𝜇𝑣01 + (1 − 𝜇) 𝑣11) .

Substituting these expressions back into the variance estimand yields the result.
Turning to the 2SDD variance, its components are:

𝐺𝛾 = −𝐸 [∑
𝑡

𝐷𝑖𝑡𝑋̃𝑖𝑡]

𝜓𝑖 = 𝐸 [𝑋̃′
0𝑖𝑋̃0𝑖]

−1
(𝑋̃′

0𝑖 ( ̃𝑌0𝑖 − 𝑋̃0𝑖𝛾))

Here, 𝑋 = 𝑇, ̃𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌𝑖0 and 𝑋̃𝑖𝑡 = 𝑋𝑖𝑡 − 𝑋𝑖0. We also have

𝑌𝑖1 − 𝑌𝑖0 = 𝛽0 + 𝛽1𝐵𝑖1 + 𝛽2𝑇𝑖1 + 𝛽3𝐷𝑖1 + 𝜀𝑖1 − (𝛽0 + 𝛽1𝐵𝑖0 + 𝜀𝑖0)

= 𝛽2 + 𝛽3𝐷𝑖1 + 𝜀𝑖1 − 𝜀𝑖0.

In this context, 𝑋̃0𝑖 only contains 𝑇 because the constant and group FE have already
been partialled out, so

𝑋̃0𝑖 = [
(𝑇𝑖0 − 𝑇𝑖0 (1 − 𝐷𝑖0)) (1 − 𝐷𝑖0)
(𝑇𝑖1 − 𝑇𝑖0 (1 − 𝐷𝑖0)) (1 − 𝐷𝑖1)

] = [
0

1 − 𝐷𝑖1
]

̃𝑌0𝑖 = [
(𝑌𝑖0 − 𝑌𝑖0) (1 − 𝐷𝑖0)
(𝑌𝑖1 − 𝑌𝑖0) (1 − 𝐷𝑖1)

] = [
0

(𝛽2 + 𝜀𝑖1 − 𝜀𝑖0) (1 − 𝐷𝑖1)
] .

With these expressions, 𝛾 = 𝐸 [𝑋̃′
0𝑖𝑋̃0𝑖]

−1
𝐸 [𝑋̃′

0𝑖
̃𝑌0𝑖] = 𝛽2, so

𝑋̃′
0𝑖 ( ̃𝑌0𝑖 − 𝑋̃0𝑖𝛾) = (1 − 𝐷𝑖1) ((𝛽2 + 𝜀𝑖1 − 𝜀𝑖0) (1 − 𝐷𝑖1) − (1 − 𝐷𝑖1) 𝛽2)

= (𝜀𝑖1 − 𝜀𝑖0) (1 − 𝐷𝑖1)

Hence,

𝜓𝑖 = 𝐸 [1 − 𝐷𝑖1]−1 ((𝜀𝑖1 − 𝜀𝑖0) (1 − 𝐷𝑖1))

= 1
1 − 𝜇 ((𝜀𝑖1 − 𝜀𝑖0) (1 − 𝐷𝑖1)) , and
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𝐸 [∑
𝑡

𝐷𝑖𝑡𝑋̃𝑖𝑡] = 𝐸 [𝐷𝑖1𝑋̃𝑖1] = 𝜇,

so 𝐺𝛾 = −𝐸 [∑𝑡 𝐷𝑖𝑡𝑋̃𝑖𝑡] = −𝜇. We finally have:

𝑔𝑖 = ∑
𝑡

𝐷𝑖𝑡 ( ̃𝑌𝑖𝑡 − 𝑋̃′
𝑖𝑡𝛾 − 𝛽3𝐷𝑖𝑡)

= 𝐷𝑖1 ( ̃𝑌𝑖1 − 𝑋̃′
𝑖1𝛽2 − 𝐷𝑖1𝛽3) = 𝐷𝑖1 (𝜀𝑖1 − 𝜀𝑖0)

and

𝐸 [(𝑔𝑖 + 𝐺𝛾𝜓𝑖)
2] = 𝐸 [(𝐷𝑖1 (𝜀𝑖1 − 𝜀𝑖0) − 𝜇 1

1 − 𝜇 ((𝜀𝑖1 − 𝜀𝑖0) (1 − 𝐷𝑖1)))
2
]

= 𝜇 (𝑣11 + 𝑣10) + 𝜇2

(1 − 𝜇) (𝑣01 + 𝑣00)

Substituting these components into the variance expression yields the result.

E Simulations: Random design vs. fixed design
We discuss how our simulation environment compares to that of Borusyak, Jaravel and

Spiess (2024), who propose a numerically equivalent estimator with a different asymptotic
theory. They propose an asymptotically conservative approach to inference and document that
it performs well in finite samples using a series of Monte Carlo simulations. As our discussion
of overfitting in Section 4.2.2 highlights, we observe substantial rates of over-rejection using
their variance estimator, particularly when treatment timing varies over longer periods.

Furthermore, their simulation environment, and their theory more generally, interprets
treatment assignment and event times as non-stochastic. The design—treated states, treat-
ment effects, and treatment timing—is therefore held fixed, and the source of randomness
across simulations is the randomly drawn error term for generating outcomes. With the error
term in outcomes as the sole source of randomness, the variance of that error term plays a
crucial role.

We explore the conditions under which rejection rates can reach 100% in such a setup.
A simple example with two periods and two states suffices to illustrate the problems that
can arise for a small error term variance. Consider a placebo law, for which the true effect
is zero, that applies to a random sample of treated states. In the absence of any true
treatment effect, we would expect changes in outcomes for both treated and control states to
be similar, and any observed discrepancy between the changes for the two groups would be
solely attributed to the random error term. However, a finite difference in outcomes arises
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because the assignment of states to treatment or control groups is fixed after being drawn
only once. This finite difference is not fully absorbed by state and year fixed effects, leading
to misspecification. As a result, when the variance of the error term is sufficiently small
compared to that finite difference, we observe consistent rejection of the null hypothesis.
Assuming a larger error variance, using a large sample of treated states, or using random
designs mitigates this issue (and we verify that our conclusions regarding the performance
of the various estimators continue to hold under fixed designs with large error variance).
Our discussion highlights the conceptual appeal of adopting a “random design” approach, in
which stochasticity is incorporated into the simulation by randomly drawing treated states,
treatment effects, and treatment timing in each iteration. Under random designs, even with
a small error variance, rejection rates remain accurate and avoid spurious over-rejection.

F Empirical applications

F.1 Selection of papers and outcomes
Below is the list of papers included in our empirical analysis, which appear in Table 1

of Sun and Abraham (2021), and the outcomes they study. We omit outcomes that are
unavailable in the replication data, or are too slow to run (more than 5 days of runtime) for
at least one of the methods.

• Bailey and Goodman-Bacon (2015)
– Age-adjusted mortality rate (Figure 5)
– Infant mortality rate (Figure 7.A)
– Age-adjusted mortality rate: children (1–14) (Figure 7.B)
– Age-adjusted mortality rate: adults (15–49) (Figure 7.C)
– Age-adjusted mortality rate: older adults (50+) (Figure 7.D)

• Deryugina (2017)
– Effect of a hurricane on earnings and transfers (Figure 2)
– Effect of a hurricane on demographics (Figure 3)
– Effect of a hurricane on transfer components (Figures 4 and 5)

• He and Wang (2017)
– Subsidized population (Figure 2.A)
– Poor-quality housing (Figure 2.B)
– Registered poor households (Figure 2.C)
– People with disabilities (Figure 2.D)

• Kuziemko, Meckel and Rossin-Slater (2018)
– Mortality rates of children born to US-born Black mothers (Figure 2.A)
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– Mortality rates of children born to US-born Hispanic mothers (Figure 2.B)
• Lafortune, Rothstein and Schanzenbach (2018)

– Mean state revenues in lowest income districts (Figure 3)
– Mean state revenues in highest income districts (Figure 4)
– Progressivity of state revenues (Figure 5)
– Mean total revenues per pupil (Figure A3(a))
– Mean total revenues per pupil in the lowest income quintile of districts (Figure

A3(b))
– Mean total revenues per pupil in the highest income quintile of districts (Figure

A3(c))
– Difference in mean total revenues per pupil between top and bottom quintile

districts (Figure A3(d))
• Tewari (2014)

– Home ownership (Figure 1)
• Ujhelyi (2014)

– Share of intergovernmental expenditures in total expenditures (Figure 1)

F.2 Replication of Kuziemko, Meckel and Rossin-Slater (2018)
The Kuziemko, Meckel and Rossin-Slater (2018) paper studies the effect of the transition

from Medicaid’s public fee-for-service (FFS) plan to private Medicaid Managed Care (MMC)
plans on infant mortality rates for US-born Black and Hispanic mothers in Texas. Their
analysis uses 250 counties in Texas, with 9 years of data from 1993 to 2001. Of the 250
counties, 3 are treated in 1995, 36 are treated in 1996, 1 is treated in 1997, 8 are treated in
1998, and 9 are treated in 1999.

The dataset contains the month and year in which each treated county switched from FFS
to MMC. However, the authors estimate the effect of the transition on infant mortality rates
using a two-way fixed effects specification with year-since-treatment event dummies, where
years are defined as 12-month periods relative to the event time. We attempt to replicate the
analysis of Kuziemko, Meckel and Rossin-Slater (2018) using this kind of specification with
the heterogeneity-robust estimators.

The 2SDD approach is easily implemented by using month fixed effects in the first
stage and year-since-treatment event dummies in the second stage. To obtain estimates
using csdid (Rios-Avila, Sant’Anna and Callaway, 2023), eventstudyinteract (Sun, 2021),
did_multiplegt_dyn (de Chaisemartin et al., 2023), and jwdid (Rios-Avila, Nagengast and
Yotov, 2022), we must define the cohort as the treatment year (not the exact month) to obtain
dynamic effects by year since treatment. We present these results in Figure A2. However, we
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note that the conceptually correct way to do this exercise using those estimators would be to
estimate separate effects for each month and then aggregate them into 12-month bins. This
process would be somewhat cumbersome, and if undertaken, would require either assuming
the distribution of units in each bin is known, or using a bootstrap, or devising a potentially
complicated analytical asymptotic adjustment to account for that uncertainty.

This highlights the flexibility and simplicity advantages of 2SDD. With 2SDD, implement-
ing the conceptually correct approach is straightforward: Simply include month fixed effects
in the first stage and years-since-treatment indicators in the second stage.45

G Extension to stacked differences in differences
In the stacked approach, a new dataset is created for each treated group, containing

observations on that group 𝑅 periods before, and ̄𝑃 periods after, the treatment is adopted, as
well as on units that are not yet treated during these periods. These group-specific datasets
are stacked, and outcomes are regressed on treatment status and dataset-specific group and
period fixed effects:

𝑌𝑐𝑖𝑡 = 𝜆𝑐𝑔(𝑖) + 𝛼𝑐𝑝(𝑡) + 𝛽𝐷𝑐𝑖𝑡 + 𝜀𝑖𝑡,

where 𝑐𝑖𝑡 indexes the (𝑖, 𝑡)th observation of dataset 𝑐.
Let 𝐷𝑐𝑖𝑡 be an indicator for whether 𝑖 is treated at time 𝑡 in dataset 𝑐, and 𝐷𝑟𝑐𝑖𝑡 be an

indicator for whether 𝑖 has been treated for 𝑟 ∈ {1, … , ̄𝑃 } periods as of time 𝑡 in dataset
𝑐. Let 𝜏 = ̄𝑃/( ̄𝑃 + 𝑅 + 1) denote the fraction of periods during which treated units in any
group-specific dataset are treated, 𝜋𝑐 denote the fraction of units in dataset 𝑐 that belong to
the treatment group, and 𝜌𝑐 denote size of dataset 𝑐 relative to the stacked dataset.

Extending the logic of the previous section, the weight 𝜔𝑟𝑔 that stacked differences in
differences places on the 𝑟-period average treatment effect 𝛽𝑟𝑔 for group 𝑔 is given by the
slope coefficient from a population regression of 𝐷𝑟𝑐𝑖𝑡 on the residual 𝐷̃𝑐𝑖𝑡 from a regression
of 𝐷𝑐𝑖𝑡 on dataset×period and dataset×group effects.46 This residual is

𝐷̃𝑐𝑖𝑡 = 𝐷𝑐𝑖𝑡 − 𝑃(𝐷𝑐𝑖𝑡 = 1|𝑔, 𝑐) − [𝑃 (𝐷𝑐𝑖𝑡 = 1|𝑝, 𝑐) − 𝑃(𝐷𝑐𝑖𝑡 = 1|𝑐)],

where statements conditional on 𝑐 are true in the population corresponding to dataset 𝑐.

45However, we were unable to obtain estimates using the imputation approach (Borusyak, 2021) when
adding month fixed effects in the first stage.

46This is because the correct model can be expressed as

𝑌𝑐𝑖𝑡 = 𝜆𝑐𝑔(𝑖) + 𝛼𝑐𝑝(𝑡) +
𝐶

∑
𝑐=1

𝑅̄
∑
𝑟=1

𝛽𝑟𝑐𝐷𝑐𝑟𝑖𝑡 + 𝑒𝑐𝑖𝑡,

where 𝛽𝑟𝑐 = 𝛽𝑟𝑔 when 𝐷𝑐𝑟𝑖𝑡 = 1.
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Using this expression and adapting (8) to the stacked setting,

𝜔𝑟𝑔 =
[1 − 𝜏 − (𝜋𝑐 − 𝜏𝜋𝑐)]𝑃 (𝐷𝑟𝑐𝑖𝑡 = 1)

∑𝐺
𝑐=1 ∑𝑃̄

𝑝=1[1 − 𝜏 − (𝜋𝑐 − 𝜏𝜋𝑐)]𝑃 (𝐷𝑟𝑐𝑖𝑡 = 1)

=
(1 − 𝜏)(1 − 𝜋𝑐)𝜏𝜋𝑐𝜌𝑐

∑𝐺
𝑐=1 ∑𝑃̄

𝑝=1(1 − 𝜏)(1 − 𝜋𝑐)𝜏𝜋𝑐𝜌𝑐

=
(1 − 𝜋𝑐)𝜋𝑐𝜌𝑐

̄𝑃 ∑𝐺
𝑐=1(1 − 𝜋𝑐)𝜋𝑐𝜌𝑐

.

H Supplementary material

H.1 Serial correlation
We consider rewriting an event-studies model in the following manner. Instead of

𝑌𝑖𝑡 = 𝜆𝑔(𝑖) + 𝛼𝑡 + ∑𝑅
𝑟=1 𝜂𝑟𝑊𝑟𝑖𝑡 + 𝑢𝑖𝑡, we write:

𝑌𝑖𝑡 = 𝜆𝑔(𝑖) + 𝛼𝑡 +
𝑡∗(𝑖)+𝑅

∑
𝑡=𝑡∗(𝑖)+1

𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 + 𝑢𝑖𝑡

where 𝐷𝑖𝑡 is an indicator for treatment. Since treatments are irreversible, the effect after
𝑟 periods of treatment is 𝜂𝑟 = ∑𝑟

𝑗=1 𝛽𝑗, so the 𝛽𝑗’s can be interpreted as the effect of an
additional period of treatment after 𝑗 − 1 periods of treatment. Where required, we set
𝛽0 = 0 to avoid ambiguity. We assume 𝜖𝑖𝑡 = 𝜌𝜖𝑖𝑡−1 + 𝜈𝑖𝑡 and 𝜈𝑖𝑡 is white noise.

To recover the 𝛽𝑗, we can run the following first-stage regression for untreated units:

𝑌𝑖𝑡 = 𝜌𝑌𝑖𝑡−1 + 𝜆𝑔(𝑖) + 𝛼𝑡 + 𝜖1
𝑖𝑡,

and the following second-stage regression:

𝑌𝑖𝑡 − ̂𝜌𝑌𝑖𝑡−1 − (1 − ̂𝜌)𝜆𝑔(𝑖) − 𝛼𝑡 + ̂𝜌 ̂𝛼𝑡−1 =
𝑡∗(𝑖)+𝑅

∑
𝑡=𝑡∗(𝑖)+1

𝛿𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 + 𝜖2
𝑖𝑡,

which is implementable by regressing on 𝑊𝑟𝑖𝑡 and backing out 𝛿𝑟 as described above.
To motivate the procedure, rearranging 𝑌𝑖𝑡−1 = ∑𝑡∗(𝑖)+𝑅−1

𝑡=𝑡∗(𝑖) 𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡+𝜆𝑔(𝑖)+𝛼𝑡−1+𝜖𝑖𝑡−1

gives

𝜖𝑖𝑡−1 = 𝑌𝑖𝑡−1 −
𝑡∗(𝑖)+𝑅

∑
𝑡=𝑡∗(𝑖)+1

𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 − 𝜆𝑔 − 𝛼𝑡−1.
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Combining 𝑌𝑖𝑡 = ∑𝑡∗(𝑖)+𝑅
𝑡=𝑡∗(𝑖)+1 𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 + 𝜆𝑔(𝑖) + 𝛼𝑡 + 𝜖𝑖𝑡 and 𝜖𝑖𝑡 = 𝜌𝜖𝑖𝑡−1 + 𝜈𝑖𝑡, and then

using the equation above, we obtain

𝑌𝑖𝑡 =
𝑡∗(𝑖)+𝑅

∑
𝑡=𝑡∗(𝑖)+1

𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 + 𝜆𝑔(𝑖) + 𝛼𝑡 + 𝜌𝜖𝑖𝑡−1 + 𝜈𝑖𝑡

𝑌𝑖𝑡 =
𝑡∗(𝑖)+𝑅

∑
𝑡=𝑡∗(𝑖)+1

𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 + 𝜆𝑔(𝑖) + 𝛼𝑡 + 𝜌 (
𝑡∗(𝑖)+𝑅−1

∑
𝑡=𝑡∗(𝑖)

𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 − 𝜆𝑔(𝑖) − 𝛼𝑡−1) + 𝜈𝑖𝑡

= 𝜌𝑌𝑖𝑡−1 + (
𝑡∗(𝑖)+𝑅

∑
𝑡=𝑡∗(𝑖)+1

𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡 − 𝜌
𝑡∗(𝑖)+𝑅−1

∑
𝑡=𝑡∗(𝑖)

𝛽𝑡−𝑡∗(𝑖)𝐷𝑖𝑡) + (1 − 𝜌) 𝜆𝑔(𝑖) + 𝛼𝑡 − 𝜌𝛼𝑡−1 + 𝜈𝑖𝑡

= 𝜌𝑌𝑖𝑡−1 + (
𝑡∗(𝑖)+𝑅

∑
𝑡=𝑡∗(𝑖)+1

𝛽𝑡−𝑡∗(𝑖) − 𝜌
𝑡∗(𝑖)+𝑅−1

∑
𝑡=𝑡∗(𝑖)

𝛽𝑡−𝑡∗(𝑖)) 𝐷𝑖𝑡 + (1 − 𝜌) 𝜆𝑔(𝑖) + 𝛼𝑡 − 𝜌𝛼𝑡−1 + 𝜈𝑖𝑡.

This implies

𝛿1 = 𝛽1

𝛿2 = 𝛽2 − 𝜌𝛽1

⋮

𝛿𝑟 = 𝛽𝑟 − 𝜌𝛽𝑟−1

or equivalently

𝛽1 = 𝛿1

𝛽2 = 𝛿2 + 𝜌𝛽1

= 𝛿2 + 𝜌𝛿1

𝛽3 = 𝛿3 + 𝜌𝛽2

= 𝛿3 + 𝜌(𝛿2 + 𝜌𝛿1)

= 𝛿3 + 𝜌𝛿2 + 𝜌2𝛿1

⋮

𝛽𝑟 = 𝛿𝑟 + 𝜌1𝛿𝑟−1 + 𝜌2𝛿𝑟−2 + ⋯ + 𝜌𝑟−1𝛿1

=
𝑟−1
∑
𝑖=0

𝜌𝑖𝛿𝑟−𝑖

which allows us to back out the parameters of interest.
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Figure A1: Event-study in non-staggered setting with pre-trend

Note: This figure displays event-study estimates for a simulated dataset exhibiting a pre-trend from Roth
(2024) by applying 2SDD with the first stage estimated using observations for eventually-treated units in the
period immediately before they adopt the treatment as well as all observations for never-treated units. Under
this data-generating process, the outcome for treated units follows a linear trend: 𝑌𝑖𝑡 = 0.5 ⋅ 𝑡 ⋅ 𝐷𝑖 + 𝜀𝑖𝑡,
where 𝐷𝑖 is an indicator for treatment and 𝜀𝑖𝑡 are i.i.d. standard normal.
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Figure A2: Empirical applications: Kuziemko, Meckel and Rossin-Slater (2018) event study
estimates

(a) Figure 2(a)

(b) Figure 2(b)

Note: This table reports event-study estimates from applying each estimator to the event-study specifications
in Kuziemko, Meckel and Rossin-Slater (2018). 63



Figure A3: Empirical applications: Outlier post-treatment normalized standard error differ-
ences

Note: Each panel of this figure corresponds to one of the five estimators we investigate. Each entry for a given
estimator corresponds to an estimate (associated with a particular post-treatment period, outcome variable,
and empirical setting) for which that estimator’s standard error significantly deviates from the average of
the other methods’ standard errors. Each entry displays the difference between each method’s standard
error and its associated leave-out mean, normalized by the average of the absolute value of the standard
errors for that coefficient. The criterion for determining that an estimator’s standard error significantly
deviates from that of the other estimators is that the normalized difference falls in the top 2.5 percent or
bottom 2.5 percent of the distribution (vertical bars closer to zero as thresholds), excluding estimates from
the Bailey and Goodman-Bacon (2015) paper. The numbers in the bottom left of each panel indicate the
number of such outlier estimates at the 5 percent level and 1 percent level, respectively.
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Figure A4: Empirical applications: Outlier pre-treatment normalized standard error differ-
ences

Note: Among the five estimators we investigate, each panel of this figure corresponds to an estimator for
which a standard error estimate (associated with a particular pre-treatment period before −1, outcome
variable, and empirical setting) significantly deviates from the average of the other methods’ standard errors.
Each entry displays the difference between each method’s standard error and its associated leave-out mean,
normalized by the average of the absolute value of the standard errors for that coefficient. The criterion for
determining that an estimator’s standard error significantly deviates from that of the other estimators is
that the normalized difference falls in the top 2.5 percent or bottom 2.5 percent of the distribution (vertical
bars closer to zero as thresholds), excluding estimates from the Bailey and Goodman-Bacon (2015) paper.
The numbers in the bottom left of each panel indicate the number of such outlier estimates at the 5 percent
level and 1 percent level, respectively.
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Table A1: Simulations (CPS wage data, heterogeneous treatment effects): 40 states treated
over 20 years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.79 0.1029 0.0063 0.1001 0.10
1 5.39 0.1029 0.0062 0.1047
2 4.59 0.1041 -0.0075 0.1020
3 5.39 0.1043 0.0041 0.1029
4 5.79 0.1049 0.0038 0.1049

BJS 0 12.97 0.0743 -0.0016 0.0971 0.20
1 16.77 0.0751 -0.0036 0.1046
2 15.37 0.0760 -0.0010 0.1074
3 12.97 0.0759 -0.0006 0.1003
4 16.37 0.0773 -0.0126 0.1049

BJS (leave out) 0 0.40 0.1405 -0.0016 0.0971 0.19
1 1.20 0.1408 -0.0036 0.1046
2 1.80 0.1423 -0.0010 0.1074
3 1.00 0.1412 -0.0006 0.1003
4 0.80 0.1432 -0.0126 0.1049

CS 0 2.99 0.1436 -0.0004 0.1340 31.07
1 5.39 0.1420 0.0065 0.1381
2 4.39 0.1419 -0.0001 0.1302
3 3.59 0.1433 0.0055 0.1351
4 4.99 0.1433 -0.0026 0.1360

SA 0 0.60 0.1666 0.0022 0.1274 46.95
1 1.60 0.1667 0.0013 0.1415
2 1.80 0.1672 -0.0138 0.1373
3 1.80 0.1676 -0.0023 0.1358
4 1.60 0.1681 -0.0012 0.1394

dCDH 0 4.99 0.1378 0.0013 0.1280 3.64
1 6.39 0.1374 0.0016 0.1421
2 5.19 0.1390 -0.0126 0.1371
3 6.59 0.1380 -0.0010 0.1374
4 5.19 0.1389 -0.0011 0.1399

W 0 4.19 0.1345 0.0019 0.1286 87.60
1 6.79 0.1343 0.0009 0.1433
2 5.99 0.1358 -0.0141 0.1384
3 5.99 0.1347 -0.0027 0.1363
4 6.79 0.1358 -0.0016 0.1398

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two treated
states in each of those years. See the note accompanying Table 2 for further information.
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Table A2: Simulations with non-uniform random treatment assignment (CPS wage data,
heterogeneous treatment effects): 40 states treated over 20 years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 5.99 0.0186 -0.0006 0.0192 0.06
1 4.99 0.0185 -0.0004 0.0188
2 3.79 0.0186 -0.0003 0.0183
3 5.99 0.0186 0.0005 0.0191
4 4.79 0.0187 0.0009 0.0184

BJS 0 15.37 0.0134 -0.0007 0.0184 0.29
1 18.96 0.0134 -0.0006 0.0201
2 19.56 0.0134 -0.0002 0.0193
3 16.77 0.0134 0.0003 0.0187
4 17.56 0.0137 -0.0010 0.0184

BJS (leave out) 0 0.40 0.0256 -0.0007 0.0184 0.20
1 2.00 0.0255 -0.0006 0.0201
2 1.20 0.0254 -0.0002 0.0193
3 1.00 0.0253 0.0003 0.0187
4 0.60 0.0258 -0.0010 0.0184

CS 0 3.19 0.0242 0.0005 0.0227 24.90
1 5.39 0.0252 0.0007 0.0242
2 6.39 0.0246 -0.0001 0.0243
3 5.39 0.0245 0.0024 0.0242
4 4.39 0.0249 0.0001 0.0241

SA 0 2.59 0.0284 -0.0006 0.0249 35.55
1 2.99 0.0292 -0.0007 0.0239
2 1.80 0.0286 -0.0006 0.0243
3 2.40 0.0286 -0.0000 0.0252
4 1.60 0.0287 0.0006 0.0238

dCDH 0 7.78 0.0234 -0.0008 0.0247 5.74
1 6.19 0.0243 -0.0006 0.0242
2 7.39 0.0235 -0.0005 0.0243
3 8.18 0.0238 0.0002 0.0251
4 5.39 0.0239 0.0006 0.0238

W 0 7.98 0.0228 -0.0006 0.0248 101.97
1 6.59 0.0237 -0.0007 0.0238
2 6.39 0.0229 -0.0005 0.0242
3 8.78 0.0232 -0.0000 0.0251
4 5.59 0.0232 0.0006 0.0238

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two
treated states in each of those years. In these simulations, following Arkhangelsky et al. (2021),
treatment assignment is correlated with systematic effects. See the note accompanying Table 2 for further
information.
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Table A3: Simulations (CPS wage data, homogeneous treatment effects): 40 states treated
over 20 years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 4.99 0.1025 0.0059 0.0997 0.11
1 5.79 0.1026 0.0064 0.1046
2 4.99 0.1038 -0.0075 0.1020
3 4.99 0.1039 0.0041 0.1027
4 6.39 0.1045 0.0039 0.1047

BJS 0 12.57 0.0741 -0.0016 0.0967 0.22
1 16.97 0.0748 -0.0034 0.1034
2 16.17 0.0758 -0.0019 0.1073
3 12.57 0.0757 -0.0006 0.1000
4 15.77 0.0771 -0.0125 0.1045

BJS (leave out) 0 0.40 0.1401 -0.0016 0.0967 0.59
1 1.20 0.1402 -0.0034 0.1034
2 1.80 0.1419 -0.0019 0.1073
3 1.00 0.1407 -0.0006 0.1000
4 0.80 0.1428 -0.0125 0.1045

CS 0 2.99 0.1434 -0.0002 0.1347 42.21
1 5.59 0.1419 0.0062 0.1378
2 4.39 0.1416 0.0006 0.1305
3 3.59 0.1429 0.0059 0.1343
4 4.79 0.1430 -0.0029 0.1355

SA 0 0.60 0.1663 0.0018 0.1272 38.92
1 2.00 0.1664 0.0015 0.1417
2 2.00 0.1670 -0.0138 0.1371
3 2.00 0.1673 -0.0023 0.1357
4 1.80 0.1678 -0.0011 0.1396

dCDH 0 4.79 0.1375 0.0009 0.1277 5.15
1 6.59 0.1371 0.0017 0.1422
2 4.99 0.1388 -0.0126 0.1370
3 5.79 0.1377 -0.0010 0.1373
4 5.19 0.1386 -0.0010 0.1400

W 0 4.59 0.1341 0.0015 0.1284 96.38
1 6.59 0.1341 0.0011 0.1434
2 6.39 0.1357 -0.0141 0.1382
3 5.79 0.1344 -0.0027 0.1363
4 5.99 0.1355 -0.0015 0.1400

TWFE 0 2.79 0.1367 0.0005 0.1230 0.16
1 3.79 0.1365 0.0010 0.1378
2 4.39 0.1360 -0.0136 0.1327
3 4.99 0.1369 -0.0014 0.1342
4 4.59 0.1372 -0.0015 0.1365

TWFE (no pre) 0 5.39 0.1011 0.0053 0.0969 0.11
1 5.59 0.1009 0.0059 0.1036
2 4.39 0.1020 -0.0087 0.1002
3 4.99 0.1022 0.0036 0.1012
4 5.19 0.1028 0.0035 0.1042

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two treated states in
each of those years. Treatment effects are homogeneous and drawn from a normal distribution. TWFE denotes the
two-way fixed effects estimator for a fully dynamic specification, estimating both pre-event and post-event coefficients.
TWFE (no pre) denotes a two-way fixed effects specification that estimates only post-event coefficients. See the note
accompanying Table 2 for further information.
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Table A4: Simulations (i.i.d. data, heterogeneous treatment effects): 40 states treated over
20 years (2 per year)

Method Period Rejection rate S.E. Bias RMSE Speed (secs)

GTTY 0 5.19 0.1289 0.0009 0.1269 0.11
1 4.59 0.1297 0.0073 0.1302
2 4.39 0.1300 -0.0105 0.1255
3 4.79 0.1307 0.0035 0.1262
4 4.99 0.1307 0.0012 0.1272

BJS 0 16.17 0.0938 -0.0000 0.1301 0.22
1 14.57 0.0940 -0.0017 0.1231
2 16.77 0.0945 0.0023 0.1334
3 14.77 0.0944 -0.0041 0.1266
4 16.37 0.0970 0.0021 0.1313

BJS (leave out) 0 1.40 0.1774 -0.0000 0.1301 0.24
1 0.60 0.1765 -0.0017 0.1231
2 1.20 0.1767 0.0023 0.1334
3 1.40 0.1758 -0.0041 0.1266
4 0.60 0.1797 0.0021 0.1313

CS 0 3.79 0.1796 -0.0104 0.1702 32.34
1 4.19 0.1799 -0.0008 0.1771
2 4.79 0.1785 0.0010 0.1668
3 4.59 0.1791 0.0044 0.1703
4 2.79 0.1800 -0.0033 0.1671

SA 0 1.80 0.2087 -0.0036 0.1685 55.77
1 1.80 0.2101 0.0013 0.1799
2 1.80 0.2098 -0.0170 0.1745
3 1.40 0.2090 -0.0031 0.1681
4 1.60 0.2092 -0.0034 0.1762

dCDH 0 5.39 0.1721 -0.0050 0.1682 3.75
1 6.19 0.1731 0.0020 0.1815
2 5.79 0.1731 -0.0163 0.1753
3 5.19 0.1724 -0.0024 0.1689
4 5.79 0.1728 -0.0046 0.1774

W 0 5.79 0.1683 -0.0043 0.1696 77.76
1 6.99 0.1692 0.0007 0.1815
2 5.39 0.1695 -0.0175 0.1766
3 5.99 0.1685 -0.0039 0.1697
4 6.19 0.1694 -0.0042 0.1773

Note: The table reports results from 501 simulations of 40 treated states over 20 years, with two treated
states in each of those years. The outcome data are drawn i.i.d. from a normal distribution with the
same mean and variance as that of the wage data used in Table A1. See the note accompanying Table 2
for further information.
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Table A5: Empirical applications: Change in standard errors across treatment periods

BGB2015 D2017 HW2017 LRS2018 T2014 U2014
BJS ×period 1.1382 -0.0000 -0.0003 -12.6865 0.0002 -0.0002

(0.7426) (0.0000) (0.0006) (4.0584) (0.0002) (0.0007)
CS ×period -12.6385 0.0011 -0.0115 15.6287 0.0001 -0.0035

(9.2480) (0.0003) (0.0032) (4.6711) (0.0001) (0.0019)
SA ×period -0.2929 0.0003 -0.0008 22.8739 -0.0009 0.0016

(0.1681) (0.0001) (0.0031) (6.7402) (0.0002) (0.0007)
dCDH ×period 0.1798 0.0004 -0.0020 24.0197 0.0005 0.0016

(0.1225) (0.0001) (0.0054) (7.3067) (0.0003) (0.0007)
Note: Each column reports estimates of method-specific linear period trends from a regression of
standard error estimates on period fixed effects, method fixed effects, and method-specific linear
period trends, corresponding to each of the papers in Table 3. The regression omits the linear
period trend for the 2SDD estimator. See Table S15 for additional details.
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Table A6: Empirical applications: Comparison of 𝑡-statistics (post-treatment periods)

|𝑡| 𝟙{|𝑡|>1.96} 𝟙{|𝑡|>𝑝90} 𝟙{|𝑡|>𝑝99}

Panel A: Unweighted
BJS 0.5056 0.0762 0.0976 0.0244

(0.1280) (0.0381) (0.0238) (0.0085)
CS -0.2912 -0.0823 -0.0122 -0.0000

(0.0983) (0.0361) (0.0173) (0.0000)
SA 0.9228 0.0884 0.1159 0.0213

(0.2440) (0.0381) (0.0246) (0.0080)
dCDH 0.5061 0.1067 0.0945 0.0122

(0.1175) (0.0382) (0.0237) (0.0061)

Panel B: Weighted (outcomes)
BJS 0.4607 0.0760 0.0882 0.0220

(0.1217) (0.0393) (0.0220) (0.0077)
CS -0.2664 -0.0765 -0.0064 0.0000

(0.0966) (0.0368) (0.0168) (0.0000)
SA 0.9153 0.0745 0.1084 0.0230

(0.2641) (0.0391) (0.0232) (0.0086)
dCDH 0.4339 0.0851 0.0854 0.0110

(0.1141) (0.0391) (0.0219) (0.0055)

Panel C: Weighted (papers)
BJS 0.3373 0.0808 0.0635 0.0162

(0.1409) (0.0568) (0.0154) (0.0060)
CS 0.1307 0.0399 0.0553 -0.0000

(0.1783) (0.0618) (0.0379) (0.0000)
SA 3.4792 0.1622 0.1833 0.1121

(1.2457) (0.0612) (0.0426) (0.0416)
dCDH 0.2260 0.0359 0.0380 0.0040

(0.1325) (0.0499) (0.0118) (0.0021)
Note: This table describes the relationship between each estimator and the absolute 𝑡-statistics
of the dynamic treatment effect estimates from applying each estimator to the empirical settings
in Table 3. Each observation is an estimate of a treatment effect in each post-treatment period
associated with each outcome in each paper using each of the five methods. The first column uses the
absolute value of the 𝑡-statistic as the dependent variable. The second column uses an indicator for
significant 𝑡-statistics using a conventional threshold (the absolute value of the 𝑡-statistic exceeding
1.96) as the dependent variable. The last two columns use an indicator for more extreme levels of
statistical significance (the absolute value of the 𝑡-statistic exceeding the 90th and 99th percentiles,
respectively, of the distribution of estimates in our sample) as the dependent variable; the 90th

percentile is approximately 4.3 and the 99th percentile is approximately 7.4. All specifications use
a balanced sample of coefficients that all methods can estimate. The estimates in panels B and C
use the inverse of the number of periods for each outcome variable and the inverse of the number
of outcomes for each paper, respectively, as weights. We report heteroskedasticity-robust standard
errors in parentheses.
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